
AUTOMATIC DERIVATION OF MEANINGFUL
EXPERIMENTS FOR HYBRID SYSTEMS*

                                                       
* This work was partially supported by the CNPq/GMD Brazilian-German Programme on Scientific and Technological Cooperation and
the work of the first author was supported by FAPERJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - Brazil

Angelo E. M. Ciarlini

Departamento de Informática
Pontifícia Universidade Católi ca do R.J.

Rua Marquês de S.Vicente, 225
Rio de Janeiro, RJ 22.453-900, Brazil

angelo.ciarlini@uol.com.br
.

Thom Frühwirth

Computer Science Institute
University of Munich

Oettingenstr. 67,
D-80538 München, Germany

fruehwir@informatik.uni-muenchen.de
.

Hybrid Systems, Symbolic Execution, Validation, Testing,
Constraint Logic Programming

ABSTRACT

Some authors have recently suggested the use of constraint
logic programming (CLP) for the verification of hybrid
systems. In this paper, we offer evidence that CLP can also
be used for the derivation of meaningful test cases. In our
approach, formal specifications of concurrent hybrid sys-
tems are automatically translated into a format executable
by a CLP program. The user can then study the behaviour of
his system by specifying conditions under which the execu-
tion should be performed. The conditions are specified de-
claratively in a fragment of first order temporal logic relat-
ing variables' values at different times. Such a specification
is translated automatically into constraints, which are taken
into account during a symbolic execution performed by the
CLP program. The symbolic execution generates paths con-
sistent with the user-defined conditions, together with a set
of corresponding necessary and suff icient constraints on the
input values. We apply an algorithm based on the projection
of these constraints to try to extract good input values for
testing the final code of the system.

1 INTRODUCTION

In Software Engineering, software validation aims at deter-
mining whether the software requirements are implemented
correctly and completely. Validation and testing are con-
cerned with answering the question "Are we building the
right thing?". The challenge in answering this question is
how to come up with experiments that make sense and can
reveal most of the potential software bugs. Therefore, the

choice of good input values is an essential part of the vali -
dation process.

In this paper we present a test data generation approach
that uses the DExVal tool (Derivation of Meaningful Ex-
periments for Validation) (Ciarlini and Frühwirth 1999). We
have been developing DExVal for the automatic derivation
of test data for concurrent hybrid systems, i.e. concurrent
systems in which there are both discrete and continuous
variables. In order to derive meaningful test cases, we sym-
bolically execute formal specifications given as hybrid
automata (Alur et al. 1996; Henzinger and Wong-Toy
1996). The idea is to make these specifications executable
by translating them into a constraint logic programming
(CLP) language.

Constraints are basicall y first order predicates for which
efficient solvers are available. Constraints enable us to rep-
resent possible infinite relations finitely, e.g. X ≤ 5 repre-
sents all values for X that are less than 5. The use of con-
straint solving enables us to work directly with both discrete
and continuous variables, and more abstractly, without giv-
ing specific values to variables at all.

In order to define a situation to be tested, the user can
specify conditions relating the values of the variables at
different times using a fragment of first order temporal
logic. Such conditions are translated into constraints, which
are solved and simplified together with new constraints in-
troduced during transitions. The computation follows any
possible path in the transition system, provided that the con-
straints accumulated in each transition of the path, together
with the user given constraints, can be satisfied. All possible
valid runs are therefore taken into account. The result of a
run consists of a path and some time-dependent constraints
on input variables. In order to cope with termination prob-
lems for infinite runs, the symbolic execution performs an
iterative deepening search. We use an algorithm based on



the projection of the resulting constraints to obtain test data
for our automata.

The DExVal tool has been implemented in SICStus
Prolog (Carlsson and Widen 1995). Figure 1 shows the ar-
chitecture of DExVal. Rectangles represent modules, ell ip-
ses correspond to data repositories, and arrows to the flow
of data.

Automata
Behaviour
specified by
the user

Constraint
Solving

Search

Projection

Test Data
Generation

Remaining
Constraints

Test data

Path

Figure 1: DExVal Architecture

In Section 2, we present concepts that are necessary for
the introduction of the context in which we work. Section 3
describes the symbolic execution of hybrid automata im-
plemented in the DExVal tool, while Section 4 describes the
generation of test cases from a set of constraints on input
variables. In Section 5, we introduce the example of a bath-
room boiler scenario. Section 6 contains our concluding
remarks.

