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Abstract. Constraint Handling Rules (CHR) is a concurrent, commit-
ted-choice, rule-based language. One of the first CHR programs is the
classic constraint solver for syntactic equality of rational trees that per-
forms unification [7, 4, 14]. The worst-case time (and space) complexity
of this short and elegant solver so far was an open problem [8] and as-
sumed to be polynomial. In this paper we show that under the standard
operational semantics of CHR there exist particular computations with n
occurrences of variables and function symbols that produce O(2n) con-
straints, thus leading to exponential time and space complexity. We also
show that the standard implementation of the solver in CHR libraries
for Prolog may not terminate due to the Prolog built-in order used in
comparing terms. Complexity can be improved to be quadratic for any
term order under both standard and refined CHR semantics without
changing the equation solver, when equations are transformed into flat
normal form.

1 Introduction

Unification Algorithms. Unification is concerned with making first order logic
terms syntactically equivalent by substituting terms for variables. For exam-
ple, the terms h(a, f(Y )) and h(Y, f(a)) can be made identical by substituting
the variable Y by a. In 1930, Herbrand [9] gave an informal description of a
unification algorithm. Robinson [13] rediscovered a similar algorithm when he
introduced the resolution procedure for first-order logic in 1965. Resolution and
unification form the computational basis of logic programming languages such as
Prolog. Since the late 70s, there are quasi-linear time algorithms for unification.
For finite trees (Herbrand terms), see [11] and [12]. For rational trees, see [10].
These algorithms can be considered as extensions of the union-find algorithm [17]
from constants to trees.

Syntactic Equations. In constraint programming, unification of terms is un-
derstood as solving equations, e.g., the equation h(a, f(Y )) eq h(Y, f(a)) will
reduce to the solved normal form Y eq a. Syntactic equality is an essential
ingredient of constraint logic programming, since terms are the universal data
structure and equalities can be used to build, access, and take apart terms. In
early Prolog implementations, the occur-check was omitted from syntactic equal-
ity for efficiency reasons. The result was that equation solving could go into an
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infinite loop (e.g. for X eq f(X)). In Prolog II, an algorithm for properly han-
dling the resulting infinite terms was introduced [3]. This class of infinite terms
is called rational trees and is introduced in Section 2.

CHR Rational Tree Solver. Constraint Handling Rules CHR [4, 8, 14] is a
concurrent committed-choice constraint logic programming language consisting
of guarded rules that transform multi-sets of constraints (atomic formulas) into
simpler ones until they are solved. Like other algorithms for rational tree unifi-
cation, the CHR rational tree solver (c.f. Section 3, Fig. 1) relies on a size-based
order on terms to ensure termination. However, a formal termination proof for
the solver is not available so far1. Standard proof methods and counter-examples
for unification algorithms do not apply, since the CHR solver does not rely on
solved variables and their substitutions. Even worse, the standard implementa-
tion of the solver uses the Prolog term order. We show that the solver does not
terminate with that particular order.

Exponential Complexity. In Section 4, we investigate termination and worst-
case time and space complexity of the solver when using a certain measure order.
It is based on a measure that maps terms and constraints to natural numbers.
To the best of our knowledge, this yields the first termination proof for an
unification algorithm where a scalar suffices (usually lexicographic or multi-set
orderings are used). Our main result is that there are computations under the
standard CHR operational semantics for a problem with size n that require O(2n)
rule applications in the worst-case. This exponential complexity is shown to be
tight. To this end, we give a witness query with size O(n2) that produces more
than 2n constraints. Therefore, worst-case space and (hence) time complexity of
the classic CHR constraint solver for unification is exponential. However, it is
still an open problem, if the result carries over to actual implementations of the
solver that usually rely on the refined CHR semantics.

Quadratic Complexity. But we also have good news in Section 5: The very
same solver runs in quadratic time and space, as we prove, by requiring that the
equations to be solved are in flat normal form. Such equations do not contain
terms with nested applications of function symbols. For example, the equation
h(a, f(Y )) eq h(Y, f(a)) can be flattened into h(A,Z) eq h(Y, X) ∧ A eq a ∧
Z eq f(Y ) ∧ X eq f(A). Since any set of syntactic equations can be trans-
formed into flat normal form in linear time and space, this requirement is no
real restriction. We also show that the results are rather independent of the
term order used in the solver.

