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The intent this document is to describe advanced CHR programming with efficient execution in SWI-
Prolog and SICStus Prolog. The document is compiled using the reference manuals of SWI-Prolog [1]
and SICStus Prolog [2, 3]. The authors have taken the liberty to extract the relevant information
and summarize into this single document for clarity and exhaustive presentation of the various tips
and caveats.
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1.1

Advanced CHR Programming

CHR Options

It is possible to specify options that apply to all the CHR rules in the module. Options may appear
in the file anywhere after the first constraints declaration, and are specified with the chr_option/2
declaration:

:= chr_option(Option,Value).

Available options are:

e check_guard_bindings, [on,off]

This option controls whether guards should be checked for (illegal) variable bindings or not.
Possible values are on to enable the checks, and off to disable the checks. If this option is
on, any guard fails when using the equality = operator to bind a variable that appears in the
head of the rule. When the option is off (default), the behavior of a binding in the guard
is undefined. The check_guard_bindings option only turns invalid calls to unification into
failure.

optimize, [full,off]

This option controls the degree of optimization. Possible values are full to enable all available
optimizations, and off (default) to disable all optimizations. The default is derived from the
SWI-Prolog flag optimise, where true is mapped to full. Therefore the command-line option
-0 provides full CHR optimization. If optimization is enabled, debugging must be disabled.

debug, [on,off]
This option enables or disables the possibility to debug the CHR code by generating or not the
debug info. Possible values are on (default) and off. The default is derived from the Prolog
flag generate_debug_info, which is true by default. If debugging is enabled, optimization
must be disabled.



1.2 Declarations

Every constraint used in CHR has to be declared with a chr_constraint declaration by the con-
straint specifier. A constraint specifier is, in its compact form, F/A where F and A are respectively
the functor name and arity of the constraint, for example:

:— chr_constraint foo/1.
:— chr_constraint bar/2, baz/3.

In its extended form, a constraint specifier is c(A_1, ... ,A_n) where c is the constraint’s functor,
n its arity and A_i are argument specifiers. An argument specifier is a mode, optionally followed by
a type, for example:

:— chr_constraint get_value(+,7).
:— chr_constraint domain(?int, +list(int)),
alldifferent(?list(int)).

1.2.1 Modes

Modes describe the binding of arguments at run-time. Note that modes and types will not be
necessarily checked by the CHR compiler. A mode is one of:

e - : the corresponding argument of every occurrence of the constraint is always unbound
e + : the corresponding argument of every occurrence of the constraint is always ground

e 7: the corresponding argument of every occurrence of the constraint can have any instantiation,
which may change over time (this is the default value)

1.2.2 Types

A type can be a user-defined type or one of the built-in types. A type comprises a (possibly infinite)
set of values. The type declaration for a constraint argument means that for every instance of that
constraint the corresponding argument is only ever bound to values in that set. It does not state
that the argument necessarily has to be bound to a value.

The corresponding argument of every occurrence of the constraint for the built-in types are:

e int: integer number

e dense_int: integer that can be used as an array index (only in SWI-Prolog)
e float: floating point number

e number: number

e natural: positive integer

e any: any type (this is the default value)



1.3 Argument Indexing

In any Prolog, you will have the usual look-up of a partner constraint via shared variables if those
variables are free at run time (e.g. the classical leq solver).

SWI-Prolog additionally automatically generates hash tables for arguments with ground mode and
even arrays for ground arguments of type dense_int. If the arguments are declared to be ground,
hash tables will be automatically maintained, with keys that can take more than one argument at a
time if needed, e.g. given a(X,Y,Z), the lookup of b(X,Y,A,B) will use a hash table that uses keys
of the form k(X,Y). If the arguments are possibly non-ground, attributed variables are used. It is
required to have the optimize option set to full. The type does not matter as long as the mode is
ground. For the type dense_int arrays are used instead of hash tables, which is slightly faster.

Moreover, there are ways to manually specify which tables are constructed, so one can choose not to
create certain hash tables if the overhead of maintaining them is higher than the gain from them. By
default, all useful tables are maintained. The syntax for overriding this is quite complicated though,
so one would not probably want to do it. Here is an example program:

:— chr_constraint c(+,+,+).

rule_1 @ a(X), c(_,X,_) ==> foo.
rule_2 @ a(X,Y), c(X,Y,_) ==> foo.
rule_3 @ a(X,Y), c(X,_,Y) ==> foo.
rule_4 @ a, c(_,_,_) ==> foo.

