
Reconstructing almost-linear Tree Equation
Solving Algorithms in CHR

Marc Meister and Thom Frühwirth

Fakultät für Ingenieurwissenschaften und Informatik
Universität Ulm, Germany

{Marc.Meister,Thom.Fruehwirth}@uni-ulm.de

Abstract. Solving equations over trees is an essential problem in sym-
bolic computation. We reconstruct almost-linear tree equation solving
algorithms in the high-level and rule-based Constraint Handling Rules
(CHR) language. To this end, we combine the available CHR solver for
rational trees with the union-find algorithm. We extend the almost-linear
CHR rational tree solver to handle existentially quantified conjunctions
of equations in the theory of finite or infinite trees in almost-linear time.

1 Introduction

Static unification, i.e. equation solving over trees, is an essential problem in
symbolic computing, in particular in theorem proving and declarative program-
ming languages. Logic programming languages like Prolog rely on unification
to treat logical variables, term rewriting systems need it for confluence testing,
Constraint Handling Rules (CHR) [5] for both, and functional languages like ML
for type checking.

Even though almost-linear time algorithms based on the essential union-find
algorithm [17] for the unification problem over finite and rational trees are known
since the 1970ties, e.g. [9] and [12], they are rarely implemented e.g. in Prolog
with the argument that they are too complicated and cause significant overhead.

Moreover, in the context of constraint logic programming, one also needs
to deal with local, i.e. existentially quantified variables. It is not obvious how
to extend the classic algorithms to these cases without giving up on optimal
complexity. In this paper we do so in a straightforward way using CHR as an
implementation language. This choice is not accidental. The code in CHR is
more concise than even theoretical expositions of unification, the extensions are
straightforward. CHR guarantees properties like anytime and online algorithm
and is concurrent, and it was shown that any algorithm, including thus union-
find, can be implemented in CHR with best-known time and space complexity.

For a lucid exposition of unification algorithms see [1] and for a multidisci-
plinary survey of unification see [10].

Contributions and Overview. We reconstruct an almost-linear tree equation solv-
ing algorithm as concise CHR solver and modify it to solve existentially quanti-
fied conjunctions of equations in the theory of finite and infinite trees in almost-
linear time.

2 Marc Meister and Thom Frühwirth

– We recall the basics of Constraint Handling Rules (CHR) [5], Maher’s the-
ory T of finite or infinite trees [11], and Tarjan’s union-find algorithm [17]
in Section 2.

– We reconstruct Huet’s almost-linear tree solving algorithm for finite and
infinite trees [9] in CHR by combining the quadratic classic CHR rational
tree solver [5, 13] with the almost-linear CHR union-find solver [15]. Our
exceptionally concise, high-level, and rule-based CHR solver has optimal
almost-linear time complexity. See Section 3.

– We modify the CHR solver to solve existentially quantified conjunctions of
non-flat equations in theory T . The finally solved formula is free of equations
that are not linked to the instantiations of free variables. See Section 4.

Supplementary Online Information. Our complete implementation is available
online at http://www.informatik.uni-ulm.de/pm/index.php?id=142.

2 Preliminaries

Readers familiar with CHR, the theory T , or the union-find algorithm can skip
the corresponding sub-section(s).

2.1 Constraint Handling Rules

Constraint Handling Rules (CHR) [5, 16] is a concurrent, committed-choice, rule-
based logic programming language. We distinguish between two different kinds
of constraints: built-in constraints which are solved by a given constraint solver,
and user-defined constraints which are defined by the rules in a CHR program.
This distinction allows one to embed and utilise existing constraint solvers.

A CHR program P is a finite set of rules R @ H1 \H2 ⇔ G | B. Each rule
has a unique identifier R, the head H1 \H2 is a non-empty multi-set conjunction
of user-defined constraints, the guard G is a conjunction of built-in constraints,
and the body B is a goal. A goal is a multi-set conjunction of built-in and user-
defined constraints. We omit the trivial guard expression “true |”. A rule R is a
simpagation rule if both head expressions H1 and H2 are non-empty. If expression
H1 is empty, we have a simplification rule and write R @ H2 ⇔ G | B. We do
not use propagation rules with empty head expression H2 in this paper.

The operational semantics of CHR is defined by a state transition system
where states are multi-set conjunctions of atomic constraints. Any one of the
rules that are applicable can be applied and rule application cannot be undone
since CHR is a committed-choice language. A rule R @ H1 \ H2 ⇔ G | B
is applicable in state 〈H ′

1 ∧H ′
2 ∧ C〉 if the built-in constraints Cb of C imply

that H ′
1 matches H1, H ′

2 matches H2, and the guard G is entailed under this
matching, cf. (1). The consistent, predicate logic, built-in constraint theory CT
contains at least Clark’s syntactic equality =̇.

