AUTOMATIC DERIVATION OF MEANINGEFUL
EXPERIMENTSFOR HYBRID SYSTEMS

Angelo E. M. Ciarlini

Departamento de Informética
Pontificia Universidade Catdlicado R.J.
Rua Marqués de S.Vicente, 225
Rio de Janeiro, RJ 22.453-900, Brazil
angelo.ciarlini@uol.com.br

Hybrid Systems, Symbolic Exeaution, Validation, Testing,
Constraint Logic Programming

ABSTRACT

Some authors have recently suggested the use of constraint
logic programming (CLP) for the verification of hybrid
systems. In this paper, we offer evidence that CLP can aso
be used for the derivation of meaningful test cases. In our
approach, formal spedfications of concurrent hybrid sys-
tems are automatically trandated into a format exeautable
by a CLP program. The user can then study the behaviour of
his g/stem by spedfying conditions under which the exeau-
tion should be performed. The @nditions are spedfied de-
claratively in a fragment of first order temporal logic relat-
ing variables values at different times. Such a spedfication
is trandated automatically into constraints, which are taken
into acocount during a symbdlic execution performed by the
CLP program. The symbolic exeaution generates paths con-
sistent with the user-defined conditions, together with a set
of corresponding necessary and sufficient congraints on the
input values. We apply an agorithm based on the projedion
of these mnstraints to try to extract good input values for
testing the final code of the system.

1 INTRODUCTION

In Software Engineering, software validation aims at deter-
mining whether the software requirements are implemented
corredly and completely. Validation and testing are @n-
cened with answering the question "Are we building the
right thing?'. The challenge in answering this question is
how to come up with experiments that make sense ad can
reveal most of the potential software bugs. Therefore, the

Thom Frihwirth

Computer Science Ingtitute
University of Munich
Oettingenstr. 67,
D-80538Miinchen, Germany
fruehwir @informatik.uni-muenchen.de

choice of good input values is an esentid part of the vali-
dation process

In this paper we present a test data generation approach
that uses the DExVal tod (Derivation of Meaningful Ex-
periments for Validation) (Ciarlini and Frihwirth 199). We
have been developing DExVa for the automatic derivation
of test data for concurrent hybrid systems, i.e. concurrent
systems in which there ae bath discrete and continuous
variables. In order to derive meaningful test cases, we sym-
bdically execute formal spedfications given as hybrid
automata (Alur et al. 1996, Henzinger and Wong-Toy
1996. The ideais to make these spedfications exeatable
by trandating them into a constraint logic programning
(CLP) languege.

Constraints are basically first order predicates for which
efficient solvers are available. Congraints enable us to rep-
resent posshble infinite relations finitely, eg. X < 5 repre-
sents all values for X that are lessthan 5. The use of con-
straint solving enables us to work diredly with bath discrete
and continuous variables, and more abstractly, without giv-
ing spedfic values to variables at all.

In order to define a Stuation to be tested, the user can
spedfy conditions relating the values of the variables at
different times using a fragment of first order temporal
logic. Such conditions are trandated into constraints, which
are solved and simplified together with new constraints in-
troduced duing transitions. The computation follows any
possble path in the transition system, provided that the con-
straints accumulated in each trangition of the path, together
with the user given constraints, can be satisfied. All possble
valid runs are therefore taken into acoount. The result of a
run consists of a path and some time-dependent constraints
on inpu variables. In order to cope with termination prob-
lems for infinite runs, the symbolic exeaution performs an
iterative deepening seach. We use an algorithm based on

" This work was partially supported by the CNPg/GMD Brazilian-German Programme on Scientific and Technological Cooperation and
the work of thefirst author was supported by FAPERJ — Fundsg@ de Amparo & Pesguisa do Estado do Rio de Janeiro - Brazil

the projedion of the resulting constraints to oldain test data
for our automata.

The DExVa tod has been implemented in SICStus
Prolog (Carlson and Widen 1995. Figure 1 shows the a-
chitedure of DExVd. Redangles represent modules, dlip-
ses correspond to data repositories, and arrows to the flow

of data.

