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Abstract

In tros report we give an overview of Constraint Logic Programming
based on the available work as mentioned in the bibliography. Constraint
logic progra.mming languages are a new, powerful class of programming
languages based on mathematicallogic which are extended in a logically
sound way by constraint solving techniques. The result are highly declara.-
tive and flexible languages, which are weIl suited für combinatorical search
problems and linear arithmetic equation solving, features useful in appli-
cation areas like planning and scheduling, circuit design and operations'
research. After introducing the basic computation domains, na.mely num-
berg and boolean values, we discuss current constraint logic progra.mming
languages in detail. In this way an overview of the state-of-art in con-
straint logic progra.mming is given and its potential applications are out-
lined through examples.

1 Introduction. .
During the 1980s we have seen the rise of a new programming paradigm called
logic programming. The most prominent representative ofthis new programming
paradigm is the language Prolog, developed in the early 1970s by Colmerauer
in Marseille and Kowalski in Edinburgh. Programming in Prolog differs flom
conventional programming both stylistically as weIl as computationally, as it
uses logic to represent knowledge and deduction to salve problems. Due to
the .success of Prolog in the academic world, logic programming today slowly
begins to find its way out of the research labs into advanced products like expert
systems or knowledge-based systems.

.Trus work has been supported by the Austrian Industries Holding
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The recent profileration of extensions to logic programming reflects, on Olle ,~.,:c:':;
hand, the popularity of these languages, and, on the other hand, their limita-
tions. Among the proposed extensions to Prolog, several versions incorporate
other paradigms andfor languages. These include Loglisp (Lisp and Prolog),
Funlog (Functional Programming and Prolog), and Eqlog (Term Rewriting and
Prolog). The quest ion arose, however, whether these extensions preserved the
logical basis of the language. In many cases, the answer was negative.

It has been argued in the literature that a program is best divided into
two components called competence and perfonnance. The competence compo-
nent contains factual information - statements of relationships - which must be
manipulated and combined to compute the desired result. The performance
component then deals with the strategy and tactics of the manipulations and
combinations. The competence part is responsible tor the correctness of the
program; the performance part is responsible tor the efficiency and termination.
We would like, in our programming, to cancern ourselves first with competence
("what"), and only then, if at all, worry about performance ("how"). Logic
programming provides a means tor separation of these concerns. It is based on
first order predicate logic, and the performance component is mostly automatic
by relying on a built-in computation mechanism called BLD-resolution.

In this way, logic programming has the unique property that its semantics,
operational and declarative, are both simple and elegant and coincide in a nat-
ural war. This property, however, comes at a price. The semantics of a logic
program are defined within the context of the Herbrand Universe - the set of all

~possible terms that can be formed from the functions and constants in a given

program. In this uni verse, only those terms which are syntactically equivalent

can be unified together. Every semantic object has to be explicitely coded into
a Herbrand term; this enforces reasoning at a primitive level.

On the other hand to implicitely describe the objects of discourse, constraints
are widely used in applications such as engineering, knowledge representation,
and graphics. Additionally, many reallife problems like scheduling, allocation,
layout, fault diagnosis and hardware design can be seen as constrained search
problems. Constraint manipulation and propagation have been studied in the
Artificial Intelligence community in the late 1970s and early 1980s especially in .
the USA [L80, Wm88, FBBNA90, ea88aJ. They provide problem solving tech-
niques like local value propagation, data driven computation, forward checking
(to prune the search space) and consistency checking. The most common ap- "

proach for solving a given constraint problem consists in writing a specialized ",: 1", ;,;

program in procedurallanguages. This approach requires substantial effort for "~t;~;,,"
program development, and the resulting programs are hard to maintain, modify :(~
andextend. 7Constraint Logic Programming is an attempt to overcome this difficulties (
by providing declarativeness and flexibility by enhancing a Prolog-like language
with a constraint solving mechanism. Not only does this free the logic program-
mer from the restrictions of the Herbrand Universe, it also enables to increase

2

':":



!

"~.c

I

efficiency and expressability by using special purpose constraint solvers over
specific domains. A constraint solver is an algorithm deciding the satisfiability
of constraint systems.