IF R @ H1 \H2 ⇔ G | B is a fresh variant of rule R with new variables X̄
AND CT |= (∀) Cb → ∃X̄ (H1=̇H ′

1 ∧H2=̇H ′
2 ∧G)

THEN 〈H ′
1 ∧H ′

2 ∧ C〉�R 〈H ′
1 ∧G ∧B ∧H1=̇H ′

1 ∧H2=̇H ′
2 ∧ C〉

(1)

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 3

If applied, a rule replaces the matched user-defined constraints of the head
expression H2 in the state by the body of the rule. Rules are applied until
exhaustion, i.e. the CHR run-time system computes the reflexive transitive clo-
sure �∗

P of �P . The derivation 〈C〉�∗
P 〈C ′〉 has initial goal C, answer C ′, and

derivation length defined by the number of rule applications. Whenever the con-
junction of constraints in a state becomes inconsistent the derivation terminates
immediately with answer false.

CHR rules have an immediate predicate logic declarative semantics. For a
simplification rule, the guard implies a logical equality between the l.h.s. and
r.h.s. of the rule. Formally, the logical reading of the simplification rule R @ H2 ⇔
G | B is (∀) G → (H2 ↔ ∃Ȳ B) where (∀) denotes universal closure and Ȳ are
the variables that appear only in the body B.

2.2 Theory T of Finite or Infinite Trees

The theory T of finite or infinite trees is equivalent to Clark’s equality theory
(CET) without the occur-check (acyclicity) and one additional uniqueness axiom,
which handles implied equalities, makes the theory complete [11]. The signature
of T consists of an infinite set of distinct function symbols (written as lower-case
letters) and the binary predicate symbol =.

Besides the usual axioms for reflexivity, symmetry, and transitivity for vari-
ables of CET, theory T has the following axiom scheme according to [11]:

(∀) ¬
(
f(S1, . . . , Sn) = g(T1, . . . , Tm)

)
(A1)

(∀) f(S1, . . . , Sn) = f(T1, . . . , Tn)→
n∧

i=1

Si = Ti (A2)

(∀) ∃!X1 . . .∃!Xn

n∧
i=1

Xi = Ti (A3)

In (A1), f and g are distinct function symbols. In (A3), X1, . . . , Xn are distinct
variables, T1, . . . , Tn are function terms, i.e. no variables, and ∃!Xi denotes that
there exists a unique variable Xi.

Axiom scheme (A1) is called contradiction or clash as two distinct function
symbols cannot be equal. Axiom scheme (A2) allows to decompose an equation
by propagating equality to pairwise equality of the arguments. From (A1) and
(A2) we see that we can strengthen the implication in (A2) to logical equivalence.
The reverse direction is often called composition. Axiom scheme (A3) requires
that for a particular form of conjunction of equations a unique set of solutions
exists: For example the formula ∃X X = f(X) has a unique solution which is
the infinite tree f(f(f(. . .))). Without (A3), the theory is not complete, e.g.
neither does the sentence ∃X∃Y X = f(X)∧ Y = f(Y)∧¬(X = Y) follow, nor
does its negation.

The structure of finite or infinite trees and the structure of the rational
trees are models of T . A rational tree (RT) is a finite or infinite tree whose
set of subtrees is finite, i.e. it has a finite representation as a directed (possibly

4 Marc Meister and Thom Frühwirth

cyclic) graph by merging all nodes with common subtrees. A rational tree can
be represented as conjunction of binary equality constraints, e.g. the infinite
tree f(f(f(. . .))) only contains itself as its set of subtrees {f(f(f(...)))} is finite
and it can be represented by the equation X = f(X).

The theory T does not accept full elimination of existential quantifiers, e.g.
in the formula ∃X Y = f(X) we cannot remove or eliminate the quantifier ∃X
and the formula is neither true nor false in T but depends on the instantiation
of the free variable Y .

2.3 Union-Find Algorithm

The classic union-find algorithm solves the problem of maintaining a collection
of disjoint sets under the operation of union [17]. Each set is represented by
a rooted tree, whose nodes are the elements of the set. The root is called the
representative of the set. The representative may change when the tree is updated
by a union operation. With the algorithm come three operations:

make(X) introduces X by creating a new tree with the only node X;
find(X, R) returns the representative R of the tree in which X is contained by

following the path from the node X to the root R of the tree;
union(X, Y) joins the two trees in which X and Y are contained by finding

their roots RX and RY . If they are different one root node is updated to
point to the other (possibly changing the representative).

With the two independent optimisations path compression and union-by-rank
that keep the trees shallow and balanced, the union-find algorithm has logarith-
mic worst-case and almost constant amortised running time per operation [17]:
For n variables and a mixed sequence of u calls to the union operator and f
calls to the find operator, the time complexity for an optimal implementation
is O(m G(n)) with m = 2u + f (we allow calls to union with arguments that
are from the same tree). Function G is an extremely slow growing inverse of
Ackermann’s function with G(n) < 5 for all practical n.

Accessing the operations of the union-find algorithm as built-in constraints
requires to define ask- and tell-versions for find(X, R) and union(X, Y). We de-
fine find(X, R) (ask) to be true iff X is not a root variable. Telling the constraint
find(X, R), however, returns the representative R of the tree in which X is con-
tained. Similarly union(X, Y) (ask) is true iff X and Y belong to the same tree
but only telling union(X, Y) makes X and Y belong to the same tree.

