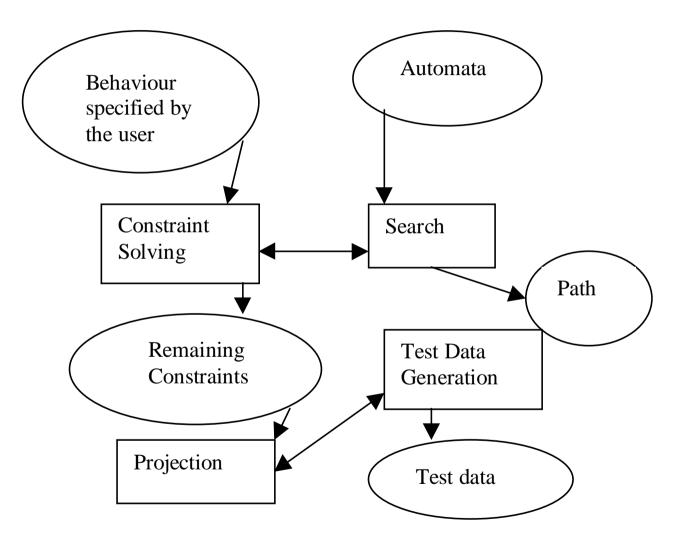
Automatic Derivation of Meaningful Experiments for Hybrid Systems

Angelo E. M. Ciarlini, PUC-Rio, Brazil Thom Frühwirth, LMU, Munich, Germany

DExVal Project → GMD/CNPq German/Brazilian Cooperation Program

Software Validation and Testing

- "Are we building the right thing?"
- Reveal bugs \rightarrow "good" input values
- Our approach:
 - Verification + Test Data Derivation
 - Hybrid Automata → Constraint Logic
 Programming (CLP)
 - Situations \rightarrow expressive logic \rightarrow constraints
 - Symbolic execution
 - Remaining constraints \rightarrow input values


Hybrid Automata

- Variables
- States: name, invariant and iteration
- Transitions: source state, target state, guarded actions and events
- Concurrent timed hybrid automata

Constraint Logic Programming

- Logic Programming (LP): rules, search, backtracking
- Constraint Solving (CS): special-purpose algorithms
- Tight integration: deterministic (CS) and nondeterministic (LP) processes
- Eg.: Accumulated constraints X+Y>5 and Y>0. If X is bound to 6 then CS detects failure

DExVal Architecture

Specification of a Test Situation

- Scenario:
 - instances of classes of automata
 - parameters and synchronization
- User-specified conditions
 - $-X:t \rightarrow variable X at time t$
 - Exist. and universal quantification
 - Modalities: "since", "until", "always in the past", always in the future", "sometime in the past" and "sometime in the future"

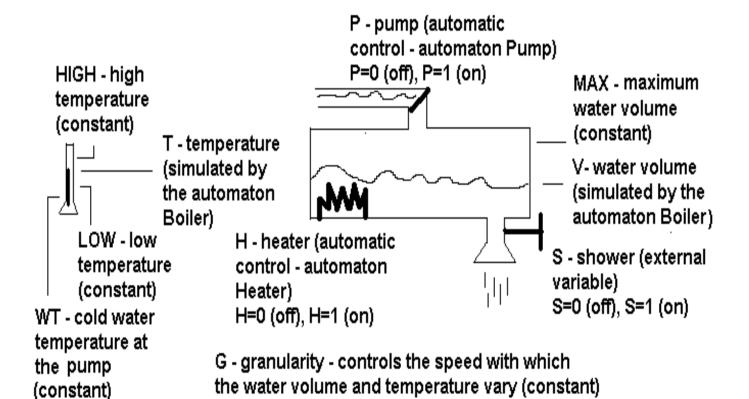
Symbolic Execution

• Representation of automata

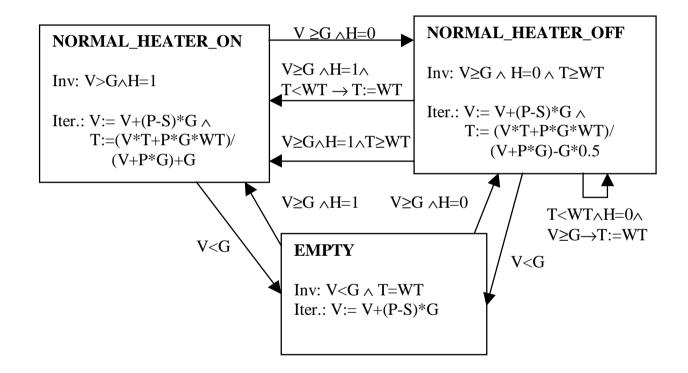
automaton_name(invariant-ST1,OLD_VARS,CONSTRAINTS) automaton_name(iteration-ST1,OLD_VARS, NEW_VARS,CONSTRAINTS) automaton_name(transition-ST1-ST2, OLD_VARS,NEW_VARS,CONSTRAINTS)

• Execution

- Automata in parallel
- Constraints sent to CS during search
- Output: path and **remaining constraints**
- Iterative deepening
- Integration of constraint solvers and dynamic addition of constraints (eg ∀t X:t > 20) →
 Constraint Handling Rules (CHR)


Test Data Derivation Algorithm

- Projection of remaining constraints onto only one variable (repr. an input value) → domain
- Choose value within the domain and assign it to the variable
- Re-evaluate constraints
- Get values for the other variables


Test Data Derivation Features

- Compatibility with diff. criteria (eg. "mutants" and "coverage of paths"
- Deterministic process
- Expressive language
- Concurrent hybrid automata

Bathroom Boiler Scenario

Automaton Boiler

Example

- Condition: water_volume:i=10.0∧ temperature:i<100∧
 ∀T (heater:T=0)
- Good values for temperature:i?
- Output: 47.181, 73.59 and 99.999

Concluding Remarks

- Importance of CLP
 - Verification and derivation of properties
 - Generation of test cases
- Current work
 - Integration
 - Enhancement of our specialized CS
 - Use of CHR to solve problems with projection (eg. non-linear constraints)