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Fr�uhwirth, Di Pierro, Wikliky� theorem proving with onstraints� ombining dedution, abdution and onstraints� ombining forward and bakward haining� bottom-up evaluation with integrity onstraints� top-down evaluation with tabulation� parsing with exeutable grammars� manipulating attributed variables� in general, prodution rule systemsOur probabilisti extension of CHR [9℄ is modelled after the ProbabilistiConurrent Constraint Programming (PCCP) framework [4℄. The motivationbehind PCCP was the formalisation of randomised algorithms within the CCPframework [24,25℄. These algorithms are haraterised by a \oin ipping" de-vie (random hoie) whih determines the ow of information. In the lastdeade randomised algorithms have found widespread appliation in many dif-ferent areas of omputer siene, for example as a tool in omputational geom-etry and number theory. The bene�ts of randomised algorithms are simpliityand speed. For this reason the best known algorithms for many problemsare nowaday randomised ones [15℄, e.g. simulated annealing in ombinatorialoptimisation [1℄, geneti algorithms [11℄, probabilisti primality tests in par-tiular for use in rypto-systems [21℄, and randomised proof proedures (e.g.for linear logi [18℄).In PCCP randomness is expressed in the form of a probabilisti hoie,whih replaes the non-deterministi ommitted hoie of CCP and CHR andallows a program to make stohasti moves during its exeution. For prob-abilisti CHR (PCHR), this translates to probabilisti rule hoie. Amongthe rules that are appliable, the ommitted hoie of the rule is performedrandomly by taking into aount the relative probability assoiated with eahrule.Example 1.1 The following PCHR program implements tossing a oin. Weuse onrete Prolog-style CHR syntax in the program examples. Syntatially,the probabilities (weights) are the argument of the pragma annotation that isused in normal CHR to give hints to the ompiler. Here it will initiate soureto soure transformation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Eah side of the oin has the same probability. This behaviour is modelledby two rules that have the same probability to apply to a query toss(Coin),either resulting in Coin=head or Coin=tail.Besides our onstraint-based approah towards the integration of probabil-ities into a delarative setting there is a further, rih literature on probabilistilogi programs, stohasti logi programs and Bayesian logi programs that2



Fr�uhwirth, Di Pierro, Wiklikyhas to be mentioned in this ontext, for example: [23℄, [22℄, [14℄, and [17℄.The paper is organised as follows. In Setion 2 we briey disuss the syntaxand semantis of lassial, non-deterministi CHRs. In Setion 3 probabilistiCHRs are introdued formally and disussed via some examples. In Setion 4we desribe an implementation of PCHR whih is based on soure-to-souretransformation of CHR following [10℄. Finally we onlude by disussing sev-eral further possible developments and ongoing work.2 Syntax and Semantis of CHRWe �rst introdue syntax and semantis for CHR before extending it with aprobabilisti onstrut. We assume some familiarity with (onurrent) on-straint (logi) programming [16,8,19℄. A onstraint is an atomi formula in�rst-order logi. We distinguish between built-in (prede�ned) onstraints andCHR (user-de�ned) onstraints. Built-in onstraints are those handled by aprede�ned, given onstraint solver. CHR onstraints are those de�ned by aCHR program.2.1 Abstrat SyntaxIn the following, upper ase letters stand for onjuntions of onstraints.De�nition 2.1 A CHR program is a �nite set of CHR. There are two kindsof CHR. A simpli�ation CHR is of the formH , G j Band a propagation CHR is of the formH ) G j Bwhere the left hand side (lhs) H is a onjuntion of CHR onstraints. Theguard G followed by the symbol j is a onjuntion of built-in onstraints. Atrivial guard of the form true j may be dropped. true is a built-in onstraintthat is always satis�ed. The right hand side (rhs) of the rule onsists of aonjuntion of built-in and CHR onstraints B.2.2 Operational SemantisThe operational semantis of CHR programs is given by a state transition sys-tem. The semantis uses interleaving for the parallel onstrut of onjuntion.With derivation steps (transitions, redutions) one an proeed from one stateto the next. A derivation is a sequene of derivation steps.De�nition 2.2 A state (or goal) is a onjuntion of built-in and CHR on-straints. An initial state (or query) is an arbitrary state. In a �nal state (oranswer) either the built-in onstraints are inonsistent or no new derivationstep is possible anymore. 3