Clearly the predicate-logical reading of union(X, Y) for two variables is equal-
ity X = Y . The constraint union(X, Y) observes the axioms of reflexivity, sym-
metry, and transitivity of CET for variables: Inserting union(X, X) keeps the
equality sets unchanged and asking union(X, X) returns true (X = X ↔ true).
We have union(X, Y) iff union(Y, X), hence the orientation of variables is in-
variant to the built-in theory (X = Y ↔ Y = X). Finally, if union(X, Y) ∧
union(Y, Z) holds, then we have union(X, Z) and union is hence transitive (X =
Y ∧ Y = Z → X = Z). However, union(X, Y) or union(Y, X) and the order
constraints are told may yield different representatives.

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 5

3 Combining the Rational Tree Equation Solver with the
Union-Find Algorithm

We reconstruct Huet’s almost-linear infinite unification algorithm [9] as a CHR
solver accessing Tarjan’s union-find algorithm [17] by built-in constraints [2]. We
take an extreme programming style of development by starting from the classic
RT solver [5, 8], add the basic idea to handle equality between variables by the
union-find built-in solver, and inspect the necessary changes. We then prove
the correctness of our hierarchical solver, show its optimal almost-linear time
complexity when using the refined semantics of CHR [3], and briefly explain
how to use the optimal CHR union-find implementation [15] as built-in solver.

3.1 Classic CHR Rational Tree Equation Solver

One of the first CHR programs is the classic constraint solver for syntactic
equality of rational trees that performs unification [5, 8] where equations S = T
between two terms are encoded as CHR constraints S eq T (cf. Figure 1).

Auxiliary built-ins allow the solver to be independent of the representation
of terms. Besides true and false, we have v(T) iff T is a variable and f(T) iff T
is a function term. Variables are strictly ordered by ≺, each variable is smaller
than any function term, and function terms are ordered according to term-depth
(for details see [13]). The auxiliary s(T1, T2) leads to false if T1 and T2 have not
the same function symbol and the same arity (this is called clash). The auxiliary
a(T,L) returns the arguments of a function term T as a list L.

re @ X eq X ⇔ v(X) | true

or @ T eq X ⇔ v(X) ∧X ≺ T | X eq T

de @ T1 eq T2 ⇔ f(T1) ∧ f(T2) | s(T1, T2) ∧ a(T1, L1) ∧ a(T2, L2) ∧ e(L1, L2)

co @ X eq T1 \X eq T2 ⇔ v(X) ∧X ≺ T1 � T2 | T1 eq T2

aux @ e([X|L1], [Y |L2])⇔ X eq Y ∧ e(L1, L2)

Fig. 1. Classic rational tree equation solver (RT solver)

We now explain application of each rule of the RT solver:

Reflexivity (re) removes trivial equations between identical variables.
Orientation (or) reverses the arguments of an equation so that the (smaller)

variable comes first.
Decomposition (de) applies to equations between two function terms. If there

is no clash, the initial equation is replaced by equations between the corre-
sponding arguments of the terms. To this end, the CHR constraint e(L1, L2)

6 Marc Meister and Thom Frühwirth

pairwise equates the lists of arguments L1 and L2 of the two terms using the
simple recursion of rule aux.1

Confrontation (co) replaces the variable X in the second equation X eq T2

by T1 from the first equation X eq T1. It performs a limited amount of vari-
able elimination (substitution) by only considering the l.h.s.’ of equations.
The order in the guard ensures termination.

Property 1 ([13]). The classic RT solver terminates and if there is no clash, it
returns a conjunction of atomic constraints of the form

∧n
i=1 Xi eq Ti in the

theory of the rational trees. The variables X1, . . . , Xn are pairwise distinct and
Xi is different to Tj for 1 ≤ i ≤ j ≤ n. For a conjunction of equations with terms
of maximal depth one (flat terms) its time complexity is quadratic.2

3.2 CHR Program Specialisation to Strict Flat Form

We specialise the classic RT solver w.r.t. goals that are in strict flat form.

Definition 1 (Strict Flat). A conjunction of equations is in strict flat form if
each equation contains at most one function symbol and each l.h.s. is a variable.

We apply program transformation techniques for CHR [7]: Two CHR pro-
grams P1 and P2 are operationally equivalent, iff for all states S, we have S �∗

P1

S1, S �∗
P2

S2, and the two final states Si are identical up to renaming of vari-
ables and logical equivalence of built-in constraints.

As the solver decomposes terms, all terms have depth zero or one and parti-
tioning the condition of the guards of or and co yields the following rules with
simplified guards. For conjunctions of equations in strict flat form, the classic
RT solver is operationally equivalent to program {re, or1, or2, de, co1, co2, co3, aux}:

or1 @ Y eq X ⇔ v(X) ∧ v(Y) ∧X ≺ Y | X eq Y

or2 @ T eq X ⇔ v(X) ∧ f(T) | X eq T

co1 @ X eq Y \X eq Z ⇔ v(X) ∧ v(Y) ∧ v(Z) ∧X ≺ Y � Z | Y eq Z

co2 @ X eq Y \X eq T ⇔ v(X) ∧ v(Y) ∧ f(T) ∧X ≺ Y | Y eq T

co3 @ X eq T1 \X eq T2 ⇔ v(X) ∧ f(T1) ∧ f(T2) | T1 eq T2

To avoid intermediate equations T1 eq T2 with two function terms Ti, we
unfold rule de into rule co3 and add the mnemonic rule de+co3:

de+co3 @ X eq T1 \X eq T2 ⇔ v(X) ∧ f(T1) ∧ f(T2) |
s(T1, T2) ∧ a(T1, L1) ∧ a(T2, L2) ∧ e(L1, L2) .