2 BACKGROUND

In order to introduce the context in which our work is per-
formed we describe hybrid automata and, briefly, constraint
logic programming.

2.1 Hybrid Automata

Hybrid automata have been introduced for modelling mixed
discrete - continuous systems.  A hybrid automaton is a
transition system the states of which contain descriptions of
continuous activities and the transitions of which are dis-
crete and labelled with guarded actions. The state of the
automaton changes either instantaneously through a discrete
transition associated with system actions or, as time elapses,
through a continuous activity. The treatment of continuous
activities inside states and the absence of hierarchical ab-
straction into superstates are the main features that distin-
guish it from related approaches such as statecharts (Harel
1987). A variety of terminologies is used in different papers
on hybrid automata. For ease of reference, we have em-
ployed the more widely used terminology of transition sys-
tems, giving alternative synonyms in brackets. A hybrid

automaton consists of a finite number of each of the fol-
lowing components:

•  (Data) variables. Typically real-valued, in our case also
integer or boolean are possible.

• States (also called: control locations, control modes).
There is one initial state and one or more final (terminal)
states. States consist of three components:

� Name.
� Invariant (invariant conditions, location invariants) – a

constraint on variables. The automaton may reside in
the state as long as the invariant holds.

� Iteration (continuous activities, flow conditions) – ac-
tivities (assignments) that specify the new values of
the variables based on their current values. The val-
ues of the variables change in this way while the
automaton resides in this state. In our case, continu-
ous activities are modelled as variable assignments
instead of giving derivatives of the assigned variable.

• Transitions (control switches). They consist of four com-
ponents:

� Source state.
� Target state (destination state).
� Guarded actions (discrete actions, jump conditions,

guarded assignments, guarded commands). If the
guard (guarding condition) holds, the transition can
take place and may change values of variables by
executing the specified action (assignments). There
may also be transitions from final states, typicall y in
non-terminating systems, where final states serve as
check marks.

� Events (synchronization labels) - used to synchronize
concurrent automata.

In a timed hybrid automata all the automata are syn-
chronized by a machine clock that causes iterations and
transitions of states. The system modifies the values of the
variables according to the state of the automaton at the last
clock tick. In a state, the values of the variables conceptu-
all y change continuously, however the iterations actuall y
happen step by step. Iterations take time, while transitions
are instantaneous. Variables that do not occur in activities or
actions remain unchanged.

A hybrid system typically consists of several interacting
concurrent hybrid automata that co-ordinate through shared
variables and events. We assume that all the automata make
their modifications simultaneously, i.e. a set of mutually
consistent continuous activities and enabled transitions is
performed at the same time. We assume also that a variable
can be modified by only one automaton. Otherwise two
concurrent transitions could modify the same variable lead-
ing to write confli cts. A state transition diagram is a picto-
rial representation of the operation of a given automaton. It
is a directed graph where the vertices represent states, which
are inscribed with invariants and continuous activities, and



the arcs represent state transitions, which are labelled with
guarded actions (see the upcoming Fig. 3).

In this paper we use concurrent timed hybrid automata,
in which we allow arbitrary (non-linear) invariants and con-
tinuous activities instead of restricting ourselves to linear
ones.

2.2 Constraint Logic Programming

Constraint logic programming (CLP) (Jaffar and Maher
1994; Marriot and Stuckey 1998) combines the advantages
of logic programming (such as Prolog) and constraint solv-
ing. In logic programming, problems are stated in a declara-
tive way using rules to define relations (predicates of first
order logic). Rules describe the conclusions that can be
reached given certain premises. A logic programming sys-
tem searches for all solutions by systematicall y trying all
possible rules using chronological backtracking. In con-
straint solving, eff icient special-purpose algorithms are em-
ployed to solve sub-problems involving distinguished rela-
tions referred to as constraints. The key aspect of CLP is the
tight integration between a deterministic process, constraint
evaluation, and a non-deterministic process, search. During
program execution, the logic program incrementally sends
constraints to the constraint solver, which tries to solve the
constraints. The results from the solver cause a priori prun-
ing of branches in the search tree spawned by applying rules
in the program. Non-satisfaction of the constraints means
failure of the current branch, and thus reduces the number of
possible branches, i.e. choices, to be explored via back-
tracking.

For instance, if one has already accumulated the con-
straints X+Y<5 and Y>0 and an inequality constraint solver
is being applied, when the variable X is bound to 6, the exe-
cution does not need to continue in this branch. Instead, the
system will backtrack, undo the binding for X, and explore
the next branch.