2 Rational Trees

A rational tree has a finite representation as a directed (possibly cyclic) graph
by merging all nodes with common subtrees.

Definition 1. A rational tree (or RT) is a (possibly infinite) finitely branching
tree which has a finite number of subtrees.
1 This may be an example were elegance does not pay off: The solver consists of just

four rules, and so is more concise than most formal specifications of unification.
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A rational tree can also be represented as a binary equality constraint. For
example, the infinite tree f(f(f(. . . ))) only contains itself and can be represented
by the equation X eq f(X). (Variables are written in upper-case and function
symbols in lower-case letters as common in logic programming.)

A conjunction of atomic constraints is solved (or in solved normal form) if
it is either false or if it is of the form

∧n
i=1 Xi eq Ti with pairwise distinct

variables X1, . . . , Xn and arbitrary terms T1, . . . , Tn for n ∈ N. We require Xi

to be different to Tj for 1 ≤ i ≤ j ≤ n, i.e., if a variable occurs on the l.h.s.
of an equation, it does neither occur as the l.h.s. nor r.h.s. of any subsequent
equation. The empty conjunction (n = 0) is identified with true. For example,
the equations f(X, b) eq f(a, Y ), X eq t∧X eq s, and X eq Y ∧Y eq X are
all not in solved form, while X eq Z ∧ Y eq Z ∧ Z eq t is in solved form. The
solved form is not unique, e.g., X eq Y and Y eq X are logically equivalent
but syntactically different solved forms, as are X eq f(X) and X eq f(f(X)).

3 Rational Tree Equation Solver

The CHR program in Fig. 1 solves rational tree equations [7, 4, 8]. This solver
dates back to late 1993 and was revised in 1998 [14]. The underlying algorithm
is similar to the one in [3], but unlike this and most other unification algorithms
it uses variable elimination (substitution) only in a very limited way, if it cannot
be avoided. As a consequence, the algorithm has to rely on an order on variables.
However, this simplification of the algorithm makes termination and complexity
analysis considerably harder.

The auxiliary built-ins of the solver allows one to be independent of the
representation of terms in the implementation: Besides true and false, we have
var(T ) iff T is a variable and fun(T ) iff T is a function term (i.e. not a variable).
A generic total order is implemented by ≺ and � and explained below in Sub-
section 3.2. The built-in same functor(T1,T2) tests if T1 and T2 have the same
function symbol and the same arity. It leads to false if not. The auxiliary CHR
constraint same args(T1,T2) pairwise equates the arguments of the two terms.

The rule reflexivity removes trivial equations between identical variables.
The rule orientation reverses the arguments of an equation so that the (smaller)
variable comes first. The order check in the guard makes sure that it is applica-
ble only once to a given equation. The rule decomposition applies to function
terms. When there is a clash, same functor will lead to false. Otherwise, the ini-
tial equation between two function terms will be replaced by equations between
the corresponding arguments of the terms. The rule confrontation replaces the
variable in the second equation by the value of that variable according to the first
equation. It performs a limited amount of variable elimination (substitution) by
only considering the l.h.s.’ of equations. This rule duplicates the term T1. For
termination it is ensured by the guard that T1 is not larger than T2.

Due to the confrontation rule, the complexity of the solver is worse than
linear. The intricate interaction between the decomposition rule and the con-
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frontation rule in the case of infinite terms (cyclic terms) makes it hard to
determine the worst-case time complexity of the solver.

reflexivity @ X eq X <=> var(X) | true.
orientation @ T eq X <=> var(X), X≺T | X eq T.

decomposition @ T1 eq T2 <=> fun(T1), fun(T2) |

same_functor(T1,T2), same_args(T1,T2).

confrontation @ X eq T1, X eq T2 <=> var(X), X≺T1, T1�T2 |

X eq T1, T1 eq T2.

Fig. 1. Rational tree equation solver (RT solver)

The solver is satisfaction-complete, i.e. detects unsatisfiability: The condi-
tions for the solved normal form can be restated as Xi ≺ Xi+1 and Xi ≺ Ti+1

(for 1 ≤ i < n) since any strict total order is transitive and asymmetric. Actu-
ally, the solver computes the solved form, as can be shown by contradiction: As
long as a conjunction of constraints is not in solved form, at least one rule is
applicable. If it is in solved form, no rule is applicable.