Fr�uhwirth, Di Pierro, WiklikyDe�nition 2.3 Let P be a CHR program for the CHR onstraints and CTbe a onstraint theory for the built-in onstraints. The transition relation 7�!for CHR is as follows:SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H ) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables usingnew symbols, and these variables form the sequene �x. A rule with lhs H andguard G is appliable to CHR onstraints H 0 in the ontext of onstraints D,when the ondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of theappliable rules an be applied, but it is a ommitted hoie, it annot beundone.If a simpli�ation rule (H , G | B) is applied to the CHR onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagationrule (H ) G | B) is applied to H 0, the Propagate transition adds B,H = H 0 and G, but does not remove H 0. Trivial non-termination is avoidedby applying a propagation rule at most one to the same onstraints [2℄.We now disuss in more detail the rule appliability ondition CT j= D !9�x(H = H 0 ^ G). The equation (H = H 0) is a notational shorthand forequating the arguments of the CHR onstraints that our in H and H 0.Operationally, the rule appliability ondition an be heked as follows: Giventhe built-in onstraints of D, try to solve the built-in onstraints (H = H 0^G)without further onstraining (touhing) any variable inH 0 and D. This meansthat we �rst hek that H 0 mathes H and then hek the guard G under thismathing.The operational semantis of CHR is onretised in the following way:States are split into two parts - one for the built-in onstraints and one for theCHR onstraints. Built-in onstraints are handled immediately by the built-inonstraint solver. The onjuntion of CHR onstraints is implemented as aFIFO queue. The left-most (�rst) onstraint must be involved (math onelhs atom) when a rule is applied. We all this onstraint the urrently ativeonstraint. The other onstraints that math the remaining rule lhs atomsmay be taken from anywhere in the queue. If the rule is applied, the ativeonstraint may be removed depending on the rule type, the built-in onstraintsof the rhs of the rule are added to the built-in onstraints in the state andthe new CHR onstraints from the rhs of the rule are added to the queue. Ifno rule was appliable to the urrently ative onstraint, it is moved to theend of the queue, and the next onstraint beomes ative. If all onstraints4



Fr�uhwirth, Di Pierro, Wiklikyof the queue have been passed without new rule appliation or if the built-in onstraints beame inonsistent, the omputation stops. The �nal result(answer) is the ontents of the queue together with the built-in onstraints.3 Probabilisti CHRProbabilisti CHR (PCHR) is haraterised by a probabilisti rule hoie:Among the rules that are appliable, the ommitted hoie of the rule is per-formed randomly by taking into aount the relative probability assoiatedwith eah rule.3.1 Syntax and Operational Semantis of PCHRSyntatially, PCHR rules are the same as CHR rules but for the addition ofa weighting representing the relative probability of eah rule:De�nition 3.1 A probabilisti simpli�ation CHR is of the formH ,p G j Band a probabilisti propagation CHR is of the formH )p G j Bwhere p is a nonnegative number.The probability assoiated with eah alternative rule expresses how likely itis that, by repeating the same omputation suÆiently often, the omputationwill ontinue by atually performing that rule hoie. This an be seen asrestriting the original non-determinism in the hoie of the rule by speifyingthe frequeny of hoies.The operational meaning of the probabilisti rule hoie onstrut is asfollows: Given the urrent onstraint, �nd all the rules that are appliable.Eah rule is assoiated with a probability. We have to normalise the proba-bility distribution by onsidering only the appliable rules. This means thatwe have to re-de�ne the probability distribution so the sum of these proba-bilities is one. Finally, one of the appliable rules is hosen aording to thenormalised probability distribution.As a onsequene, in the de�nition of the transition system, eah transition(resulting from a rule appliation) will have a probability assoiated to it.De�nition 3.2 The transition relation 7�!~p for PCHR is indexed by thenormalised probability ~p and is de�ned as follows:SimplifyH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^Dif (H ,pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))5