A constraint in logic programming is viewed as a special predicate, i.e. a
relation that should be satisfied. Placing a constraint that the quantity named
a is less than the quantity named b means that there is a known relationship
between the two. Similarily, if the sum of three values x, y and z is constrained
to be zero, then this relationship can be viewed in more than Olle way: For
example, ODe might find convienient für Borne purposes the view that x is mi-
nus the sum of the other two. In other words, constraints are multi-directional.
Constraint-based languages allow the user to state declaratively a relation that
is to be maintained, rather than requiring them to write procedures to maintain
the relations themselves.

The rest of the paper is organized as follows: In the next section we will
introduce two important computation domains, namely numbers and boolean
values, including Borne classical examples. Then we give an overview over current
constraint programming languages. Last hut not least the appendix presents
the overheads of a talk on constraint logic programming given für the CD-Lab
in May 1990. In particular, it offers a different introductory view on constraintlogic programming and introduces additional examples. .

2 Computation Domains

In this section, we introduce two basic computation domains für constraints,
namely numbers für linear arithmetic and truth values für boolean algebra. The
description of other interesting domains may be found in the next section, where
specific constraint logic languages are described. For example, CHIP offers finite
domains, Trilogy integer arithmetic, Prolog 11 infinite trees, Prolog 111 rational
numbers, and BNR-Prolog intervals. Other domains such as regular sets and
strings are mentioned in the appendix.

2.1 Linear Arithmetic

Arithmetic constraints are maybe the single most important computation do-
maiD für constraints. It was also the maiD motiviation behind the research
of combining logic programming with constraints, as standard Prolog handles
arithmetics quite poorly. CLP(n) [JL87a] was the first constraint logic pro-
gramming language to introduce linear arithmetic constraints over real or ratio-
nal bumbers. Linear arithmetic constraints correspond to continuous problems,
where there is an infinite number of points in the search space to explore.

Linear arithmetic expressions are expressed as terms built from numbers and
the operators für change of sign (-), addition (+), subtraction (-), multiplication
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(*) and division (/). In order to ensure linearity, Olle factor of a multiplication
and the divisor of a division have to be a numberl before they can be evaluated.

. Linear terms can be related to each other using the usual arithmetic constraints
(>,>=,<,=<,=,#).

A suitable decision procedure für a set of linear arithmetic constraints is
based on the simplex-algorithm (known from linear programming and optimizar
tion problems). The procedure either fails if the constraints are not satisfiable
or pro duces a set of bindings für variables and a set of constraints in terms of
this variables in a simplified, canonical form.

In important point is that the adaption of the simplex algorithm must be
incremental to enable a füll embedding into a logic language. The reason is that
during resolution, new, relatively simple constraints are added (and taken away
by ba<;ktracking) dynamically: Ir we have already solved a set S of constraints,
adding a new constraint C should not require solving the set S U {C} flom
scratch.

The algorithm should also be abte to find out if a variable is constraint to
exactly Olle value. Ir this is the case, the variablecan be directly assigned that
value. In this war, the inequality constraint (#) can be handled in a logically
correct war. While CHIP [ea88b] claims to support this feature, the current
prototype implementation of CLP(n) [ea90] available at the CD-Lab does not
have this ability. Therefore it does not have logical sound inequality, only a
variant definable by the user by negation-as-failure.

Additionally, constraint logic programming languages like CHIP offer exten-
sions to find the most general solution to a set of constraints which optimizes
(i.e. minimizes or maximizes) a linear evaluation function.

Non-linear constraints cannot be solved by analytical methods alone in
generar. Hence iterative methods will be necessary in many cases, which are
not implemented in most constraint logic programming languages because of
their complexity and numerical instabilitr. The current solution in most sys-
tems is to delay non-linear expressionsuntil they are bound enough so that they
are linear.

This implies that up to now there are no good general suggestions how to
handle non-linearity. This includes trigonometric functions as weIl. It should
be noted that there are a number of special purpose systems like Macsyma
and Mathematica to perform computer algebra. However, these systems are
very complex and it is not clear how they could be integrated into a logic
programming environment.