3 SYMBOLIC EXECUTION

In order to validate their systems, the DExVal users create
scenarios with instances of classes of automata. The rela-
tionship among different instances is defined by the specifi-
cation of their parameters and the synchronization con-
straints on the transitions. They can also inform the initial
and final states of the automata, the variables they would
li ke to project the remaining constraints onto (in order to
derive test data), and the limits to the sizes of the prefixes of
the runs that should be taken into account.

Since a scenario has been defined, the users can specify
their conditions on the behaviour of the system using a tem-
poral logic. They can specify conditions that should hold for
all times (universal quantification), conditions that should
hold for at least one time (existential quantification), and
conditions that should hold at certain times. A variable x in
a certain state at time t can be thus identified by giving it the

appropriate timestamp t, written x:t. The timestamp “ i” rep-
resents the initial time (corresponding to the initial values of
the variables) and the timestamp “f” represents the final
time. Conditions describe values or ranges of input vari-
ables, output variables and internal variables. In general,
arbitrary constraints (e.g. equali ties and inequali ties) among
different variables at different times can be specified. This is
done by using the temporal modalities ‘since’ , ‘until’ , ‘al-
ways in the future’ , ‘always in the past’ , ‘sometime in the
future’ and ‘sometime in the past’.

DExVal creates a set of CLP rules according to the
specified scenario. The rules representing the states of each
automaton have clauses for the description of invariants,
iterations and transitions, defined as follows:

automaton_name(invariant-ST1,OLD_VARS,CONSTRAINTS)
automaton_name(iteration-ST1,OLD_VARS,

NEW_VARS,CONSTRAINTS)
automaton_name(transition-ST1-ST2, OLD_VARS,

NEW_VARS,CONSTRAINTS)

In these clauses, ST1 stands for the current state and
ST2 for the future state (after a transition). OLD_VARS and
NEW_VARS are li sts of pairs <VAR_NAME,
VAR_VALUE>, where VAR_NAME is the name of a vari-
able and VAR_VALUE is a Prolog variable. OLD_VARS
lists variables the current values of which are used in the
invariants, iterations and transitions (each VAR_VALUE
represents the current value of the corresponding
VAR_NAME). NEW_VARS li sts variables the values of
which are modified by iterations and transitions (each
VAR_VALUE represents the value of the corresponding
VAR_NAME after the modification). CONSTRAINTS are
CLP constraints relating variable values that appear in
OLD_VARS and NEW_VARS.

At the start of the symbolic execution, the conditions
specified by the user are translated and sent to the DExVal
Constraint Solver.

The symbolic execution of the automata is a search for
paths for each concurrent automaton. Each path is a se-
quence of transitions or continuous activities between the
initial state and the final state of the corresponding automa-
ton. For each transition or continuous activity, the Prolog
variables contained in the OLD_VARS and NEW_VARS
arguments of our rules are bound to the corresponding val-
ues in the data structure we use for representing the values
of the variables at the different points in time during the
execution. After binding the variables, the constraints con-
tained in the argument CONSTRAINTS are sent to the con-
straint solver. Therefore, the constraint solver receives con-
tinuously new constraints stemming from guarded actions,
invariants or iterations. If the store of constraints becomes
inconsistent, the current branch of the search fail s and
DExVal backtracks to try another branch of the search tree.

When the final state of each automaton is reached,
DExVal simplifies the accumulated constraints and projects
them onto the variables of interest as specified by the user.
The accumulated constraints specify the allowed ranges for



variables and the dependencies between variables that cause
the execution of that path. From such constraints, we derive
the test cases.

In order to avoid termination problems, our search uses
an iterative deepening procedure. The user defines a mini-
mum length MIN for the paths, an increment INC and a limit
to the number of iterations LIMIT. Initiall y, DExVal per-
forms a deep first search trying to find paths that have a
number of clock ticks between MIN and (MIN+INC). If no
path is found, the upper limit is expanded to (MIN+2*INC)
and so on, until the limit (MIN+LIMIT* INC) is reached.

As we do not know how long a path can be, the treat-
ment of properties resulting of quantification on time tends
to be complicated. In order to be able to treat quantification,
disjunction and the co-ordination of different constraint
solvers we implemented a specialized constraint solver us-
ing Constraint Handling Rules (CHR) (Frühwirth 1995).
This specialized constraint solver controls and co-ordinates
SICStus Prolog’s different constraint solvers. For instance,
whenever a new clock tick is considered in the path, a con-
straint ∀T(v:T>20), specifying that the value of variable v is
greater than 20 at all times, generates a new constraint to be
sent to the constraint solver of the Real numbers.