Fr�uhwirth, Di Pierro, WiklikyPropagateH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^H 0 ^Dif (H )pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))where ~pi = 8><>: piPrj pj if Prj pj > 01n otherwisewhere the sumPrj pj is over the probabilities of all rules rj whih are applia-ble to the urrent onstraint in the urrent state and the number of appliablerules is n.This de�nition spei�es the probabilities assoiated to a single rewritestep. If we look at a whole sequene of rewrites we have to ombine theseprobabilities: The probability of a derivation is the produt of the probabilitiesassoiated with eah of its derivation steps. We will use the symbol 7�!�p toindiate a derivation with probability p. Finally, we may end up with the sameresult along di�erent derivations, i.e. di�erent sequenes of rewrites may endup with the same �nal state: In this ase we have to sum the probabilitiesassoiated to eah of these derivations leading to the same result.Consider for example the following PCHR program:(X) <=>1: X>=0 | a(X).(X) <=>2: X=<0 | b(X).The query onstraint (X) will be replaed by a(X) if X is greater than zero,by b(X) if X is less than zero. In those two ases, only one rule is appliableand its normalised appliation probability is therefore always one. If X iszero, both rules are appliable, and their normalised probabilities are 13 and 23 ,respetively. That means that in the long run, the seond rule will be appliedtwo times as often as the �rst rule.3.2 ExamplesIn order to give an overview of the type of programs and algorithms we aneasily speify using PCHR we present in the following a number of examples.These examples will also be used to illustrate a number of interesting fea-tures of PCHRs suh as probabilisti termination whih was introdued in [6℄(f. Example 3.4 and Example 3.5), and probabilisti onuene whih willbe introdued in Setion 3.3. We reall here the de�nition of probabilistitermination.De�nition 3.3 A program is probabilistially terminating if the probabilityof an in�nite path is zero.We use onrete Prolog-style syntax in the examples. The following twoexamples are taken from PCCP [6℄ and have been adapted to PCHR.6



Fr�uhwirth, Di Pierro, WiklikyExample 3.4 [Randomised Counting℄ Consider the following PCHR programto ompute natural numbers:nat(X) <=>0.5: X=0.nat(X) <=>0.5: X=s(Y), nat(Y).In a non-probabilisti implementation, a �xed rule order among the appliablerules is likely to be used, and then the result to the query nat(X) is eitheralways X=0 or the in�nite omputation resulting from the in�nite appliationof the seond rule.On the other hand, the probabilisti PCHR program will ompute all nat-ural numbers, eah with a ertain likelihood that dereases as the numbersget larger. For example, X=0 has probability 0:5, X=s(0) has probability 0:25,et. More preisely, the probability of generating the number sn(0) is 1=2n+1.Note that although this program does not terminate in CHR, it is proba-bilistially terminating in PCHR as the probability of a derivation with in�nitelength is zero.Example 3.5 [Gambler's Ruin℄ Consider the following PCHR program whihimplements a so alled \Random Walk in one Dimension" illustrating what isalso known as \Gambler's Ruin" [12℄:walk(X,Y) <=>1: X\=Y | walk(X+1,Y).walk(X,Y) <=>1: X\=Y | walk(X,Y+1).walk(X,Y) <=>1: X=Y | true.Let X be the number of won games (or number of pounds won) and let Y bethe number of lost games (or number of pounds lost). Then we an interpretwalk(1,0) as meaning that the game starts with a one pound stake and isover when all money is lost.Elementary results from probability theory show that the game will ter-minate with a ruined gambler with probability 1, despite the fat that thereexists the possibility of (in�nitely many) in�nite derivations, i.e. enormouslyrih gamblers.Although there are these in�nite omputations (orresponding to in�niterandom walks), the sum of the probabilities assoiated to all �nite derivations(i.e. random walks whih terminate in X=Y ) is one [12,13℄. Thus, the probabil-ity of (all) in�nite derivations must be zero. As a onsequene, this program,whih lassially does not terminate, does terminate in a probabilisti sense:If one ontinues playing, almost ertainly he will ultimately loose everything.In the following example we make use of the probability zero in order toexpress absolute rule preferene and negation of a guard (if-then-else).Example 3.6 The following PCHR program is an implementation of merge/3,i.e. merging two lists into one list while the elements of the input lists arrive.Thus the order of elements in the �nal list an di�er from omputation toomputation. 7