Concluding this subsection, same examples4 illustrate the power of arith-
metic constraints to salve various kinds of problems in scheduling and planning.

tOr to be guaranteed to be bound to a number at run-time
2But see the language CAL, wruch is based on Groebner bases
3But see BNR-Prolog
. "(CLP(R»" in the Mt line of the programm code indicates an example adopted from

the prototype CLP(1?) [ea90] implementation demo file
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The first example defines the well-known Fibonacci-numbers. Note that in
contrast to standard logic programming, arithmetic expressions can be passed
as arguments, as the standard unification is extended to deal with arithmetic
constraints.

% Fibonacci numbers

fib(O, 1).
fib(1, 1).
fib(N, Xi + X2) :-

N > 1, X1+X2 > 1,
fib(N - 1, Xi),
fib(N - 2, X2).

% SampIe goals: fib(14,N), fib(X,610)

The next example describes the standard mortgage relationship between

. P: Principal
'c'Z'"

. T: Life of loan in months ~i:
""':;(!

I F . d (b d d) hl . ",~::"",~'!t;;;:p';J,!ifiJo". : Ixe ut compoun e müßt y mterest rate rf-~;7~~~~;1;~

:~I'~:1i!.;.~:':Ti"i[~. B: Outstanding balance at the end ;?{;:c;:"ii#i~'~j':::1
:,;~;':"1':{i;;jYj;j. M. Monthly payment :'.'c~.c;)~. ;(:r::;~~

Note that although non-linear arithmetic is involved, the sampie queries are

instantiated sufficiently to produce linear constraints at run-time.

% Standard mortgage (CLP(R»:

mg(P, T, I, B, MP) :-
T = 1,
B = P + (P*I - MP).

mg(p, T, I, B, HP) .-

T > 1,
mg(P*(1 + I) - HP, T - 1, I, B, MP).

% SampIe goals: mg(9999, 360,0.01, 0, H), mg(P, 720, 0.01, B, M)

The following example proves that the midpoints of an arbitrary quadrangle
form a paralellogram when connected by showing that no constraints hold on
the corner points.
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% Analytical geometry

% A point has two coordinates x and y, written x#y

?- op(31,xfx,#).

mid(AX#AY,BX#BY,CX#CY):- % compute mid-point of a line
AX+CX = 2*BX,
AY+CY = 2*BY.

para(AX#AY,BX#BY,CX#CY,DX#DY):- % two paralell lines
(AX-BX)*(CY-DY) = (AY-BY)*(CX-DX).

goal(PO,P1,P2,P3,[P4,P5,P6,P7]):- % prove it

mid(PO,P4,P1),

mid(P1,P5,P2),

mid(P2,P6,P3) ,
. mid(P3,P7,PO),.

para(P4,P5,P7,P6) ,

para(P4,P7,P5,P6).

2.2 Boolean Algebra

Boolean constraint solvers were added to constraint logic programming lan-
guages such as CHIP [ea88b], Prolog III [A90a], and CAL [KA88], which already
dealt with numerical constraints. Boolean algebra is an interesting domain in
applications like circuit design (development and verification) as weIl as theorem-
proving in the domain of propositional calculus. The latter can be applied in
expert systems, whose rule yield boolean logic results.

Since boolean unification provides a decision-procedure für propositional cal-
culus and is therefore NP-complete, any algorithm' für boolean constraints has
an exponential warst case complexity. It is thus very important to use a com-
pact description of boolean terms to achieve efficiency. Normal forms like DNF
or sum-of-products require exponential space für the representation of many
interesting functions.

CHIP [ea88b] , für example, represents boolean terms as directed acyclic
graphs, which are manipulated by a special purpose graph manipulation algo-
rithm to eliminate variables. In most cases, however, boolean algebra is im-
plemented as a special case of numerical constraint solving (i.e. the simplex
algorithm). In Prolog III [A87] a saturation method is used to salve boolean
equ~tions. This method does not compute a most general solution and is there-
fore not applicable to circuit verification.

Boolean terms are built from truth values (true and false, represented some-
times also by 0 and 1), from variables and from logical connectives (e.g. and,
or, xor, nand, nor, not, =). In same implementations (e.g. CHIP) constants are
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also allowed, which denote symbolic names for input arguments.
The following examples illustrates how boolean algebra can be expressed in

terms of arithmetic constraints5. It alsp shows the most-cited example in the
literature, the full-adder circuit.