Example 1. Here is a simple example involving infinite rational trees that shows
that one of the equations is redundant.

X eq f(X), X eq f(f(X))
7→confrontation X eq f(X), f(X) eq f(f(X))
7→decomposition 7→∗ X eq f(X), X eq f(X)
7→confrontation X eq f(X), f(X) eq f(X)
7→decomposition 7→∗ X eq f(X), X eq X
7→reflexivity X eq f(X)

3.1 Term Size and Problem Size

We first define term and problem size and then the generic order ≺ based on
term size that is used in the RT solver to compare terms.

Definition 2. The term size #T of a term T is the number of occurrences
of variables and function symbols. For two function terms S and T , we de-
fine the term-size order S ≺s T iff #S < #T . The problem size #C of
a conjunction C =

∧n
i=1 Si eq Ti of equations with n ∈ N is defined as

# (
∧n

i=1 Si eq Ti) :=
∑n

i=1 #Si + #Ti.

For example, the problem size of (the empty conjunction) true is 0, the size
of X eq f(a) is 3, and X eq f(b) ∧ f(b) eq h(a) has size 7.

3.2 Generic Term Order and Termination

Ordering terms according to the number of occurrences of symbols is common
in the rational tree literature.
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Definition 3. Any instance of the generic strict total term order ≺ must have
the following three properties [8]:

1. For different variables X and Y , either X≺Y or Y≺X.
2. Any variable is strictly smaller than any function term.
3. Function terms of smaller term size are also smaller in the order (term-size

property).

A function term is a term that is not a variable. Two terms T1 and T2 are
equivalent w.r.t. ≺ if neither T1 ≺ T2 nor T2 ≺ T1. Clearly, terms of same size
may be syntactically different terms.

Termination of the RT solver crucially relies on the generic order ≺. The
rules reflexivity and orientation are applicable at most once to an equation.
Application of decomposition produces equations between the arguments of the
functions of the initial equations. Thus, the new equations have arguments of
smaller size. Application of confrontation replaces one occurrence of X by T1.
The guard ensures that X ≺ T1 � T2. Therefore, as long as T1 is a variable, it gets
closer from below to T2 but can never exceed it. If T1 is a function term, then
so must be T2, and then only decomposition is applicable to the new equation
T1 eq T2 produced by confrontation. The resulting equations, including the
unchanged X eq T1, will only contain terms that are strictly smaller than T2.
Since there is only a finite number of variables and sub-terms in a given problem
and since the generic term order is thus well-founded, the solver terminates2.

3.3 Non-Termination with Standard Prolog Order

The standard implementation of the RT solver [8, 14] uses the built-in Prolog
order @<. Variables are identified by the built-in var/1 and function terms by the
built-in nonvar/1. The Prolog order @< compares arguments of function terms
lexicographically from left to right, e.g., f(Y, f(a,X)) @< f(a,X) but f(a,X) ≺s

f(Y, f(a,X)). The order @< therefore does not respect the term-size property,
it is not an instance of the generic term order. As we show in the following
example, this can cause non-termination for infinite rational trees:

Example 2. The query X eq f(Y,f(a,X)), X eq f(a,X) does not terminate.

X eq f(Y,f(a,X)), X eq f(a,X)
7→confrontation X eq f(Y,f(a,X)), f(Y,f(a,X)) eq f(a,X)
7→decomposition 7→∗ X eq f(Y,f(a,X)), Y eq a, f(a,X) eq X
7→orientation X eq f(Y,f(a,X)), Y eq a, X eq f(a,X)

Similarly, and containing only one binary function symbol, the computation
for the query X eq f(Y,f(f(X,Y),X)), X eq f(f(X,Y),X) does not terminate.
Note that in the next section we give another order that is also incompatible
with the generic term order, but makes the RT solver provably terminate.
2 A formal termination proof for the solver with generic term order is still missing.
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4 Exponential Complexity

In this section we show that there exists a term order for the RT solver such
that the worst-case time and space complexity of the solver can be exponential
in the size of the problem. This term order, however, is not an instance of the
generic term order commonly used in the solver.