Search

Behaviour
spedfied by
the user

Constraint
Salving <

+ Path

Remaining Test Data
Constraints Generation
/ Test data

Figure 1: DExVal Architedure

In Sedion 2, we present concepts that are necessary for
the introduction of the mntext in which we work. Sedion 3
describes the symbolic exeaution of hybrid automata im-
plemented in the DExVal tod, while Sedion 4 describes the
generation of test cases from a set of constraints on inpu
variables. In Sedion 5, we introduce the example of a bath-
room baler scenario. Sedion 6 contains our concluding
remarks.

A 4

Projedion

2 BACKGROUND

In order to introduce the @ntext in which our work is per-
formed we describe hybrid automata and, briefly, constraint

logic programming.
2.1 Hybrid Automata

Hybrid automata have been introduced for modelling mixed
discrete - continuous systems. A hybrid automaton is a
trangition system the states of which contain descriptions of
continuous activities and the transtions of which are dis-
crete and labelled with guarded actions. The state of the
automaton changes either ingtantaneoudy through a discrete
trangition asociated with system actions or, as time dapses,
through a mntinuous activity. The treament of continuous
activities inside states and the absence of hierarchical ab-
straction into superstates are the main features that distin-
guish it from related approaches aich as datecharts (Harel
1987). A variety of terminologies is used in different papers
on hybrid automata. For ease of reference we have em-
ployed the more widely used terminology of trangtion sys-
tems, giving dternative synonyms in brackets. A hybrid

automaton consists of a finite number of each of the fol-
lowing components:

o (Data) variables. Typically real-valued, in ou case dso
integer or boolean are possble.

o States (also called: control locations, control modes).
Thereis oneinitial state and one or more fina (terminal)
states. States consist of three components:

= Name.

= [nvariant (invariant conditions, location invariants) — a
constraint on variables. The automaton may residein
the state aslong asthe invariant holds.

= [teration (continuous activities, flow conditions) — ac-
tivities (assgnments) that specify the new vaues of
the variables based on their current values. The val-
ues of the variables change in this way while the
automaton resides in this gate. In our case, continu-
ous activities are modelled as variable assgnments
instead of giving derivatives of the assgned variable.

« Trangtions (control switches). They condst of four com-
porents:

= Source state.

= Target state (destination state).

= Guarded actions (discrete actions, jump condtions,
guarded asdgnments, guarded commands). If the
guard (guarding condition) halds, the trandtion can
take place aad may change values of variables by
executing the specified action (assgnments). There
may also be transitions from fina sates, typicaly in
nonterminating systems, where final dates serve &
check marks.

= Events (synchronization labels) - used to synchronize
concurrent automata.

In atimed hybrid automata all the automata ae syn-
chronized by a machine dock that causes iterations and
trangtions of states. The system modifies the values of the
variables according to the sate of the automaton at the last
clock tick. In a state, the values of the variables conceptu-
aly change @ntinuoudly, however the iterations actually
happen step by step. Iterations take time, while trangtions
areingantaneous. Variables that do not occur in activities or
actions remain unchanged.

A hybrid system typically consists of several interacting
concurrent hybrid automata that co-ordinate through shared
variables and events. We asaime that all the automata make
their modifications simultaneoudy, i.e. a set of mutualy
consistent continuous activities and enabled transitions is
performed at the same time. We assume also that a variable
can be modified by only one automaton. Otherwise two
concurrent transitions could modify the same variable lead-
ing to write conflicts. A state transition diagram is a picto-
rial representation of the operation of a given automaton. It
isadireded graph where the vertices represent states, which
are inscribed with invariants and continuous activities, and

the acs represent state transtions, which are labelled with
guarded actions (seethe upcoming Fig. 3).

In this paper we use concurrent timed hybrid automata,
in which we allow arbitrary (non-linea) invariants and con-
tinuous activities instead o restricting oursalves to linea
ones.