Rule de+co3 short-cuts derivations with intermediate equations T1 eq T2, so
we can remove the redundant rules de and co3. As equations are in strict flat
form in all states of the derivation, rule or2 is redundant and we can remove the
condition v(X) from the guard of each rule.
1 To remove empty constraints e([], []) one may want to add a rule e([], [])⇔ true.
2 The classic RT solver also works with non-flat equations with exponential complexity.

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 7

re @ X eq X ⇔ true

or1 @ Y eq X ⇔ v(Y) ∧X ≺ Y | X eq Y

co1 @ X eq Y \X eq Z ⇔ v(Y) ∧ v(Z) ∧X ≺ Y � Z | Y eq Z

co2 @ X eq Y \X eq T ⇔ v(Y) ∧ f(T) ∧X ≺ Y | Y eq T

de+co3 @ X eq T1 \X eq T2 ⇔ f(T1) ∧ f(T2) |
s(T1, T2) ∧ a(T1, L1) ∧ a(T2, L2) ∧ e(L1, L2)

aux @ e([X|L1], [Y |L2])⇔ X eq Y ∧ e(L1, L2)

Fig. 2. Rational tree solver for strict flat form (RT solver)

Lemma 1 (RT solver for strict flat form). For conjunctions of equations
in strict flat form, the classic RT solver (cf. Figure 1) is operationally equivalent
to the RT solver for strict flat form (cf. Figure 2).

Proof. By program specialisation, properties of the order ≺, splitting rules ac-
cording to a partition of the condition of the guards, unfolding, and removing of
redundant rules. ut

We use the more accessible RT solver for strict flat form for our extreme
programming approach.

3.3 An Extreme Programming Development Style

We now want to improve the time complexity of the RT solver for equations
in strict flat form. We employ a union-find built-in solver to handle equations
between two variables and adapt the RT solver accordingly.

To this end, consider rule e2u which replaces equalities X = Y between two
variables – encoded by CHR constraints X eq Y – with built-in constraints
union(X, Y):

e2u @ X eq Y ⇔ v(Y) | union(X, Y) .

Constraint union(X, Y) observes the axioms of reflexivity, symmetry, and
transitivity of CET for variables (cf. Sub-section 2.3). Rules re, or1, and co1 im-
plement reflexivity, orientation (a limited form of symmetry), and confrontation
between variables (a limited form of transitivity). Taking an extreme program-
ming approach we replace the subsumed rules re, or1, and co1 with rule e2u.

Rule co2 must be adapted to the union-find data-structure as its head con-
straint X eq Y overlaps with the head of rule e2u: We replace the CHR head
constraint X eq Y of rule co2 by the built-in guard constraint union(X, Y):

co2
′ @ X eq T ⇔ union(X, Y) ∧ f(T) ∧X ≺ Y | Y eq T .

In the classic RT solver the strict order of variables ≺, guarantees that any
function term T is eventually attached to a unique variable Y in the set of equal

8 Marc Meister and Thom Frühwirth

variables with X = Y . The canonical unique representative in the union-find
data-structure for a set of equal variables is its root. Recall that the built-in
find(X, Y) (ask) is true if X is not a root variable, and returns a root variable
Y with X = Y when told. Hence, we replace rule co2 with

root @ X eq T ⇔ f(T) ∧ find(X, Y) | Y eq T .

Note that we dropped union(X, Y) (ask) from the guard as find(X, Y) implies
X = Y . Rules de+co3 and aux have no eq constraints between two variables in
the head and are not affected by our transformation. We finally unfold rule e2u
into rule aux. We now show that our UF+RT solver, given in Figure 3 is correct.

e2u @ X eq Y ⇔ v(Y) | union(X, Y)

root @ X eq T ⇔ f(T) ∧ find(X, Y) | Y eq T

de+co3 @ X eq T1 \X eq T2 ⇔ f(T1) ∧ f(T2) |
s(T1, T2) ∧ a(T1, L1) ∧ a(T2, L2) ∧ e(L1, L2)

aux′ @ e([X|L1], [Y |L2])⇔ union(X, Y) ∧ e(L1, L2)

Fig. 3. Rational tree solver for strict flat form using union-find (UF+RT solver)

Definition 2 (Solved CHR State). A CHR state for a built-in theory that
includes the union-find is solved if it is false or if its CHR constraints are in
the form

∧n
i=1 Xi eq Ti with pairwise distinct root variables X1, . . . , Xn and flat

functions terms T1, . . . , Tn.