We define a problem measure, which maps CHR constraints into natural
numbers. It is based on a term measure that is exponential in the depth of the
term. In the RT solver, we replace the generic order ≺ by the so-called measure
order which is defined in terms of the measure.

We show for each rule that the problem measure of the head is always strictly
greater than the problem measure of the body, provided the guard holds. In this
way we not only formally prove termination, but also show that the problem
measure gives us an upper bound on the number of rule applications (derivation
length) [5]. Since the cost of a rule application can be made constant in the
RT solver, the derivation length directly gives us the desired complexity result.
A worst-case example then shows that the bound is actually tight.

4.1 Term Measure and Problem Measure

We give an inductive definition of our term measure3. As the RT solver does
not introduce new variables, the number of different variables v of a problem is
clearly bounded by its size. Hence, we can assume that all variables are elements
of {X1, . . . , Xv}. The natural number v is called the number of variables of the
problem.

Definition 4. The term measure |T | of a term T is defined as follows:

|T | :=

{
i if T = Xi

n + 2
∑n

i=1 |Ti| if T = f(T1, . . . , Tn)

Note that a constant (i.e., a null-ary function) has measure 0. Due to the factor 2
in the recursive definition, the measure of a term can be exponential in its size,
consider, e.g., the term f(f(f(a))).

We extend our term measure to equations and queries.

Definition 5. For an equation S eq T with terms S and T , we define the
constraint measure4.

|S eq T | := 1 + |S|+ |T |+


|T | if var(S) ∧ fun(T )
|S| if var(T ) ∧ fun(S)
0 otherwise

3 Term measures are also called norms in the literature on termination of constraint
logic programs.

4 Constraint measures are also called level mappings and ranks in the literature on
termination of constraint logic programs.
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The constraint measure summation consists of three components. The first
component counts each equation as 1. The number of equations decreases when
the rule reflexivity or decomposition of constants is applied. The second
component |S| + |T | accounts for the sizes of the arguments of the equations.
It decreases when rule decomposition is applied. The third component adds to
a variable in one argument the size of the other argument. It is introduced to
handle the rule confrontation, where a variable is replaced by the term in its
other argument. This reasoning will be made more formal in the next subsection
when we compute the derivation length.

Definition 6. For a conjunction
∧n

i=1 Si eq Ti of equations (which we call
problem C), consisting of terms Si and Ti for 1 ≤ i ≤ n and n ∈ N, we
define the problem measure |C| :=

∑n
i=1 |Si eq Ti|. The problem measure is

extended to any conjunction of constraints by ignoring any occurrence of the
built-in constraints true and false, i.e., |false| := |true| := 0.

Clearly, the problem measure is invariant to reordering and to orientation of
equations. The problem measure decreases if one of its contributing constraint
measures decreases. Thus, local replacements of equations, caused by a rule
applications, can be treated independently.

4.2 Measure Order

Now we replace the generic order of the RT solver by a measure order which is
defined via the term measure.

Definition 7. The measure order ≺m induced by the term measure is defined
by the three cases:

1. For two variables X and Y : X ≺m Y iff |Y | < |X|
2. For any variable X and any function term T : X ≺m T
3. For two function terms S and T : S ≺m T iff |S| < |T |

We emphasise that variables Xi and Xj are ordered by decreasing term measure,
Xi ≺m Xj iff |Xj | < |Xi| iff j < i, while function terms S and T are ordered by
increasing term measure, S ≺m T iff |S| < |T |. The reverse ordering of variables
will come handy when reasoning about the rule confrontation.

In the sequel, we assume the RT solver of Fig. 1 uses our measure order ≺m

(c.f. Definition 7). Note that the measure order ≺m is not an instance of the
generic term order ≺. For example, f(f(f(a))) ≺s f(a, a, a, a) in term-size order
while f(a, a, a, a) ≺m f(f(f(a))) in measure order.

4.3 Number of Rule Applications

We will need the following inequality between the constraint measure and its
arguments’ term measures.
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Lemma 1 For any two terms S and T , the constraint measure is bounded by
twice the sum of its term measures plus one: |S eq T | < 2

(
1 + |S|+ |T |

)
.

Proof. Directly by Definition 5. ut

The problem measure gives an upper bound on the derivation length.