2.2 Constraint Logic Programming

Constraint logic programning (CLP) (Jaffar and Maher
1994 Marriot and Stuckey 1998 combines the alvantages
of logic programming (such as Prolog) and constraint solv-
ing. In logic programming, problems are stated in a dedara
tive way using rules to define relations (predicates of first
order logic). Rules describe the mnclusions that can be
reached given cetain premises. A logic prog/amming sys-
tem seaches for dl solutions by systematicdly trying dl
possble rules using chronological backtracking. In con-
straint solving, efficient spedal-purpose algorithms are an-
ployed to solve sub-problems involving digtinguished rela-
tionsreferred to as constraints. The key asped of CLP isthe
tight integration between a deterministic process constraint
evaluation, and a non-deterministic process search. During
program exeaution, the logic program incrementally sends
constraints to the @nstraint solver, which tries to solve the
constraints. The results from the solver cause apriori prun-
ing of branches in the search tree spawned by applying rules
in the program. Non-satisfaction of the @nstraints means
fail ure of the arrent branch, and thus reduces the number of
possble branches, i.e. choices, to be eplored via back-
tracking.

For ingance if one has already accumulated the @n-
straints X+Y<5 and Y>0 and an inequality constraint solver
is being applied, when the variable X is bound to 6, the exe-
cution does not nedd to continue in this branch. Instead, the
system will backtrack, undo the binding for X, and explore
the next branch.

3 SYMBOLIC EXECUTION

In order to validate their systems, the DExVal users crede
scenarios with instances of classs of automata. The rela-
tionship among different ingtances is defined by the spedfi-
cation of their parameters and the synchronization con-
straints on the transitions. They can also inform the initial
and final states of the automata, the variables they would
like to project the remaining constraints onto (in order to
derive test data), and the limits to the sizes of the prefixes of
the runsthat should be taken into acoount.

Sincea scenario has bean defined, the users can spedfy
their conditions on the behaviour of the system using a tem-
poral logic. They can spedfy conditi ons that should hold for
al times (universal quantification), conditions that should
hold for at least one time (exigtential quantification), and
conditions that should hold at certain times. A variable x in
acetan date d timet can be thusidentified by giving it the

appropriate timestamp t, written x:t. The timestamp “i” rep-
resents the initial time (corresponding to the initial values of
the variables) and the timestamp “f” represents the final
time. Conditions describe values or ranges of input vari-
ables, output variables and internal variables. In generd,
arbitrary constraints (e.g. equalities and inequalities) among
different variables at different times can be spedfied. Thisis
done by using the temporal modalities ‘since, ‘until’, ‘al-
ways in the future’, ‘aways in the past’, ‘sometime in the
future’ and ‘sometimein the past’.

DExVal creates a set of CLP rules acoording to the
spedfied scenario. The rules representing the states of each
automaton have dauses for the description of invariants,
iterations and transitions, defined as foll ows:

automaton_name(invariant-ST1,0LD_VARS,CONSTRAINTS)

automaton_name(iteration-ST1,0LD_VARS,
NEW_VARS,CONSTRAINTS)

automaton_name(transition-ST1-ST2, OLD_VARS,
NEW_VARS,CONSTRAINTS)

In these dauses, ST1 stands for the arrent state and
ST2 for the future state (after atransition). OLD_VARS and
NEW_VARS are ligs of pars <VAR NAME,
VAR _VALUE>, where VAR_NAME is the name of a vari-
able and VAR_VALUE is a Prolog variable. OLD_VARS
lists variables the arrent values of which are used in the
invariants, iterations and transitions (each VAR VALUE
represents the airrent value of the @rresponding
VAR_NAME). NEW_VARS ligs variables the values of
which are modified by iterations and transitions (each
VAR VALUE represents the value of the arresponding
VAR_NAME after the modification). CONSTRAINTS are
CLP constraints relating variable values that appea in
OLD_VARSand NEW_VARS.

At the start of the symbolic exeaution, the cnditions
spedfied by the user are trandated and sent to the DExVal
Constraint Solver.