\
% Boolean algebra as arithmetic constraints

and(X,Y,Z):- Z = X*Y.

or(X,Y,Z):- Z = X+Y - X*Y.

xor(X,Y,Z):- Z= X+Y - 2*X*Y.

% iamous iull-adder circuit example

"-
add(I1,I2,I3,O1,O2):- t,'l

xor(I1,I2,X1),

and(I1,I2,A1),

xor(X1,I3,O1),

and(I3,X1,A2),

or(A1,A2,O2).

11
12 xor Xl

xor 01

13 and 1_~~
- or 02

and Al

Figure 1: Full Adder Circuit

5However not linear ones
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3 Current Constraint Logic Programming Lan-

guages
Several constraint logic programming languages have now been implemented.
Most of these systems include incremental constraint solvers, since constraints
are added and deleted dynamically during program execution. CLP('R-) [JL87a],
für example, includes an incremental Simplex algorithm, while CHIP [ea88b,
P89] includes an incremental solver für constraints over finite domains.

3.1 The CLP-Scheme (Constraint Logic Programming)

(IBM T.J. Watson Research Center, Yorktown USA)

References: [JS87, JJP87, C87a, L90, JL87a, JL86, JL87b, JJT89, JK88]

Jaffar and Lassez describe a scheme CLP(V) für Constraint Logic Program-
ming, which is parameterized by V, the domain of the constraints. In place of
substitutions generated by unification, constraints are accumulated and tested
für satisfiability over V, using constraint solving techniques appropriate to the
domain.

Although languages like Prolog II and Prolog III [A87, A90a] have been
proven to be instances of the CLP-scheme, it has certain limitations to be ap-
plicable as a general framework für constraint logic programming languages, as
remarked in the Ph.D. thesis of Smolka [G89]:

. CLP requires that the constraint language is interpreted in a single fixed
domain. For the purpose of knowledge representation, Olle has to general-
ize CLP such that the constraint language can come with more than Olle
interpretation to express partial knowledge of the real world.

. CLP requires the interpretations of constraint languages to be solution
compact, which implies that every element of an interpretation must be
obtainable as the unique solution of a possibly infinite set of constraints.
CLP needs solution compactness since it provides soundness and com-
pleteness results für negation-as-failure. However, the constraint language
itself could provide für logical negation.

. CLP assumes that the constraint language is expressed in predicate logic.
It is lacking a sufficiently abstract formalization of the notion of a con-
straint language to accomodate other logics and their customized model

. theories.

There is a vast literature on theoretic issues of the CLP-scheme. Some
practical topics are covered in [JS87, JJP87, C87b, TC88, ea90], where CLP('R-),
a particular instance of the CLP-Scheme over real numbers is introduced. Other
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authors have proposed other instances of the CLP-scheme, e:g. regular sets [C89]
and extensions for knowledge representation [HF88].

The CLP('R.) system is an interpreter written in about 13000 lines of G-
code. The primary aim of its design and construction was to give evidence to
the practical potential of the CLP-scheme. The CLP('R.) system is organized in3 main parts: '

. an inference engine which executes derivation steps and maintains variable

bindings

. an interface which evaluates complex arithmetic expressions and trans-
forms constraints to a canonical form

. a constraint sf!lver which solves constraints that are too complicated to
be handled directly in the engine and interface, and wh ich also maintains
delayed (non-linear) constraints.

A prototype implementation of CLP('R.) is available at the CD-Lab. It is
considerably fast. Experiments also indicated that CLP('R.) is useful for im-
plementing aspects of time-interval based logics with inequalities. CLP('R.)
does aglobai consistency check, so contradiction and redundancy (by adding
the negated constraint and checking for contradiction) can be easily detected.
However, CLP('R.) does not simplify inequalities, for example from the query
X =< 6,6 =< X it does not deduce that X = 66. Instead, a canonical form of
the above inequalities is returned.