Lemma 2 (Correctness). For conjunctions of equations in strict flat form the
UF+RT solver terminates with a solved state in the theory of the rational trees.

Proof. The solver terminates as rule e2u removes CHR constraints X eq Y
between two variables, rule root pushes flat terms equations strictly upwards
in the trees, and rule de+co3 removes CHR constraints X eq T for a function
term T . As long as a state is not solved, at least one rule is applicable and if it
is in solved form, no rule is applicable.

The logical reading of each rule e2u, root, and de+co3 is valid in theory T
because X eq Y , union(X, Y), and find(X, Y) are encodings for X = Y : For rule
e2u we have (∀) X = Y ↔ X = Y and for rule root we have (∀)X = Y → (X =
T ↔ Y = T). For rule de+co3 we consider two cases: If T1 and T2 have different
function symbols f and g, then s(T1, T2) fails, i.e. ¬

(
X = f(. . .) ∧X = g(. . .)

)
,

otherwise we have
(
X = f(X1, . . . , Xn) ∧X = f(Y1, . . . , Yn)

)
↔

∧n
i=1 Xi = Yi

as e([X1, . . . , Xn], [Y1, . . . , Yn])↔
∧n

i=1 Xi = Yi by rule aux′. ut

Definition 3 (Solved Form). A conjunction of equations in strict flat form
is solved if it is false or if it is in the form

∧n
i=1 Xi = Ti with pairwise distinct

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 9

variables X1, . . . , Xn and terms T1, . . . , Tn for n ∈ N. We require each term Ti

to be different to Xj for 1 ≤ j ≤ n.

The formula X = Y ∧ Z = Y ∧ Y = f(X) is solved but X = Y ∧ Y =
Z ∧Z = f(X) is not solved as variable Y appears both on the l.h.s. and r.h.s. of
equations between variables. We can convert a solved CHR state to a solved form
by adding equations X = RX for each non-root variable X with root-variable
RX in linear time. Hence, root variables are on the r.h.s. in equations between
two variables and on the l.h.s. for equations which contain a function symbol.

Lemma 3 (Conversion to Solved Form). Consider a solved CHR state that
is not false with CHR constraints

∧n
i=1 Xi eq Ti and conjunction Cb of built-ins.

Then
(∧

X:Cb→find(X,RX) X = RX

)
∧

(∧n
i=1 Xi = Ti

)
is solved. The amortised

time complexity for calling find(X, RX) for each variable X is constant.

Proof. Calling find(X, RX) for each variable X (without intermediate calls to
union) touches each node in the trees once due to path compression. ut

3.4 Complexity of the UF+RT Solver

As the number of application of rules e2u, de+co3, and aux′ is independent of
the order rules are applied, we achieve a minimal derivation length when we
delay application of rule root.

To this end, we use the refined semantics of CHR [3] for scheduling rule and
constraint selection. In refined semantics, constraints are inserted sequentially
into the store from left-to-right and applicable rules for the constraints in the
store are chosen in textual execution order.

e2u @ X eq Y ⇔ v(Y) | union(X, Y)

de+co3 @ X eq T1 \X eq T2 ⇔ s(T1, T2) ∧ a(T1, L1) ∧ a(T2, L2) ∧ e(L1, L2)

aux′ @ e([X|L1], [Y |L2])⇔ union(X, Y) ∧ e(L1, L2)

root @ X eq T ⇔ find(X, Y) | Y eq T

Fig. 4. UF+RT solver for refined semantics (refined UF+RT)

Consider the concise UF+RT solver for refined semantics (cf. Figure 4): Com-
pared to the UF+RT solver, rule root is last in textual order and guards are
simplified. When rule root applies, all equalities of constraints are already prop-
agated, i.e. there are neither equations X eq Y between variables nor e(L1, L2)
constraints in the store. Also, due to rule de+co3 there is at most one equation
X eq T with a function term T for each variable X in the store. We now bound
the number of rule applications.

10 Marc Meister and Thom Frühwirth

Lemma 4 (Rule Applications). Consider a conjunction of equations C in
strict flat form with #C occurrences of variable and function symbols. Then (i)
#e2u + #aux′ ≤ #C, (ii) #de+co3 ≤ #C, and (iii) #root ≤ #C where #R
denotes the number of applications of rule R of the refined UF+RT solver.

Proof. (i) Consider a measure for conjunctions of CHR constraints
∣∣∧n

i=1 Ci

∣∣ :=∑n
i+1 |Ci| where |X eq T | is the number of occurrences of variables in T and

|e(L1, L2)| is the length of list L1. Because |.| is invariant to reordering of
constraints we can treat local replacements of constraints, caused by a rule
applications, independently. The measure is not affected by rules de+co3 and
root and each application of e2u or aux′ decreases the measure by one.3 Hence
#e2u + #aux′ ≤ |C| ≤ #C.

(ii) Application of rule de+co3 decreases the number of occurrences of func-
tion symbols by one and hence we have #de+co3 ≤ #C.