The symbolic execution of the automata is a seach for
paths for each concurrent automaton. Each path is a se-
quence of transitions or continuous activities between the
initia state and the final state of the arresponding automa-
ton. For each transition or continuous activity, the Prolog
variables contained in the OLD_VARS and NEW_VARS
arguments of our rules are bound to the corresponding val-
ues in the data structure we use for representing the values
of the variables at the different points in time during the
exeadtion. After binding the variables, the mnstraints con-
tained in the argument CONSTRAINTS are sent to the con-
straint solver. Therefore, the mndraint solver recaves con-
tinuously new constraints stemming from guarded actions,
invariants or iterations. If the store of constraints becmes
inconsistent, the arrent branch of the seach fails and
DExVal backtracksto try another branch of the search tree

When the final state of each automaton is reached,
DExVal smplifies the accumulated constraints and projeds
them onto the variables of interest as edfied by the user.
The accumulated constraints gedfy the dlowed ranges for

variables and the dependencies between variables that cause
the exeaution of that path. From such constraints, we derive
the test cases.

In order to avoid termination problems, our seach uses
an iterative degpening procedure. The user defines a mini-
mum length MIN for the paths, an increment INC and a limit
to the number of iterations LIMIT. Initially, DExVa per-
forms a dee first seach trying to find peths that have a
number of clock ticks between MIN and (MIN+INC). If no
path is found, the upper limit is expanded to (MIN+2*INC)
and so o, until thelimit (MIN+LIMIT*INC) isreached.

As we do not know how long a path can be, the treat-
ment of properties resulting of quantification on time tends
to be complicated. In order to be able to treat quantification,
disunction and the co-ordination of different constraint
solvers we implemented a spedalized constraint solver us-
ing Constraint Handling Rules (CHR) (Fruhwirth 1995).
This spedalized constraint solver controls and co-ordinates
SICStus Prolog’s different constraint solvers. For ingtance,
whenever anew clock tick is considered in the path, a @n-
straint OT(v: T>20), spedfying that the value of variable v is
greaer than 20 at all times, generates a new constraint to be
sent to the constraint solver of the Real numbers.

Recently, some authors have suggested the use of con-
straint logic programming for implementing and reasoning
about timed automata ad hybrid systems (Pontelli and
Gupta 1997; Delzanno and Podelski 1999; Urbina 199%;
Fribourg 1998). The main digtinguishing novelty of our ap-
proach is that we use a CLP-based symbdic execution for
the automatic derivation of test data for hybrid systems.
Therefore, we try to provide the means for the satisfaction
of testing criteria. In particular, the expressveness of the
language for the spedfication of test situations is essntia
for this purpose.

4 TEST DATA DERIVATION

The output of the symbolic exeaiution is a path spedfying
the state of each automaton at each clock and a set of con-
straints that certain variables (spedfied by the user) should
obey if the hybrid system exeautes this path and the user-
spedfied conditions are satisfied. If the user asks DExVal to
obtain congraints on the input variables, he ohtains auffi-
cient and necessary conditions for the exeaution of the @or-
responding peth.

In order to derive test data from the output of a sym-
bolic exeaution, we defined an algorithm based on an dter-
nation between the projedion of the remaining constraints
onto each variable and the assgnment of values to the vari-
ables. When we projed a set of constraints onto anly one
variable of type Real, we usually ohtain its domain. We can
then choose any value from this domain. When we bind the
value of a variable, the initial set of constraints is evaluated
again by the mnstraint solver. After thisnew evaluation, we
can projed the mnstraints onto another variable and so m,
until we obtain values for al inpu variables. This approach

is deterministic, as we ae aways re-evaluating the set of
constraints. We therefore have an efficient procedure, in
which we do not need, other than in exceptiona cases, to
use a backtracking seach because of bad choices for the
variables' values.

As most of the errors can occur when the values as-
signed to the variables are close to the limit of their do-
mains, we defined threedifferent criteria for the choice of a
value for a variable the domain of which isknown:

e mid: in which we coose an intermediate value for
testing the typical behaviour of the system;

e max: in which we coose the maximum (or amost
maximum) value a variable can asauume in the domain;
and

e min: in which we coose the minimum (or amost
minimum) value a variable can asaume in the domain.