3.2 CHIP (Constraint Handling in Prolog)

(ECRC, Munich Germany)

References: [P89, P87, ea89, PM87, DMP88b, DMP88a, ea88b, T87]

CHIP offers three computation domains for constraints over

. Finite domain restrictive terms

. Boolean terms

. Linear arithmetic terms based on rational numbers

There is an ongoing discussion about using either realor rational number
arithmetic. The first approach enables Olle to solve non-linear expressions like
X *" X = 2, the second approach allows for arbitrary precision and therefore
does not have problems with rounding errors, which may invalidate numerical
computations with real numbers.

6However, it does if the query is written as (X = 6; X < 6), (X > 6; X = 6)
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The basic feature of CHIP, which distinguishes it from other constraint logic
languages, is the ability to work on domain-variables, i.e. variables ranging over
a finite domain. CHIP differentiates between two kinds of such variables, those
ranging over constants, and those ranging over a finite set of natural numbers.
CHIP haB also the ability to cape with arithmetic terms over domain-variables,
provided their domain are natural numbers.

Finite domains enable a large variety of constraints on domain variables:

. arithmetic constraints, e.g. >, <,=

. symbolic constraints, e.g. element(Nth,Lst, Var), alldistinct(Lst)

. user-defined constraints using consistency techniques

The following example illustrates an implementation of the classic crypto-
arithmetic puzzle. Although this problem could be solved with arithmetic con-
straints alone as weIl, the finite domain approach is more efficient. In the ex-
ample the domain of the variables are the numbers from 0 to 9.

SEND
+MORE

MONEY

Here it is

% The classic puzzle

solve(Digits) :-
Digits = ES, E, N, D, M, 0, R, Y],

constraints(Digits) ,
all_different(Digits) ,
Numbers = [0, 1,2, 3,4, 5, 6, 7, 8, 9],

gen_digits(Digits,Numbers).

constraints([S, E, N, D, M, 0, R, y]) :-
S >= 0, E >= 0, N >= 0, D >= 0, M >= 0, 0 >= 0, R >= 0, Y >= 0,
S <= 9, E <= 9, N <= 9, D <= 9, H <= 9, 0 <= 9, R <= 9, Y <= 9,
S >= 1, H >= 1,
(Ci = o ; Ci = 1), (C2 = o ; C2 = 1),
(C3 = o ; C3 = 1), (C4 = o ; C4 = 1),
Ci = M. ,
C2 + S + M = 0 + 10 * Ci,
C3 + E + 0 = N + 10 * C2,
C4 + N + R = E + 10 * C3,

D + E = Y + 10 * C4.

10
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gen_digits([], -).
gen_digits([H I T], L) :-

element(_, L, H), gen_digits(T, L).

At the moment, CHIP is the only language allowing user-defined constrnints
over finite domains. These are solved using so-called consistency techniques,
a powerful paradigm emerging from AI to solve discrete combinatorical prob-
lems. The principle behind these techniques is to use constraints to reduce the
domains of variables and thus the size of the search space. This is achieved
by propagating the constraints as rar as possible and then choosing the most
restrictive constraint repeatedly.

There is quite an amount of literat ure on applications of CHIP claiming
ease of implementation and practical speed. However, the drawback of CHIP
is that in order to gain efliciency, time-consuming experiments with suitable
domain and forward checking declaration, heuristic search rules and the similar
are necessary.

3.3 Charme

(Bull CEDIAG, France)

References: [A89]

Charme is maybe the first commercially available constraint logic program-
ming language. It is based on CHIP [ea88b], hut haB various extensions such
as procedurnl constructs like for- and while-loops, which make it look a lot more
like a imperative language. In addition, new data-structures like arrays have
been added. Also, the syntax haB been changed completely, which makes the
relationship to logic programming even less clear. A non-trivial application für
the car-manufacturer Renault is claimed to have been implemented successfully.