Lemma 2 Each application of one of the rules reflexivity, decomposition,
and confrontation decreases the problem measure.

Proof. We consider each rule in turn.

Application of reflexivity: Consider any variable X.

|X eq X| = 1 + |X|+ |X| > 0 = |true|

Application of decomposition: First, consider the case of two function terms
with same function symbols and same arities.

|f(S1, . . . , Sn) eq f(T1, . . . , Tn)| =1 + |f(S1, . . . , Sn)|+ |f(T1, . . . , Tn)|

=1 +
(
n + 2

n∑
i=1

|Si|
)

+
(
n + 2

n∑
i=1

|Ti|
)

=1 +
n∑

i=1

2(1 + |Si|+ |Ti|)︸ ︷︷ ︸
>

Lemma 1
|Si eq Ti|

>

n∑
i=1

|Si eq Ti| =

∣∣∣∣∣
n∧

i=1

Si eq Ti

∣∣∣∣∣
Note that decomposition of constants (i.e., null-ary function symbols) is also
covered. Second, when the two function terms have different function symbols
or different arities (f 6= g or m 6= n) there is a clash. Then the RT solver
immediately returns false.

|f(S1, . . . , Sm) eq g(T1, . . . , Tn)| = 1 + |f(S1, . . . , Sm)|+ |f(T1, . . . , Tn)|
> 0 = |false|

Application of confrontation: We consider all three cases in turn (due to
the restrictions by the guard there is no fourth case). For a variable X and
two arbitrary terms T1 and T2, the guard requires X ≺m T1 and T1 �m T2.
– For two variables T1 and T2, we have |X| > |T1| (because X ≺m T1)

|X eq T2| = 1 + |X|+ |T2| > 1 + |T1|+ |T2| = |T1 eq T2|

– For a variable T1 and a function term T2, we have |X| > |T1| (be-
cause X ≺m T1)

|X eq T2| = 1 + |X|+ 2|T2| > 1 + |T1|+ 2|T2| = |T1 eq T2|
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– Finally, for two function terms T1 and T2, we have |T1| ≤ |T2| (be-
cause T1 �m T2)

|X eq T2| = 1+ |X|+2|T2| > 1+ |T2|+ |T2| ≥ 1+ |T1|+ |T2| = |T1 eq T2|

In all three cases, application of the corresponding rule decreases the problem
measure. ut

Lemma 3 The number of rule applications (for all four rules) is bounded by
twice the problem measure.

Proof. By Lemma 2, the problem measure is an upper bound for the number
of rule applications of reflexivity, decomposition, or confrontation. The
problem measure is invariant to orientation of equations. As orientation can
apply at most once to each available constraint, there are at most twice as many
rule applications by all four rules than the problem measure. ut

4.4 Tightness of the Problem Measure

To exhibit the worst-case, the query should decrease the problem measure as
little as possible, i.e. the strict inequalities in the proof of Lemma 2 should be as
tight as possible. We can see that we should use as few variables as possible; avoid
a clash; make sure that after decomposition, the new equations are between a
variable and a function term; confront terms with the same measure if possible.

Definition 8. For the variable X and the binary function symbol f we define
the following, mutually recursive terms for all natural numbers n ∈ N.

Un :=

{
X if n = 0
f(Ln−1, X) otherwise

Ln :=

{
X if n = 0
f(X,Un−1) otherwise

For example, for n = 4 we have U4 = f(f(X, f(f(X, X), X)), X) and L4 =
f(X, f(f(X, f(X, X)), X)).

Lemma 4 (Properties of Un and Ln) For n ∈ N:

1. #Un = #Ln and |Un| = |Ln|.
2. The term size is linear: #Un = 2n + 1.
3. The term measure is exponential: |Un| ≥ 2n.
4. Ln �m Un and Un �m Ln

Proof. The easy inductions are omitted for lack of space.

Because the terms Ln and Un are equivalent w.r.t. to measure order ≺m we
can give a computation, that produces Ln−1 eq Un−1 from Ln eq Un. In detail,
we provide a query consisting of such equations which has exponential derivation
length.
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Lemma 5 (Exponential query) For n ∈ N+ consider the following query Q(n).(
n∧

i=1

X eq Li

)
∧X eq Un ∧X eq Ln

Query Q(n) has quadratic size #Q(n) = O(n2). There exists a computation
in standard semantics for Q(n) which produces exponentially many equations:
precisely, 2n+1 equations X eq X are produced.