The last two criteria are used to find critical situations
that can generate an error. When we know that a variable is
higher (or lower) than a cetain value but not equal to it, we
obtain values for our tests by subtracting (or adding) a very
small constant. In this case, it might be necessary to use
backtracking because the @lculated value ould be out of
the domain. That being so, we @n generate an even smaller
constant to be added to (or subtracted from) the domain
open limit.

As mentioned before, when we assgn a value to one of
the variables, the domains of the other variables can change.
In order to oltain all posshle aiticd combination of values,
we @n dternate the first variable to have the nstraints
projeded onto it.

Some authors have suggested the analysis of constraints
for test data derivation, but they use neither constraint solv-
ing nor projection (DeMillo and Offut 1991; Offut et al.
1999. Instead, they apply a dynamic domain reduction pro-
cadure, in which arbitrary choices can generate a lot of un-
necessary search, using a backtracking mecanism. Moreo-
ver, they are not deterministic. Our test data goproach pres-
ents the foll owing features:

* It can be used for most of the test data derivation crite-
rig, such as coverage of paths (Kord 1990 and mutants
(DeMillo and Offut 1991). Coverage of paths can be
tested by means of the spedfication of the initial and fi-
nal states of the automata during the symbdic execu-
tion. The derivation of data that can kill a mutant (i.e.
that generates a different behaviour for a dightly modi-
fied spedfication) is achieved by means of the spedfi-
cation of constraintsthat should hold at spedfic times.

* We have adeterministic process in which we know
that, when a path is generated by the symbolic exew-
tion, we can possbly obtain not only one but many test
data for a spedfic situation.

e The user has an expressve language for the spedfica-
tion of situations he would like to test. We ae not lim-
ited to the spedfication of initial and final states. Val-

ues or ranges of output and intermediate variables, in
particular, can be easily spedfied by the user.

* We @n test concurrent hybrid automata.

Finally, we should stressthat our test data approach can
be used not only for testing final code but also as atod for
the validation of models that smulate red world processes.
For ingance, whenever test data is generated from a formal
spedfication of a real world process and the expeded be-
haviour is not confirmed by experience we know that the
formal spedfication is not good enough and should be
modified.

5 THE BATHROOM BOILER SCENARIO

In order to clealy ill ustrate the advantages of the approach
taken in the DExVa projed, we dose an example involv-
ing physical processes, inspired by the steam bailer problem
(Henzinger and Wong-Toi 199%). In particular, as opposed
to e.g. standard finite model chedking, continuous variables
can be used without difficulty in the mnstraint-based ap-
proach, since infinite ranges of values can ill be repre-
sented by and reasoned with constraints.

P - pump (automatic
control - automaton Pump)

HIGH - high P=0 {off), P=1 {oh) MAX - maximum
tempetratt.lre T water volume
constan
¢ 1 ! T - temperature — (constant)
(simulated by NN V- water volume
ﬂw the automaton ~ (simulated by the
Boiler) automaton Boiler)
LOW - low H - heater (automatic)
’7 temperature control - automaton S - shower (external
{constant) Heater) |‘ I vzzrlable) -
WT - cold water H=0 {off), H=1 {on) =0 (off), 8=1 (on)

temperature at
the pump
(constant)

G - granularity - controls the speed with which
the water volume and temperature vary (constant)

Figure 2: The Bathroom Boiler Scenario

The scenario (Fig. 2) involves a warm water baler of a
bathroom, with an automatic water pump, a heaer and the
posshility of someone taking a shower. Physical units are
the anount of water (pumps add water, taking a shower
reduces the water level) and the temperature of the water
(which depends on the ingressand autflow of water and on
the functioning of the heater). Consequently, there ae five
variables. heater, pump, shower, water_volume and tem-
perature. The boolean variables heater, pump and shower
have value 1 if they are on and O if they are off. The initia
values of each variable and all values of variable shower
during the exeaution are input values. water_volume and
temperature are continuous floating point variables repre-
senting the arrent volume of the water in the baler and its
temperature, respedively.