(iii) Consider two cases: When inserting X eq T with a function symbol T
to the store, rule root applies if X is not a root variable and no other constraint
X eq T ′ is already in the store. For equations X eq T that are already in the
store, rule root applies when X is no longer root due to linking. The sum of
occurrences of function symbols and the number of variables is bounded by #C.

ut

We can now give our first main result for an efficient CHR system, e.g.
the K.U.Leuven system [14], that allows to find partner constraints for rule
application of rule de+co3 in constant time by using an index on the shared
variable X of the head X eq T1 \ X eq T2. For details on constant time rule
selection due to combination of matching, partner constraints, and guards, see
[15]. We also require that the built-in union-find algorithm is implemented with
optimal almost-linear time complexity.

Theorem 1 (Almost-linear Refined Tree Equation Solver). Consider an
efficient CHR system with indexing and an optimal, almost-linear union-find
implementation accessible through built-in constraints. Solving conjunctions of
equations in strict flat form with the refined UF+RT solver has almost-linear
time complexity.

Proof. By Lemma 2 the refined UF+RT solver is correct as the refined semantics
is an instance of the operational semantics [3]. By Lemma 4, both the number
of rule applications and the number of calls to the built-in constraints union
(tell) and find (tell) is linear. Also the solver does not introduce new variables.
Hence the refined UF+RT solver inherits the almost-linear time complexity of
the underlying union-find algorithm. Finally, the solved CHR state is converted
in linear time to the solved formula by Lemma 3. ut

Theorem 1 improves on the quadratic complexity from [13] to solve equations
in the theory of rational trees.

3 If there is a clash the derivation stops immediately.

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 11

3.5 Simulating the Hierarchical UF+RT Solver

The union-find algorithm has been implemented in CHR with optimal, almost-
linear time complexity [15]. Because stacking one CHR solver on top of another
(cf. [2] for details on hierarchical solvers) is (up to now) not supported by any
CHR implementation we are aware of, we cannot use the union-find constraint
find(X, Y) as built-in in the guard of rule root directly. To reuse the optimal
CHR union-find implementation, where union(X, Y) and find(X, Y) are CHR
constrains, both constraints can only be accessed in tell-mode. We can simulate
the necessary wake-up of rule root (when X is no longer a root) of the ask-
constraint find(X, Y) by replacing rule root @ X eq T ⇔ find(X, Y) | Y eq T
with

root′ @ notroot(X) \X eq T ⇔ find(X, Y) ∧ Y eq T ,

where find(X, Y) is a tell-constraint. We adapt the union-find implementation
to insert an CHR constraint notroot(X) when X becomes a non-root variable
due to linking.

4 Existential Variables

In [13] the classic CHR RT solver [5, 8] was modified to solve existentially quan-
tified conjunction of equations with quadratic complexity. We modify the refined
UF+RT solver (cf. Figure 4) to solve existentially quantified conjunction of equa-
tions in almost-linear time.

4.1 Purging Unreachable Variables and Equations

To eliminate existentially quantified variables from an existentially quantified
conjunction of equations we require that the conjunction is in oriented and
representative form.

Definition 4 (Oriented Form). An existentially quantified and solved con-
junction of equations ∃X̄

∧n
i=1 Xi = Ti is oriented if it does not contain equa-

tions Xj = Tj with a free variable Xj 6∈ X̄ and an existentially quantified variable
Tj ∈ X̄.

Any non-oriented, existentially quantified, and solved conjunction of equa-
tions can be transformed into an equivalent oriented formula:

Property 2. Consider a solved formula ∃X̄
∧n

i=1 Xi = Ti with an equation Xj =
Tj between a free variable Xj and an existentially quantified variable Tj . Then

T |=
`
∃X̄

n̂

i=1

Xi = Ti

´
↔

`
∃X̄

n̂

i=1

Ei

´
with Ei ≡

8><>:
Tj = Xj if i = j

Xi[Xj ← Tj] = Ti if i 6= j ∧ f(Ti)

Xi = Ti[Xj ← Tj] if i 6= j ∧ v(Ti)

and the conjunction
∧n

i=1 Ei is in solved form.

12 Marc Meister and Thom Frühwirth

Definition 5 (Representative Form). An existentially quantified, solved, and
oriented conjunction of equations ∃X̄

∧n
i=1 Xi = Ti is representative if each

function term Tj does not contain an existentially quantified argument variable
Xk ∈ X̄ with k 6= j.

We can transform an oriented formula to an equivalent representative formula
by replacing argument variables by the representative variables, i.e. by variables
on the r.h.s. of equations between two variables:

Property 3. Consider an oriented formula ∃X̄
∧n

i=1 Xi = Ti. Then, we have

T |=
(
∃X̄

n∧
i=1

Xi = Ti

)
↔

(
∃X̄

n∧
i=1

Xi = T ′
i

)
with Ti ≡

{
Ti if v(T)
Tiσ if f(Ti)

with σ ≡
∏

k:v(Tk)[Tk ← Xk] and ∃X̄
∧n

i=1 Xi = T ′
i is solved and oriented.

We transform the solved formula ∃Y X = Y ∧ Z = Y ∧ Y = f(Y) to
the equivalent and oriented formula Y = X ∧ Z = X ∧ X = f(Y). Replacing
X = f(Y) by X = f(X) yields the representative formula.