Recently, some authors have suggested the use of con-
straint logic programming for implementing and reasoning
about timed automata and hybrid systems (Pontell i and
Gupta 1997; Delzanno and Podelski 1999; Urbina 1996;
Fribourg 1998). The main distinguishing novelty of our ap-
proach is that we use a CLP-based symbolic execution for
the automatic derivation of test data for hybrid systems.
Therefore, we try to provide the means for the satisfaction
of testing criteria. In particular, the expressiveness of the
language for the specification of test situations is essential
for this purpose.

4 TEST DATA DERIVATION

The output of the symbolic execution is a path specifying
the state of each automaton at each clock and a set of con-
straints that certain variables (specified by the user) should
obey if the hybrid system executes this path and the user-
specified conditions are satisfied. If the user asks DExVal to
obtain constraints on the input variables, he obtains suff i-
cient and necessary conditions for the execution of the cor-
responding path.

In order to derive test data from the output of a sym-
bolic execution, we defined an algorithm based on an alter-
nation between the projection of the remaining constraints
onto each variable and the assignment of values to the vari-
ables. When we project a set of constraints onto only one
variable of type Real, we usually obtain its domain. We can
then choose any value from this domain. When we bind the
value of a variable, the initial set of constraints is evaluated
again by the constraint solver. After this new evaluation, we
can project the constraints onto another variable and so on,
until we obtain values for all input variables. This approach

is deterministic, as we are always re-evaluating the set of
constraints. We therefore have an eff icient procedure, in
which we do not need, other than in exceptional cases, to
use a backtracking search because of bad choices for the
variables’ values.

As most of the errors can occur when the values as-
signed to the variables are close to the limit of their do-
mains, we defined three different criteria for the choice of a
value for a variable the domain of which is known:
• mid: in which we choose an intermediate value for

testing the typical behaviour of the system;

• max: in which we choose the maximum (or almost
maximum) value a variable can assume in the domain;
and

• min: in which we choose the minimum (or almost
minimum) value a variable can assume in the domain.

The last two criteria are used to find critical situations
that can generate an error. When we know that a variable is
higher (or lower) than a certain value but not equal to it, we
obtain values for our tests by subtracting (or adding) a very
small constant. In this case, it might be necessary to use
backtracking because the calculated value could be out of
the domain. That being so, we can generate an even smaller
constant to be added to (or subtracted from) the domain
open limit.

As mentioned before, when we assign a value to one of
the variables, the domains of the other variables can change.
In order to obtain all possible critical combination of values,
we can alternate the first variable to have the constraints
projected onto it.

Some authors have suggested the analysis of constraints
for test data derivation, but they use neither constraint solv-
ing nor projection (DeMillo and Offut 1991; Offut et al.
1999). Instead, they apply a dynamic domain reduction pro-
cedure, in which arbitrary choices can generate a lot of un-
necessary search, using a backtracking mechanism. Moreo-
ver, they are not deterministic. Our test data approach pres-
ents the following features:
• It can be used for most of the test data derivation crite-

ria, such as coverage of paths (Korel 1990) and mutants
(DeMill o and Offut 1991). Coverage of paths can be
tested by means of the specification of the initial and fi-
nal states of the automata during the symbolic execu-
tion. The derivation of data that can kill a mutant (i.e.
that generates a different behaviour for a slightly modi-
fied specification) is achieved by means of the specifi-
cation of constraints that should hold at specific times.

• We have a deterministic process in which we know
that, when a path is generated by the symbolic execu-
tion, we can possibly obtain not only one but many test
data for a specific situation.

• The user has an expressive language for the specifica-
tion of situations he would li ke to test. We are not lim-
ited to the specification of initial and final states. Val-



ues or ranges of output and intermediate variables, in
particular, can be easil y specified by the user.

• We can test concurrent hybrid automata.

Finally, we should stress that our test data approach can
be used not only for testing final code but also as a tool for
the validation of models that simulate real world processes.
For instance, whenever test data is generated from a formal
specification of a real world process and the expected be-
haviour is not confirmed by experience, we know that the
formal specification is not good enough and should be
modified.