We designed three oncurrent automata to model our
sample: Heater, Boiler and Pump. Figure 2 shows automa-
ton Boailer, the other automata ae smpler and we do not
show them for spacereasons. Heater cheds the temperature

and deddes if the heaer should be on or off. Pump cheds
the water level and deddes if the pump should be on or off.
Boiler represents the physical process itsaf. It chedks
whether the heaer, the pump and the shower are on or off
and updhtes the water level and the temperature accordingly.

V >G [H=0 > NORMAL_HEATER_OFF

NORMAL_HEATER_ON

V=G OH=10
T<WT - T:=WT

Inv: V>GOH=1 Inv: V=G OH=00T=WT

Iter.: V:= V+(P-9)*G O

e (P
lterV:= VHP-S* G D Ti= (VFT+P*G*WT)/

T=(V*T+P*G*WT)/ V2GOH=10T>WT

(V+P*G)+G < (V+P*G)}-G*05
V2G[H=1 V2G [H=0 L+
T<WTOH=00
V2G - T:=WT
V<G EMPTY
V<G

Inv: V<G OT=WT
Iter.: V:i= V+(P-9)*G

Figure 3: The Automaton Boil er

In the automaton Boiler there ae threestates: EMPTY,
NORMAL_HEATER ON and NORMAL_HEATER OFF.
The firg one treds the spedal case of there being no water.
The other states model the variation of the temperature ac-
cording to the value of the variables heater and pump. All
states control the water volume according to the values of
variables pump and shower. The automaton Heater aso has
three dtates: MAINTAIN, TURNING_ON and
TURNING_OFF. If the temperature of the water is between
the lower and upper limits, the automaton remains in state
MAINTAIN and the variable heater is not modified. If the
temperature isless(greater) than the lower (upper) limit, the
variable heater is st to 1(0) and the automaton spends one
clock at state TURNING_ON (TURNING_OFF) before re-
turning to state MAINTAIN. The automaton Pump has just
two states: ON and OFF. If the water volume becomes less
than a cetain limit, the variable pump is set to 1 and the
automaton goes to state ON. When the volume becomes
greder than the limit, the variable pump is st to 0 and the
automaton goes to state OFF.

Asaime that the formal spedfications were imple-
mented, generating a smulation of our hybrid system. The
control of the temperature by the heater can be tested by
asking DExVal to provide “good” values for the variable
shower and for theinitial temperature. In order to perform a
test, a condition that can be observed should be spedfied.
For ingtancethe user can spedfy the following :

wat er _vol ure: i =10. Ot enper at ur e: i <1000
OT (heat er: T=0)

Such a condition is used to inform DExVal that the ini-
tial water volume is 10, the heaer will remain off al the
time and the water initial temperature is lower than 100. For
the @ase in which the shower is on all the time and the im-
plemented system runs for 5 clocks, DExVa proposes the

following values for the initial temperature: 47.181, 73.59
and 99999 Usingthese values asinput for the implemented
code, the user can observe whether the heaer behaves as
expeded, i.e. it remains off al thetime.

DExVal can dso be used to try to kill mutants. For in-
stance the trangition in automaton Boiler from the state
NORMAL_HEATER ON to the state
NORMAL_HEATER_OFF occurs when the value of the
variable heater switches to off. Asame, for insance, that
the @ndition

OT(T#f -state(boil er): T=" NORMAL_HEATER ON) [
heater:f=0

is gedfied informing DExVal that the baler remains at
state NORMAL_HEATER_ON al the time before the last
clock tick, and, at the last clock tick, the heater turns off.
DExVal provides then the values for the initial temperature
and for the variable shower that cause the transition. If these
values are used as inpu for the final code, then the behav-
iour of the variable temperature (after the moment the tran-
sition should ocaur) reveals whether the implemented code
is corred or not: If the temperature is not reduced, then the
code implemented is a mutant.