By default, there will be a hash table indexed on argument 2, one on [1,2], one on [1,3], and one flat
list (no indexing). This would correspond to:

:— chr_option(store, c¢/3 - multi_store([multi_hash([2]),
multi_hash([1,2]),
multi_hash([1,3]),
global_ground]) .

One could specify another list of tables, e.g. only multi_hash([1]), and then it will use first
argument indexing for rules 2 and 3, and for rules 1 and 4 it will use that hash table to get all ¢/3
constraints and check if they match. Although the asymptotic complexity is worse in general, the
constant factors might be better because there is much less overhead.

To disable unwanted hash tables, instead of specifying the stores explicitly, one could use the following
trick. For the previous example, say the third rule is not used often, so indexing is not needed on
[1,3]. The rule can be rewritten as follows:

a(X,Y), c(X1,_,Y1) ==> X==X1, Y==Y1 | foo.

In effect the exact rule is obtained, but no hash table is constructed because the compiler ignores
the guard when considering shared arguments.

On the other hand, SICStus Prolog does not allow to implement hash tables efficiently (it lacks
support for the kind of destructive updates need), so there is no good indexing for ground arguments
there. Thus this implies that simple lists must be used, thus the SICStus version can actually be
slower than the SWI version even though SICStus itself is faster.



1.4 Pragmas

Pragmas are annotations to rules and constraints that enable the compiler to generate more specific
and optimized code. The pragma of the form passive(Identifier) means that the constraint in
the head of the rule with the given Identifier can only match a passive constraint in the constraint
store, but not an active (currently executing) constraint. There is an abbreviated syntax for this
pragma. Instead of:

., ¢ #Id, ... <=> ... pragma passive(Id)
one can also write:
., C # passive, ... <=> ...

No code will be generated for the specified constraint in the particular head position. This means
that the constraint will not see the rule; it is passive in that rule. This changes the behavior of the
CHR system, because normally a rule can be entered starting from each head constraint. Usually this
pragma will improve the efficiency of the constraint handler, but care has to be taken in order not
to lose completeness. For example, in the handler leq, any pair of constraints, say A 1leq B, B leq
A, that matches the head X leq Y, Y leq X of the antisymmetry rule, will also match it when the
constraints are exchanged, B 1leq A, A leq B. Therefore it is enough if a currently active constraint
enters this rule in the first head only, the second head can be declared to be passive. Similarly for
the idempotence rule, it is more efficient to declare the first head passive, so that the currently active
constraint will be removed when the rule fires (instead of removing the older constraint and redoing
all the propagation with the currently active constraint). Note that the compiler itself detects the
symmetry of the two head constraints in the simplification rule antisymmetry, thus it is automatically
declared passive and the compiler outputs CHR eliminated code for head 2 in antisymmetry.

antisymmetry X leq Y , Y leq X # Id <=> X=Y pragma passive(Id).
idempotence X leq Y # Id \ X leq Y <=> true pragma passive(Id).
transitivity X leq Y # Id , Y leq Z ==> X leq Z pragma passive(Id).

Declaring the first head of rule transitivity passive changes the behavior of the handler. It will
propagate less depending on the order in which the constraints arrive:

| 7- X leq Y, Y leq Z.
X leq VY,

Y leq Z,

X leq Z

| 7= Y leq Z, X leq Y.
Y leq Z,
X leq Y

| 7= Y leq Z, X leq Y, Z leq X.
Y =X,
Z =X

The last query shows that the handler is still complete in the sense that all circular chains of leqg-
relations are collapsed into equalities.



2 Programming Hints
Several guidelines on how to use CHR to write constraint solvers and how to do so efficiently:

1. Writing the Rules

Constraint handling rules for a given constraint system can often be derived from its definition
in formalisms such as inference rules, rewrite rules, sequents, formulas expressing axioms and
theorems. CHR can also be found by first considering special cases of each constraint and then
looking at interactions of pairs of constraints sharing a variable. Cases that do not occur in
the application can be ignored.