5 THE BATHROOM BOILER SCENARIO

In order to clearly ill ustrate the advantages of the approach
taken in the DExVal project, we chose an example involv-
ing physical processes, inspired by the steam boiler problem
(Henzinger and Wong-Toi 1996). In particular, as opposed
to e.g. standard finite model checking, continuous variables
can be used without diff iculty in the constraint-based ap-
proach, since infinite ranges of values can still be repre-
sented by and reasoned with constraints.

Figure 2: The Bathroom Boiler Scenario

The scenario (Fig. 2) involves a warm water boiler of a
bathroom, with an automatic water pump, a heater and the
possibili ty of someone taking a shower. Physical units are
the amount of water (pumps add water, taking a shower
reduces the water level) and the temperature of the water
(which depends on the ingress and outflow of water and on
the functioning of the heater). Consequently, there are five
variables: heater, pump, shower, water_volume and tem-
perature. The boolean variables heater, pump and shower
have value 1 if they are on and 0 if they are off. The initial
values of each variable and all values of variable shower
during the execution are input values.  water_volume and
temperature are continuous floating point variables repre-
senting the current volume of the water in the boiler and its
temperature, respectively.

We designed three concurrent automata to model our
sample: Heater, Boiler and Pump.  Figure 2 shows automa-
ton Boiler, the other automata are simpler and we do not
show them for space reasons. Heater checks the temperature

and decides if the heater should be on or off. Pump checks
the water level and decides if the pump should be on or off.
Boiler represents the physical process itself. It checks
whether the heater, the pump and the shower are on or off
and updates the water level and the temperature accordingly.

NORMAL_HEATER_ON

Inv: V>G∧H=1

Iter.: V:= V+(P-S)*G ∧
         T:=(V*T+P*G*WT)/
              (V+P*G)+G

NORMAL_HEATER_OFF

Inv: V≥G ∧ H=0 ∧ T≥WT

Iter.: V:= V+(P-S)*G ∧
         T:= (V*T+P*G*WT)/
               (V+P*G)-G*0.5

EMPTY

Inv: V<G ∧ T=WT
Iter.: V:= V+(P-S)*G

V ≥G ∧H=0

V≥G ∧H=1∧
T<WT → T:=WT

V≥G∧H=1∧T≥WT

V≥G ∧H=1

V<G

V≥G ∧H=0

V<G

T<WT∧H=0∧
V≥G→T:=WT

Figure 3:  The Automaton Boiler

In the  automaton Boiler there are three states: EMPTY,
NORMAL_HEATER_ON and NORMAL_HEATER_OFF.
The first one treats the special case of there being no water.
The other states model the variation of the temperature ac-
cording to the value of the variables heater and pump. All
states control the water volume according to the values of
variables pump and shower. The automaton Heater also has
three states: MAINTAIN, TURNING_ON and
TURNING_OFF. If the temperature of the water is between
the lower and upper limits, the automaton remains in state
MAINTAIN and the variable heater is not modified. If the
temperature is less (greater) than the lower (upper) limit, the
variable heater is set to 1 (0) and the automaton spends one
clock at state TURNING_ON (TURNING_OFF) before re-
turning to state MAINTAIN. The automaton Pump has just
two states: ON and OFF. If the water volume becomes less
than a certain limit, the variable pump is set to 1 and the
automaton goes to state ON. When the volume becomes
greater than the limit, the variable pump is set to 0 and the
automaton goes to state OFF.

Assume that the formal specifications were imple-
mented, generating a simulation of our hybrid system. The
control of the temperature by the heater can be tested by
asking DExVal to provide “good” values for the variable
shower and for the initial temperature. In order to perform a
test, a condition that can be observed should be specified.
For instance the user can specify the following :

wat er _vol ume: i =10. 0∧t emper at ur e: i <100∧
∀T ( heat er : T=0)

Such a condition is used to inform DExVal that the ini-
tial water volume is 10, the heater wil l remain off all the
time and the water initial temperature is lower than 100. For
the case in which the shower is on all the time and the im-
plemented system runs for 5 clocks, DExVal proposes the



following values for the initial temperature: 47.181, 73.59
and 99.999. Using these values as input for the implemented
code, the user can observe whether the heater behaves as
expected, i.e. it remains off all the time.