We delay the proof of Lemma 5 and introduce a sub-computation S(n) (for
a given n ∈ N+). Sub-computation S(n) can be applied to states that contain c
copies5 of the conjunction X eq Un ∧ X eq Ln plus one additional catalyst
copy of X eq Ln for some c ∈ N+. Note that using standard semantics, we are
free to select the order in which rules are applied. S(n) consists of three phases
where rule applications double the number of non-catalyst constraints.

Phase 1
Application (for c times) of confrontation between X eq Un and X eq Ln:

X eq Un ∧X eq Ln 7→confront. X eq Un ∧ Un eq Ln

Note that a copy of the constraint X eq Ln remains unchanged. The number
of constraints is unchanged in Phase 1.

Phase 2
Application (for c times) of confrontation between X eq Ln and X eq Un:

X eq Ln ∧X eq Un 7→confront. X eq Ln ∧ Ln eq Un

The number of constraints is unchanged in Phase 2.
Phase 3

Application of decomposition and orientation to c copies of Ln eq Un

and to c copies of Un eq Ln:

Ln eq Un 7→decomp. 7→∗ X eq Un−1 ∧X eq Ln−1

Un eq Ln 7→decomp. 7→∗ X eq Un−1 ∧X eq Ln−1

Each of the application removes one equation while producing two new equa-
tions. The number of non-catalyst constraints doubles in Phase 3.

Example 3. The computation steps of sub-computation S(2) applied on the
query

(∧2
i=1 X eq Li

)
∧X eq U2∧X eq L2 are given given in Fig. 2. The cat-

alyst part
∧2

i=1 X eq Li (the first two constraints in each state) is unchanged.
If we run sub-computation S(1) on the answer given by S(2), we first apply rule
confrontation for four times on copies of X eq f(X, X) ∧ X eq f(X, X).
Finally, the generated four copies of f(X, X) eq f(X, X) are simplified to eight
copies of X eq X by repeated application of decomposition.
5 Remember that CHR conjunctions are considered as multi-sets of atomic constraints.
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X eq f(X,X), X eq f(X,f(X,X)), X eq f(f(X,X),X), X eq f(X,f(X,X))

7→co. X eq f(X,X), X eq f(X,f(X,X)), X eq f(f(X,X),X), f(f(X,X),X) eq f(X,f(X,X))

7→co. X eq f(X,X), X eq f(X,f(X,X)), f(X,f(X,X)) eq f(f(X,X),X), f(f(X,X),X) eq f(X,f(X,X))

7→de. 7→∗ X eq f(X,X), X eq f(X,f(X,X)), X eq f(X,X), X eq f(X,X), f(f(X,X),X) eq f(X,f(X,X))

7→de. 7→∗ X eq f(X,X), X eq f(X,f(X,X)), X eq f(X,X), X eq f(X,X), X eq f(X,X), X eq f(X,X)

Fig. 2. Sub-computation S(2) applied on
`V2

i=1 X eq Li

´
∧X eq U2 ∧X eq L2

Lemma 6 Application of S(n) replaces each copy of the conjunction X eq Un∧
X eq Ln by two copies of the conjunction X eq Un−1 ∧ X eq Ln−1 for
n ∈ N+. The catalyst constraint X eq Ln remains unchanged while the number
of rewritten non-catalyst equations doubles.

Proof. We apply sub-computation S(n) using the catalyst copy of X eq Ln on
the c copies of the conjunction X eq Un ∧X eq Ln. Applying rules according
to the phases of the S(n) we create 2c copies of the conjunction X eq Un−1 ∧
X eq Ln−1. ut

Proof (Lemma 5). We apply S(i) repeatedly starting with the initial query
(
∧n

i=1 X eq Li) ∧ X eq Un ∧ X eq Ln. Formally, we use induction on the
sequential application of S(n), S(n − 1), . . . , S(1) which is possible because the
catalyst part

∧n
i=1 X eq Li remains unchanged. Doubling the number of copies

of the rewritten (non-catalyst) constraints each time we apply S(i), we arrive
at 2n+1 (non-catalyst) constraints X eq X. ut

The sub-computation S(n) of the exponential query crucially relies on a
scheduling of the rules such that all the phases are possible. We can simulate
this instance of standard operational semantics by a CHR program for refined
semantics (sources available [1]). When we improve the complexity of the solver
to quadratic in Section 5, we will see that such a scheduling is not possible for
flat constraints. Actually it seems that it is impossible under the refined seman-
tics, thus impossible in any practical sequential implementation of CHR that
currently exists. Thus the worst-case complexity of the RT solver (instantiated
with a corrected order) for refined semantics is still an open problem.