Variables and equations that are linked to to the instantiations of free vari-
ables are called reachable. Adapting the notion of reachability [13] for an existen-
tially quantified conjunction of equations in representative form allows to purge
non-reachable equations and quantified variables.

Definition 6 (Purged Form). A formula ∃X̄
∧n

i=1 Xi = Ti in representative
form is purged (or finally solved) if all variables in X̄ and all equations Xi = Ti

are reachable: A variable X is reachable if X is a free variable or if X appears as
an argument of a function term Ti in a reachable equation Xi = Ti. An equation
Xi = Ti is reachable if Xi is reachable.

Any non-purged but representative formula can be transformed into an equiv-
alent purged formula by eliminating unreachable equations and variables accord-
ing to Maher’s uniqueness axiom (A3).

Property 4. Consider a formatted formula ∃X̄
∧n

i=1 Xi = Ti, its sub-vector X̄ ′

consisting of the reachable variables of X̄, and its reachable equations Xij = Tij .
Then we have T |=

(
∃X̄

∧n
i=1 Xi = Ti

)
↔

(
∃X̄ ′ ∧k

j=1 Xij = Tij

)
.

The representative formula ∃Y UW Y = X ∧ Z = X ∧ X = f(W) ∧W =
g(X, W) ∧ U = f(W) is equivalent to the purged formula ∃W Z = X ∧ X =
f(W) ∧W = g(X, W).

4.2 Transforming to Representative Form and Purging in CHR

To transform a solved form to an equivalent oriented form, we apply program
{o1, o2, o3} where existentially quantified variables are marked with CHR con-
straints exists(X), free variables with free(X), and equations = are encoded
as CHR constraints eq.

o1 @ replace(X, Y) \X eq T ⇔ v(T) | Y eq T

o2 @ replace(X, Y) \ Z eq X ⇔ Z eq Y

o3 @ free(Y) ∧ exists(X) \ Y eq X ⇔ replace(X, Y) ∧X eq Y

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 13

Under refined semantics, rules o1 and o2 apply exhaustively for any generated
CHR constraint replace(X, Y) by rule o3 which replaces an equation Y eq X
between a free variable Y and an existentially quantified variable X with X eq Y .
Rules o1 and o2 update the representatives of all affected equalities for both
function terms T attached to Y and for equations Y eq X between two variables.

To substitute non-representative argument variables and purge non-reachable
variables and equations we apply program {p1, p2, p3, p4} on the answer of pro-
gram {o1, o2, o3}. The purged (or finally solved) form is encoded by CHR con-
straints eq′ and exists′.

p1 @ X eq Y \ free(X)⇔ v(Y) | X eq
′ Y ∧ reach(X)

p2 @ X eq T \ free(X)⇔ f(T) | reach(X)

p3 @ reach(X) \X eq T ⇔ f(T) | reachargs(T, T ′) ∧X eq
′ T ′

p4 @ reach(X) \ exists(X)⇔ exists
′(X)

Rule p1 saves equations between two free variables to the finally solved from.
Both rules p1 and p2 mark free variables X that can lead to other reachable
variables with a CHR constraint reach(X). For a reachable variable X, rule
p3 propagates reachability to the arguments of the attached function term T
by calling the built-in reachargs(T, T ′) which returns a function term T ′ with
representative argument variables and marks the equation as reachable. Rule p4

saves reachable existentially quantified variables X to the finally solved form.

4.3 Solving Algorithm

Our solving algorithm A for existentially quantified conjunction of non-flat equa-
tions ∃Ȳ

∧n
i=1 Si = Ti consists of four sequentially executed parts.

(1) Transform ∃Ȳ
∧n

i=1 Si = Ti to an equivalent existentially quantified con-
junction of equations ∃X̄ C1 in strict flat form by adding new existentially
quantified variables (cf. [13] for details).

(2) Apply the refined UF+RT solver on C1. If the solver terminates with false
stop with an error, otherwise convert the solved CHR state to the solved
form C2 (cf. Section 3 for details).

(3) Transform ∃X̄ C2 to an equivalent and oriented formula ∃X̄ C3 by applica-
tion of program {o1, o2, o3} (cf. Subsection 4.1).

(4) Transform ∃X̄ C3 to an equivalent finally solved formula ∃X̄ ′ C4 by appli-
cation of program {p1, p2, p3, p3} (cf. Subsection 4.1).

We can now state our second main contribution:

Theorem 2 (Almost-linear Tree Equation Solver With Existential Vari-
ables). The time complexity of algorithm A to solve existentially quantified con-
junctions of non-flat equations in theory T is almost-linear.

14 Marc Meister and Thom Frühwirth

Proof. Flattening can be done in linear time and space and both the number of
new existentially quantified variables and the number of new equations are linear
in the size of the non-flat existentially quantified conjunction of equations [13].
By Theorem 1 the second step takes almost-linear time for the refined UF+RT
solver. Each programs {o1, o2, o3} and {p1, p2, p3, p4} traverses the formula once
in linear time. ut

Our extended CHR solver implements algorithm A with optimal almost-
linear time complexity and is available online (cf. link in Section 1).