. Call Order of Constraints
The order of constraints in a query or the body of a rule can strongly influence efficiency,
because constraints are executed from left to right. Depending on which constraint comes first,
different rules may apply.

. Granularity of Constraints

It is important to find the right granularity of the constraints. Assume one wants to express
that n variables are different from each other. It is more efficient to have a single constraint
all_different(List_of_n_Vars) than n % n inequality constraints between each pair of dif-
ferent variables. However, the extreme case of having a single constraint modeling the whole
constraint store will usually be inefficient.

. Adjusting the Guards

Starting from an executable specification, the rules can then be refined and adapted to the
specifics of the application. Efficiency can be improved by weakening the guards to perform
simplification as early as needed and by strengthening the guards to do the just right amount
of propagation. Propagation rules can be expensive, because no constraints are removed.

. Number of Rule Heads

The more heads a rule has, the more expensive it is. Rules with several heads are more efficient,
if the heads of the rule share a variable (which is usually the case). Then the search for a
partner constraint has to consider less candidates. In the current implementation, constraints
are indexed by their functors, so that the search is only performed among the constraints
containing the shared variable. Moreover, two rules with identical (or sufficiently similar)
heads can be merged into one rule so that the search for a partner constraint is only performed
once instead of twice.

. Simple Guards

As guards are tried frequently, they should be simple tests not involving side-effects. Head
matching is more efficient than explicitly checking equalities in the ask-part of the guard. In
the tell part of a guard, it should be made sure that variables from the head are never touched
(e.g. by using nonvar or ground if necessary). For efficiency and clarity reasons, one should also
avoid using constraints in guards. Besides conjunctions, disjunctions are allowed in the guard,
but they should be used with care. The use of other control built-in predicates in the guard is
discouraged. Negation and if-then-else in the ask part of a guard can give wrong results, since
e.g. failure of the negated goal may be due to touching its variables.

. Check guard bindings yourself

The guard of a rule may not contain any goal that binds a variable in the head of the rule with
a non-variable or with another variable in the head of the rule. It may however bind variables
that do not appear in the head of the rule, e.g. an auxiliary variable introduced in the guard.
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It is considered bad practice to write guards that bind variables of the head and to rely on the
system to detect this at runtime. It is inefficient and obscures the working of the program.

Indistinguishable Operators

The CHR guard separator | and the Prolog disjunction operator ; are indistinguishable
as infix operators. They are both are read as ;; so if a simplification rule is given as:
head <=> (P ; Q), CHR will break the ambiguity by treating P as the guard and Q as the
body, which is probably not what you want. To get the intended interpretation, you must
supply a dummy guard ‘true |’ asin: head <=> true | (P ; Q)

. Set Semantics

The CHR system allows the presence of identical constraints, i.e. multiple constraints with the
same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation rules should be added of
the form: constraint \ constraint <=> true

Multi-headed Rules
Multi-headed rules are executed more efficiently when the constraints share one or more vari-
ables.

Mode and Type Declarations
Provide mode and type declarations to get more efficient program execution. Make sure to
disable debug (-nodebug) and enable optimization (-0).

Compile Once, Run Many Times

Does consulting your CHR program take a long time in SWI-Prolog? Probably it takes the
CHR compiler a long time to compile the CHR rules into Prolog code. When you disable
optimizations the CHR compiler will be a lot quicker, but you may lose performance. With
SWI-Prolog, you can use qcompile/1 to generate a .qlf file once from your .pl file. This
.q1lf contains the generated code of the CHR compiler (be it in a binary format). When you
consult the .qlf file, the CHR compiler is not invoked and consultation is much faster.

Finding Constraints

The find_chr_constraint/1 predicate is fairly expensive because it backtracks over the entire
constraint store. It is usually best to avoid find_chr_constraint/1 altogether and write rules
of the form:

c(X,Y) \ find_c(X,Q) <=>Q =Y.
find_c(X,Q) <=> fail.

or a variant of that instead. That way, the query will be done efficiently because indexing can
be used.