4.5 Worst-Case Time and Space Complexity

Combining our results from the preceeding two subsections, we can now give our
main result: The RT solver with measure order ≺m has exponential space and
(hence) exponential time complexity under the standard semantics of CHR.

Lemma 7 Any conjunction of equations C with size #C has problem mea-
sure |C| = O(2#C).

Proof. Skipped for lack of space. ut

As the problem measure is (at most) exponential in the size of the problem,
the derivation length is (at most) exponential (by Lemma 3). We constructed a
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query of problem size O(n2) which produces more than 2n equations for a specific
computation strategy under the standard semantics. Therefore, our bound for
the derivation length and the resulting exponential worst-case complexity are
tight.

Theorem 1 (Exponential Complexity) For the RT solver of Fig. 1 with
measure order ≺m, the number of rule applications is exponential in the size
of the problem in the worst-case.

Proof. By Lemma 3 and Lemma 7, the number of rule applications is at most
exponential in the problem size. By Lemma 5 this upper bound is tight. ut

As Ln �s Un and Un �s Ln in term-size order, S(i) is also applicable and
the solver with term-size order has at least exponential worst-case complexity
under the standard semantics.

5 Quadratic Complexity

We can improve the worst-case time and space complexity of the CHR rational
tree solver from exponential to quadratic by simply requiring that equations
are in flat normal form when the problem is given. A term can be flattened by
performing the opposite of variable elimination. Each sub-term is replaced by a
new variable that is equated with the replaced expression.

Definition 9. A conjunction of constraints is in flat normal form if each argu-
ment of each constraint contains at most one function symbol, i.e., it is either a
variable or a function applied to variables.

For flattening it suffices to traverse the constraints of the problem once and
to replace nested function symbols by a new variable and a new equation with
that variable. (A function symbol is nested if it occurs inside another term.) For
our proofs it is not necessary that the flattening function produces the minimal
number of equations.

Definition 10. The flattening function [.] transforms the syntactic equality con-
straints into an equivalent conjunction of flattened equations. For a conjunction
of constraints

∧n
i=1 Si eq Ti, we introduce new variables X1, . . . , Xn and define[

n∧
i=1

Si eq Ti

]
:=

n∧
i=1

(
[Xi eq Si]1 ∧ [Xi eq Ti]1

)
For an atomic constraint X eq T , we define the auxiliary function [.]1 as follows
(with new variables X1, . . . , Xn)

[X eq T ]1 :=

{
X eq T if var(T )
X eq f(X1, . . . , Xn) ∧

(∧n
i=1[Xi eq Ti]1

)
if T = f(T1, . . . , Tn)



Complexity of the CHR Rational Tree Equation Solver 13

Lemma 8 The size of the flattened problem #[C] is linear in the problem size,
i.e., #[C] = O(#C). Also the number of new variables and the number of new
equations is linear in the problem size.

Proof. From Definition 10 we can see that the variables and function symbols
of the original problem are kept. In addition, new variables are introduced for
each original equation and for each nested function symbol and variable. Each
new variable occurs twice. The number of original equations and of nested func-
tion symbols and variables is bounded by the number of function symbols and
variables in the problem, i.e. by the problem size, because the arguments of an
equation are not-nested symbols, either variables or outermost function symbols.

Therefore the size of the flattened problem is at most three times the size
of the original problem size. Also, the number of new variables is bounded by
the problem size, and thus the number of variables is linear in the problem size.
Since the flattened equations have a new variable as first argument and each
original equation is replaced by two new ones, the number of equations is at
most twice the problem size. ut

Lemma 9 The flattening of a problem C can be done in linear time and space
w.r.t. the problem size #C.