To illustrate the above remarks, a typical predicate definition in Charme
might include statements like the following:

p(X)
{X=1 or X=2;
withlocal [X,Y] do {X=2;Y=3};
when known(X) do write(X);

tor [X in 1. .10, Y in [U,V,W]] do Y!= 2*X;
while extract(Var, Array) do Var > 5}

11
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3.4 Prolog 11, Prolog m
(Comerauer, Marseille France)

References: [A88, A87, J88, A90a]

Prolog 11 employs as constraint language equations and disequations that
are interpreted in the algebra of infinite trees. In this way, Prolog II overcomes
the occur-check problem by making it a feature. Prolog III adds rational num-
ber arithmetic and allows for linear equations and inequations for numbers and
boolean expressions for truth values solved by a saturation method. The seman-
tics of Prolog II and Prolog III are defined by rewrite ru/es over complex trees,
not in terms of logical model theery.

Prolog III it is possible to solve finite system of constraints over different do-
mains. The constraints-resolution algorithm replaces the unification algorithm
of standard Prolog. For example, to find out the number of pigeons (p) and
rabbits (r) required to have a total of 12 heads and 34 legs, Olle may pose the
query

{p>=O. r>=O. p+r=12. 2p+4r=34} ?

and get the answer

p=7. r=S.

To compute a list of 9 elements that will produce the same result no matter
<1.2.3> is concatenated to its left or to its fight, the query is

{z:9.<1.2.3>*z=z*<1.2.3>} ?

The ans wer is

z=<1.2.3.1.2.3.1.2.3>.

Note that Prolog 111 follows a different syntax than standard Prolog, called
the Marseille syntax, while standard Prolog uses the so-called Edingburgh syn-
tax. In Marseille syntax, variables are written lowercase and lists use angle
brackets, logical connectives use different symbols. These syntaxes date back to
the first implementations of Prolog in Marseille and Edinburgh respectively.

3.5 CAL (Contrante A vec Logique)

(ICOT, Tokyo Japan)

12
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References: [KA88]

CAL provides an interesting development. Since the CAL interpreter eIn-
playa the Buchberger algorithm to compute Groebner bases of equations as its
constraint solver, it can handle non-linear polynomials as weIl as linear Olles. A
rnodified version of the algorithm für Groebner hages is used to salve boolean
constraints.

The CAL interpreter regards a Groebner base of a system of polynomials
as its solution. Given a set of polynomials in homogenous form, then, by the
Hilbert zero point theorem, every solution of the set is the solution of same
polynomial if same power of the polynomial is in the ideal. Consequently, the set
of polynomials does not have a solution if and only if 1 is in the generated ideal.
Nöw the problem of solving contraints is reduced to the membership problem
of the generated ideal. Buchberger gave an algorithm für this problem. Each
equation is viewed as a rewrite roJe which rewrites the maximum monomial
to the rest of the polynomial under a certain ordering between monomials.
CriticaJ pairs are handled until a confluent rewriting system is resulting flom
the algorithm, which is called the Groebner base of the initial set of polynomials.
Now a polynomial is contained in an ideal if and only if the polynomial is reduced
to zero by the rewriting under its Groebner base.

One problem of the approach is that that the computation of the Groebner
hages is usually exponentiaJ in the size of the polynomials and that the general
algorithm haB to be adopted carefully to be incremental.

3.6 Trilogy

(University of Vancouver, Vancouver Canada)

References: [P88]

Unlike CLP(R) [JL87a], Prolog III [A-90a] and CHIP' [ea88b], the language
Trilogy does not provide the füll power of Prolog. It is rat her a hybrid with
the more conventional'language Pascal. From the constraint point of view, it
provides adecision procedure für Pressburger arithmetic, which is arithmetic
on linear expressions (including the modulo-operator) over natural numbers.
Trilogy is available für around 100$ für IBM-PC or compatibles.

3.7 BNR-Prolog (Bell-Northern Research Prolog)

(Be!I-Northern Research, Ottawa Canada)

References: [OWB89, G88]
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The main feature of BNR-Prolog is an implementation of interval arithmetic.
Constraint arithmetic on intervals restores not only a declarative reading to
arithmetic expression but also their algebraic properties. Thus, while floating
point rounding errors will typically cause the functional evaluation of equaltiy
expressions like

(x + y) + z =:= x + (y + z)

to fail, such arithmetic operations on interval values of the variables cannot
contain rounding errors and they are guaranteed tQ succeed.