DExVal can also be used to try to kil l mutants. For in-
stance, the transition in automaton Boiler from the state
NORMAL_HEATER_ON to the state
NORMAL_HEATER_OFF occurs when the value of the
variable heater switches to off. Assume, for instance, that
the condition

∀T( T≠f →st at e( boi l er ) : T=‘ NORMAL_HEATER_ON’ ) ∧
heat er : f =0

is specified informing DExVal that the boiler remains at
state NORMAL_HEATER_ON all the time before the last
clock tick, and, at the last clock tick, the heater turns off.
DExVal provides then the values for the initial temperature
and for the variable shower that cause the transition. If these
values are used as input for the final code, then the behav-
iour of the variable temperature (after the moment the tran-
sition should occur) reveals whether the implemented code
is correct or not: If the temperature is not reduced, then the
code implemented is a mutant.

6 CONCLUDING REMARKS

Our preliminary results indicate the potential importance of
constraint logic programming for the derivation of proper-
ties of hybrid systems and also for the generation of test
cases. We described a symbolic execution method that en-
ables the user to specify test conditions. The output of our
symbolic execution is the input for the test data generation
procedure. An algorithm based on the projection of con-
straints is used for the generation of “good” input values for
testing the final code. Our approach seems to be compatible
with various test data criteria, including the abil ity to “kill ”
mutants.

We are currently working on the integration of the
symbolic execution and test data generation procedures. We
are also working on the enhancement of our specialized
constraint solver. Our test data generation depends on the
projection of constraints onto the values of the input vari-
ables. Depending on the case, the projection may not be
trivial. In particular, it is impossible to develop an algorithm
able to solve and project any kind of non-linear constraints.
The use of Constraint Handling Rules, however, gives us
the opportunity to develop dedicated constraint solvers that
are able to deal with specific kinds of non-linear constraints.

REFERENCES

Alur, R.; T. A. Henzinger and P.-H. Ho. 1996. “Automatic
Symbolic Verification of Embedded Systems” . IEEE
Transactions on Software Engineering, 22:181-201.

Carlsson, M. and J. Widen. 1995. Sicstus Prolog. User’s
Manual, Release 3.0. Swedish Institute of Computer Sci-
ence, SICS/R-88/88007C.

Ciarlini, A. and T. Frühwirth. 1999. “Symbolic Execution
for the Derivation of Meaningful Properties of Hybrid
Systems” , (Poster) In Proc. 16th. International
Conference on Logic Programming (ICLP’99) (Las
Cruces, New Mexico, USA).

DeMill o, R.A. and A.J. Offut. 1991. “Constraint-Based
Automatic Test Data Generation”. IEEE Transactions on
Software Engineering, 17(9):900-910.

Delzanno,G. and A. Podelski. 1999. “Model Checking in
CLP” . In Proc. Second International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems TACAS'99. (Rance Cleaveland, ed.), LNCS,
Springer-Verlag.

Fribourg, L. 1998. A Closed-Form Evaluation for Extended
Timed Automata. Technical Report LSV-98-2, Labora-
toire Specification et Verification, ENS de Cachan,
Cachan, France.

Frühwirth, T. 1995. “Constraint Handling Rules” . In
Constraint Programming: Basics and Trend, A. Podelski
(ed.), Springer LNCS 910.

Harel, D. 1987. “Automata: A visual formalism for complex
systems” . Science of Computer Programming 8(3):231 -
274.

Henzinger, T. A. and H. Wong-Toi. 1996. “Using HYTECH
to Synthesize Control Parameters for a Steam Boiler” . In
Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control (J.-R. Abrial,
E. Börger and H. Langmaack, eds.). LNCS 1165.
Springer-Verlag. 265-282.

Jaffar, J. and M. J. Maher. 1994. “Constraint Logic Pro-
gramming: A Survey” . Journal of Logic Programming
19,20:503-581, 1994.

Korel, B. 1990. “Automated Software Test Data Genera-
tion” . IEEE Transactions on Software Engineering,
16(8):870-879.

Marriott, K. and P. J. Stuckey. 1998. Programming with
Constraints. MIT Press, USA.

Offut, A.J.; Z. Jin and J. Pan. 1999. “The Domain Reduction
Procedure for Test Data Generation”. To appear, Soft-
ware Practice and Experience.

Pontell i, E. and G. Gupta. 1997. “A Constraint-Based Ap-
proach for Specification and Verification of Real-time
Systems” . In Proc. 1997 IEEE Real Time Systems Sym-
posium, IEEE Computer Society. 230-239.

Urbina, L. 1996. “Analysis of Hybrid Systems in CLP(R)” .
In Proc. Principles and Practice of Constraint Program-
ming CP'96. LNCS 1118. Springer-Verlag, 451-467.