6 CONCLUDING REMARKS

Our preliminary results indicate the potential importance of
constraint logic programming for the derivation of proper-
ties of hybrid systems and also for the generation of test
cases. We described a symbolic exeaution method that en-
ables the user to spedfy test conditions. The output of our
symbolic exeaution is the inpu for the test data generation
procedure. An algorithm based on the projedion of con-
straintsis used for the generation of “good” input values for
testing the final code. Our approach seems to be compatible
with various test data criteria, including the ability to “kill”
mutants.

We are currently working on the integration of the
symbolic exeaution and test data generation procedures. We
are dso working on the enhancement of our spedalized
congtraint solver. Our test data generation depends on the
projedion of constraints onto the values of the input vari-
ables. Depending on the @se, the projedion may not be
trivid. In particular, it isimpossble to develop an agorithm
able to solve ad project any kind of non-linea constraints.
The use of Congtraint Handling Rules, however, gives us
the opportunity to develop dedicated constraint solvers that
are ableto ded with spedfic kinds of non-linea condraints.

REFERENCES
Alur, R,; T. A. Henzinger and P.-H. Ho. 1996 “Automatic

Symbolic Verification of Embedded Systems’. IEEE
Transactions on Software Engineering, 22:181-201.

Carlson, M. and J. Widen. 1995. Scstus Prolog. User’'s
Manud, Release 3.0. Swedish Ingtitute of Computer Sci-
ence SICS/R-88/88007TC.

Ciarlini, A. and T. Fruhwirth. 1999. “Symbolic Exeaition
for the Derivation of Meaningful Properties of Hybrid
Systems’, (Poster) In Proc. 16" International
Conference on Logic Programning (ICLP'99) (Las
Cruces, New Mexico, USA).

DeMillo, RA. and A.J. Offut. 1991. “Constraint-Based
Automatic Test Data Generation”. |EEE Transactions on
Sdtware Engineering, 17(9):900-910.

Delzanno,G. and A. Podelski. 1999 “Mode Chedking in
CLP’. In Proc. Second International Conference on
Tods and Algorithms for the Construction and Analysis
of Systems TACAS99. (Rance Cleaveland, ed.), LNCS,
Springer-Verlag.

Fribourg, L. 1998. A Closed-Form Evaluation for Extended
Timed Automata. Technical Report LSV-98-2, Labora
toire Spedfication et Verification, ENS de Cachan,
Cachan, France

Frohwirth, T. 1995. “Constraint Handling Rules’. In
Constraint Programning: Basics and Trend, A. Podelski
(ed.), Springer LNCS 910.

Hard, D. 1987. “Automata: A visual formalism for complex
systems’. Science of Computer Programmning 8(3):231 -
274,

Henzinger, T. A. and H. Wong-Tai. 199%. “Using HY TECH
to Synthesize Control Parameters for a Steam Boiler”. In
Formal Methods for Industrial Applications: Specifying
and Programning the Seam Boil er Control (J.-R. Abrial,
E. Borger and H. Langmaak, eds). LNCS 116b6.
Springer-Verlag. 265-282.

Jeffar, J and M. J. Maher. 1994. “Congtraint Logic Pro-
gramming: A Survey”. Journa of Logic Programming
19,20:503-581, 1994.

Korel, B. 1990. “Automated Software Test Data Genera-
tion”. IEEE Transactions on Software Engineeing,
16(8):870-879.

Marriott, K. and P. J. Stuckey. 1998 Programmning with
Constraints. MIT Press USA.

Offut, A.J; Z. Jin and J. Pan. 199. “The Domain Reduction
Procedure for Test Data Generation”. To appea, Sdt-
ware Practice and Experience.

Pontelli, E. and G. Gupta. 1997. “A Constraint-Based Ap-
proach for Spedfication and Verification of Real-time
Systems’. In Proc. 1997 |IEEE Real Time Systems Sym-
posium, |EEE Computer Society. 230-239.

Urbina, L. 1996 “Analysis of Hybrid Systems in CLP(R)”.
In Proc. Principles and Practice of Constraint Program-
ming CP'96. LNCS 1118. Springer-Verlag, 451-467.