When combined with orqinary backtracking of Prolog, relational interval
arithmetic can also be used to obtain numeric solutions to non-linear constraint
satisfaction problems over the reals (e.g. like n-degree polynomials).

This technique differs from other approaches like Prolog 111 [A87, A90a] or
CLP('R.) [JL87a] in that it does not do any term-rewriting or equation solving.
In interval arithmetic, intervals are narrowed by raising their lower bounds or
lowering their upper bounds. For example, assurne that X = [Xlb, X ub] and
Y = [Ylb, Yub] are constrained by equality, then both X and Y are narrowed
to the interval [max(Xlb, Ylb), min(Xub, Yub)]. Another example shows that
th~ evaluation of a relational equation ~ay weIl narrow all the intervals in it.
Given

X+Y=:=Z with X = [3,7],Y = [2,8],Z=[4,6]

the variables are narrowed to the intervals:

X = [3,4],Y = [2,3],Z = [5,6]

The advantage of interval arithmetic is that it can deal with non-linear and
trigonometric arithmetic expressions, the disadvantage is that interval arith-
metic cannot salve even simple sets of linear equations and that the narrowing
process is sometimes inefficient or may not even converge.

3.8 CS-P~olog (Constraint Solver Prolog)

(University of Tokyo, Tokyo Japan)

;
! References: [ea87]

QS-Prolog implements same basic constraint solving techniques in Prolog it-
self. Namely, an equation sol ver based on variable elimination and term rewrit-
ing, an implementation of finite domains (see CHIP [ea88b]), and an inequation
sol ver based on a graph search technique are presented.
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3.9 CIL (Complex Indeterminates Language)

(Mukai, Japan)

References: [KH85]

CIL is a logic language für naturallanguage understanding based on situation
semantics. CIL is a knowledge representation language assuming that knowledge
is represented by parametrized types and constraints between them and that
constraints are described by Horn clauses. CIL = horn clause logic + types and
complex indeterminates + delay mechanism (freeze).

Although CIL can be viewed as constraint language, it does not cover arith-
metic constraints, which are the maiß area of interest of this report. For more
on this topic, compare CIL to proposals like (HR86, HF88].

3.10 The cc-Scheme (Concurrent Constraints)

(Saraswat, Stanford University)

References: [A90b]

Saraswat's fh.D. dissertation describes a family of concurrent constraint
languages. It is based on the notion of partial information, and the coneom-
mitaßt notions of consistency and entailment. The family is föunded on the
CLP-scheme on Olle hand and concurrent logic programming on the other hand.
In this framework, computation emerges flom the interaction of concurrently
executing agents that communicate by placing, checking and instantiating con-
straints on shared variables. The state of a concurrent system is specified by a
store, which is a vector of variables, and a valuation assigning each variable a
completely known value in its dornain. Then a constraint is defined as a set of
such valuations. The store can be lead and written enabling a transformation
of states.

This short description should suffice to indicate that Saraswats view of con-
current constraint programming is highly abstract and at the moment probably
more interesting flom the concurrent programming point of view than flom
the constraint programming point of view. Currently it is not clear how to
implement and utilize such languages. In [GHE89] semantics für the Ask-and-
Tell class of constraint-based concurrent logic programming languages are given
based upon the not ion of reactive behaviors.

4 Conclusions

Hopefully this report could give a first idea about Constraint Logic Program-
ming, wh ich extends usual Prolog-like logic programming languages by introduc-
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ing constraints on specific computation domains. Keeping the declarativeness
and jlexibi/ity of fifth-generation tools, constraints bring into logic programming
the efficiency of special purpose programs written in traditional imperative lan-
guages.

This very active area of research promises same very interesting possibilities
für real lire applications, which are orten combinatorical explosive but can be
easily formulated with the help of constraints. Tasks like schedu/ing, p/anning
and circuit design could greatly benefit flom these developments.

At the current stage of development, practically all constraint logic pro-
gramming languages except the recently introduced Prolog III implementation
[A90a] are not polished commercial products, but rather academic prototype
versions. Among these, the CD-Lab offers CLP(n) and Prolog ll. ~

For the interested reader, it should be noted that a survey on the same ;
topic was published in the ACM Communications [J90] just after this report
was finished.
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