Example 1. We apply algorithm A on the following formula with the free vari-
able X:

∃V WZ W = X ∧ f(X) = f(g(W,Z)) ∧ f(Z) = f(f(V)) .

(1) Flattening to an equivalent formula with additional existential quantified
variables and equations in strict flat form yields

∃V WZABCD W = X ∧A = f(X) ∧B = g(W,Z) ∧A = f(B)∧
C = f(Z) ∧D = f(V) ∧ C = f(D) .

(2) Application of the refined UF-RT solver on the conjunction of equations
which returns a solved form

X = W ∧W = g(W,V) ∧ Z = f(V) ∧A = f(X)∧
B = W ∧ C = f(Z) ∧D = Z .

(3) Orientation on the quantified and solved formula yields

∃V WZABCD W = X ∧X = g(W,Z) ∧ Z = f(V) ∧A = f(X)∧
B = X ∧ C = f(Z) ∧D = Z .

(4) Transforming in representative form and purging of unreachable variables
and equations yields the concise final solved formula

∃VZ X = g(X, Z) ∧ Z = f(V) .

5 Conclusion

We reconstructed Huet’s tree equation solving algorithm for rational trees as
a CHR solver for refined semantics with optimal almost-linear time complexity
with improves on the quadratic complexity of [13]. To this end, we optimised
the quadratic classic rational tree solver by combination with the almost-linear
union-find solver. Our compact and highly concise code is shorter than imple-
mentations in other languages and even shorter than most formal expositions.

Moreover, we extended the CHR solver to solve existentially quantified con-
junctions of non-flat equations in theory T in almost-linear time using the no-
tion of reachability [13]. Our new definitions of solved, oriented, representa-
tive, and purged form are adapted to the union-find data-structure and yield

Reconstructing almost-linear Tree Equation Solving Algorithms in CHR 15

a more explicit answer, e.g. ∃X Y = f(X) instead of the finally solved form
∃X Y = f(X)∧X = Y from [13]. To the best of our knowledge, this is the first
CHR solver for existentially quantified conjunctions of non-flat equations with
almost-linear time complexity.

As unification is known to be inherently sequential (cf. [4]) future work aims
to study the declarative concurrency of the CHR solver when using the parallel
CHR union-find implementation [6].

We aim to extend the solver with entailment and disentailment as the basis
of an algorithm for solving arbitrary first-order formulas involving equations and
inequations in CHR.

References
1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
2. G. J. Duck, P. J. Stuckey, M. J. Garćıa de la Banda, and C. Holzbaur. Extending

arbitrary solvers with Constraint Handling Rules. In PPDP’03, pages 79–90. ACM
Press, 2003.

3. G. J. Duck, P. J. Stuckey, M. J. Garćıa de la Banda, and C. Holzbaur. The refined
operational semantics of Constraint Handling Rules. In ICLP 2004, volume 3132
of LNCS, pages 90–104. Springer, 2004.

4. C. Dwork, P. C. Kanellakis, and J. C. Mitchell. On the sequential nature of
unification. J. Logic Programming, 1(1):35–50, 1984.

5. T. Frühwirth. Theory and Practice of Constraint Handling Rules. J. Logic Pro-
gramming, 37(1–3):95–138, 1998.

6. T. Frühwirth. Parallelizing union-find in Constraint Handling Rules using conflu-
ence. In ICLP 2005, volume 3668 of LNCS, pages 113–127. Springer, 2005.

7. T. Frühwirth. Specialization of concurrent guarded multi-set transformation rules.
In LOPSTR 2004, volume 3573 of LNCS, pages 133–148. Springer-Verlag, 2005.

8. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

9. G. P. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. ACM, 27(4):797–821, 1980.

10. K. Knight. Unification: a multidisciplinary survey. ACM Comput. Surv., 21(1):93–
124, 1989.

11. M. J. Maher. Complete axiomatizations of the algebras of finite, rational, and
infinite trees. In 3rd Annual IEEE Symposium on Logic in Computer Science,
LICS’88, pages 348–357, Los Alamitos, CA, USA, 1988.

12. A. Martelli and G. Rossi. Efficient unification with infinite terms in logic program-
ming. In FGCS’84, pages 202–209. ICOT, 1984.

13. M. Meister, K. Djelloul, and T. Frühwirth. Complexity of a CHR solver for ex-
istentially quantified conjunctions of equations over trees. In Recent Advances in
Constraints, of LNCS. Springer, to appear.

14. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: implementation
and application. In CHR 2004, Selected Contributions, volume 2004-01 of Ulmer
Informatik-Berichte. Universität Ulm, Germany, 2004.

15. T. Schrijvers and T. Frühwirth. Optimal union-find in Constraint Handling Rules.
J. Theory and Practice of Logic Programming, 6(1&2):213–224, 2006.

16. T. Schrijvers et al. The Constraint Handling Rules (CHR) web page, 2007. http:
//www.cs.kuleuven.ac.be/~dtai/projects/CHR/.

17. R. E. Tarjan and J. Van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984.