Proof. By Lemma 8 and by Definition 10 of the flattening function [.]. ut

In flattened problems, the problem measure is quadratic in the problem size,
while for general problems, it was exponential. The improvement is due to the
fact that the depth of flat terms is at most one.

Lemma 10 Given a flat problem C with at least one variable, its measure |C| =
O(v #C) is bounded by the problem size and number of variables v.

Proof. Analogous to the problem size, the problem measure is defined as the sum
of the measures of the atomic constraints’ arguments in the problem. Therefore
a case analysis on the structure of flat terms suffices.

1. For any variable |Xi| = i ≤ v #Xi as i≤v and #Xi=1.
2. For any flat function term T = f(Xj1 , . . . , Xjn), we have
|T | = n+2

∑n
j=1 ji ≤ n+2

∑n
j=1 v = (2v +1)n ≤ (2v +1)#T as #T=n+1.

By Definitions 5 and 6 we conclude |C| = O(v #C). ut

Now we can prove that the overall complexity is quadratic in the problem
size when the problem is in flat normal form.

Theorem 2 (Quadratic Complexity) For the RT solver of Fig. 1 with mea-
sure order ≺m, the number of rule applications is quadratic in the problem size
in the worst-case if the problem is in flat normal form.

Proof. The number of rule applications is bounded by the problem measure
by Theorem 1. Given a problem C, by Lemmas 8 and 10, the measure size
of the problem in flat normal form is quadratic in the problem sizes:

∣∣[C]
∣∣ =

O(v #[C]) = O(#2[C]) = O(#2C). ut
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Analogous proofs of quadratic time and space complexity can be given for
terms with bounded depth, only the constant factors increase.

For flattened problems, the rule decomposition either fails due to a clash
or produces equations between variables only. Flat terms that do not clash have
the same term size. So it does not matter how function terms of same size are
ordered by the instance of the generic term order ≺. Therefore Theorem 2 is
also applicable to any instance of the generic term order used in the RT solver.
We conjecture that even the Prolog built-in term order @< is sufficient, since
functional terms can be ordered arbitrarily without changing the sizes of the
equations involved.

6 Conclusion

The complexity of the classic CHR rational tree equation solver [7, 4, 8, 14] was an
open problem. For termination, the solver relies on a generic order between terms
that must fulfil some properties. The standard implementation of the solver that
is included in many CHR libraries uses the built-in Prolog term order that does
not respect all properties. We gave an example for non-termination of that solver.

Our main result shows that there exists a term order for the classic CHR
rational tree equation solver that leads to exponential worst-case time and space
complexity in the size of the problem under the standard CHR semantics (that
does not constrain the order of rule applications). This complexity bound is
tight. This term order, however, is not an instance of the generic term order. It
is based on a term measure that is exponential in the depth of the term.

Since the generic term order usually required for termination of the RT solver
and the measure order we have defined in this paper are incompatible, we con-
jecture that there is a more general generic order that subsumes these orders,
and that this order is based on the sub-term relation. We are also interested in
other measures based on term-depth or explicit exponentiation like 2#T .

Our complexity proof does not apply to actual implementations of the RT sol-
ver that usually rely on the refined CHR semantics, but it implies that under
standard semantics, their complexity is at least exponential when the term-size
instance of the generic term order is used. It is still an open question, whether
the complexity of the solver with generic term order using other order instances
and/or using the refined semantics is polynomial or not. However, this question
is not so burning anymore in the light of our following result.

We improved the complexity of the solver to be quadratic for any term order
(including the built-in Prolog one) under standard and refined semantics by
simply requiring that equations are in flat normal form before solving them.
Since any conjunction of equations can be flattened in linear time and space,
this gives an efficient polynomial algorithm.

Since there is no performance penalty in time and space complexity (except
constant factors) when using CHR [16], one may be interested in a quasi-linear
solver. Such a solver is implementable by a straightforward combination [2] of
the RT solver with the union-find algorithm in CHR [15, 6] that will handle all
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equations between variables. During this line of work, the CHR RT solver should
be more thoroughly compared to existing classical unification algorithms (c.f.
Section 1). This includes to check if our proof methods apply to implementations
of these algorithms as well.

CHR program sources for this paper are available [1].
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