Stmultaneous Handlers

Several handlers can be used simultaneously if they do not share constraints with the same
name. The implementation will not work correctly if the same constraint is defined in rules of
different handlers that have been compiled separately. In such a case, the handlers must be
merged by hand. This means that the source code has to be edited so that the rules for the
shared constraint are together (in one module). Changes may be necessary (like strengthening
guards) to avoid divergence or loops in the computation.

Modules
The CHR constraints defined in a .pl’ file are associated with a module. The default module
is user. One should never load different ¢.pl’ files with the same CHR module name.



3 Interpretation and Compilation in Prolog

Interpretation and compilation in Prolog are different depending on the Prolog distribution. In this
sheet, some information is gathered on the differences between SWI-Prolog 6.1.5 and SICStus Prolog
4.

3.1 SWI-Prolog 6.1.5

SWI-Prolog is based on a very simple Prolog virtual machine called ZIP. As it is also possible to
wire a standard 4-port debugger in the virtual machine there is no need for a distinction between
compiled and interpreted code.

After starting Prolog, one normally loads a program into it using consult/1, which may be abbre-
viated by putting the name of the program file between square brackets. SWI-Prolog does not have
a separate reconsult/1 predicate. Reconsulting is implied automatically by the fact that a file is
consulted which is already loaded.

As of SWI-Prolog 5.9.8, the default limit for the stack-sizes is 128Mb on 32-bit and 256Mb on 64-
bit hardware. The 128Mb limit on 32-bit system is the highest possible value and this option can
thus only be used to lower the limit. On 64-bit systems, the limit can both be reduced and enlarged.
Here are two examples, the first reducing the local stack limit to catch unbounded recursion really
quickly and the second using a really big (32Gb) global limit on a 64-bit machine:

$ swipl -L8m
$ swipl -G32g

-G[size] Limit for the global stack (aka term-stack or heap), where compound terms and large
numbers live.

-L[size] Limit for the local stack (aka environment-stack), where environments and choice-
points live.

-T[size] Limit for the trail stack, where assignments are kept track to rollback on backtracking
or exceptions.

An SWI-Prolog runtime flag named optimise controls compilation. If true, compile runs in opti-
mized mode. The initial value is true if Prolog was started with the -0 command-line option. Cur-
rently optimized compilation implies compilation of arithmetic, and deletion of redundant true/0
that may result from expand_goal/2.

$ swipl -0

The CHR debugging facilities are currently rather limited. Only tracing is currently available. To
use the CHR debugging facilities for a CHR file it must be compiled for debugging. Generating
debug info is controlled by the CHR option debug, whose default is derived from the SWI-Prolog
flag generate_debug_info. Therefore debug info is provided unless the -nodebug is used.

$ swipl -nodebug

3.2 SICStus Prolog 4

The system consists of a WAM emulator written in C, a library and runtime system written in C
and Prolog and an interpreter and a compiler written in Prolog. When compiled, a predicate will
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run about 8 times faster and use memory more economically.

Compiled code runs more quickly than interpreted code, and provides better precision for execution
profiling and coverage analysis. On the other hand, you cannot debug compiled code in as much
detail as interpreted code. Two modes of compilation are available: in-core i.e. incremental, and
file-to-file.

Prolog source files can be compiled into virtual machine code, as well as consulted for interpretation.
Dynamic predicates are always stored in interpreted form, however. The compiler operates in two
different modes, controlled by the compiling Prolog flag. The possible values of the flag are:

e compactcode : Compilation produces byte-coded abstract instructions (the default).

e debugcode : Compilation produces interpreted code, i.e. compiling is replaced by consulting.
The following are predicates used to load prolog files:

e [],[:File [|+Files ] : loads source file(s), whichever is the more recent, according to Options.
This predicate is defined as if by: [File|Files] :- load_files([Filel|Files]).

e compile(:File ) : loads source file into virtual machine code. (i.e. compiled). This predicate
is defined as if by: compile(Files) :- load_files(Files, [load_type(source),compilation_mod

e consult(:File ) reconsult(:File ) : loads source file into interpreted representation. This

predicate is defined as if by: consult(Files) :- load_files(Files, [load_type(source),compila

The default compilation mode is the compilation mode of any ancestor load_files/[1,2] goal, or
compile otherwise. If you want to be sure that your program is compiled, use compile/1 to load a
Prolog file in SICStus Prolog.
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