Fr�uhwirth, Di Pierro, Wiklikymerge([℄,L2,L3) <=>1: L2 = L3.merge(L1,[℄,L3) <=>1: L1 = L3.merge([X|L1℄,L2,L3) <=>0: L3 = [X|L℄, merge(L1,L2,L).merge(L1,[Y|L2℄,L3) <=>0: L3 = [Y|L℄, merge(L1,L2,L).The e�et of the probabilities assoiated with the rules is as follows: If anempty input list is involved in the query, one of the �rst two rules will alwaysbe hosen, even though one of the reursive two rules may apply as well. Aquery merge([a℄,[b℄,L3) may either result in L3=[a,b℄ or L3=[b,a℄. Sinein that ase, the �rst two rules do not apply and both reursive rules have thesame probability as a onsequene, both outomes are equally likely. In thatsense the PCHR implementation of merge is eÆient and fair.The next example shows the use of parametrised probabilities.Example 3.7 [Simulated Annealing℄ Simulated Annealing (SA) is one of themost general and most popular randomised optimisation algorithms. It wasinspired by the physial proess of annealing in thermodynamis [20℄: If aslow ooling is applied to a liquid, it freezes naturally to a state of minimumenergy. The SA algorithm applies annealing to the minimisation of a ostfuntion for solving problems in the area of ombinatorial optimisation.The SA algorithm tries to �nd a global optimum by iteratively progressingtowards better solutions while avoiding to get trapped in loal optima.The algorithm proeeds by random walks from one solution to anotherone, i.e. from the urrent solution a new solution is omputed randomly. Eahsolution is assoiated with a ost, and we are looking for the best solution, onewith the least ost. To avoid being trapped in a loal optimum, sometimes theworse of two subsequent solutions is hosen. The likelihood to do so dependson a ontrol parameters alled the temperature. With eah iteration, thetemperature dereases and thus makes the hoie of the worse solution moreand more unlikely. The atual probability to hoose a worse solution wastaken from thermodynamis. It is exponential in the ost di�erene of the twosolution divided by the temperature multiplied with a onstant.The following PCHR program sheme implements the generi SA algo-rithm: % solution(Temperature, Solution)solution(T,S) <=>1:stop_riterion(T,S) |good_solution(S).solution(T,S) <=>0:ool_down(T,T1),gen_next_sol(S,S1),anneal((T,S),(T1,S1)).8



Fr�uhwirth, Di Pierro, Wiklikyanneal((T,S),(T1,S1)) <=>1:solution(T1,S1).anneal((T,S),(T1,S1)) <=>C=ost(S), C1=Cost(S1),e^((C1-C)/(k*T))-1: C1>C |solution(T1,S).3.3 Conuene of PCHR programsConuene is an important property of (non-probabilisti) CHR programs [2℄.In a onuent program, the result of a omputation is always the same nomatter whih of the appliable rules is atually applied.We reall the basi de�nitions as given in [2℄.De�nition 3.8 Two states S1 and S2 of a CHR program are joinable if thereexist states T1 and T2 suh that S1 7�!� T1 and S2 7�!� T2 and T1 and T2 arevariants of eah other, i.e. they an be obtained from eah other by a variablerenaming.De�nition 3.9 A CHR program is onuent if for all states S; S1; S2 thefollowing holds: If S 7�!� S1 and S 7�!� S2 then S1 and S2 are joinable.Given a PCHR program its CHR support (or CHR version) is given bythe CHR program obtained by removing the probability information from therules. For example the CHR support of the PCHR program(X) <=>1: X>=0 | a(X).(X) <=>2: X=<0 | b(X).is given by: (X) <=> X>=0 | a(X).(X) <=> X=<0 | b(X).The notion of onuene generalises in the obvious way to PCHR pro-grams: In a onuent PCHR program we always reah the same result, pos-sibly through di�erent paths and with di�erent probabilities.De�nition 3.10 Two states S1 and S2 of a PCHR program are joinable ifthere exist states T1 and T2 suh that S1 7�!�p1 T1 and S2 7�!�p2 T2 and T1 andT2 are variants of eah other, i.e. they an be obtained from eah other by avariable renaming.De�nition 3.11 A PCHR program is onuent if for all states S; S1; S2 thefollowing holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 are joinable.For example, the above PCHR program is not onuent, sine X=0, (X)may lead to either X=0, a(X) (with probability 1=3) or X=0, b(X) (with prob-ability 2=3).It is easy to see that any PCHR program with a onuent CHR support is9



Fr�uhwirth, Di Pierro, Wiklikyitself onuent. The onverse does not hold in general, as the following simplePCHR program demonstrates:(X) <=>1: X>=0 | a(X).(X) <=>0: X>=0 | b(X).This program (as a PCHR program) is onuent: both rules have the sameguard, but sine the seond has a zero probability assoiated only the �rst rulewill always be exeuted. Its CHR support however is not onuent: withoutprobabilities both rules are possible rewrites and we might therefore end upwith di�erent results.If we onsider the results of all possible derivations of a CHR program| i.e. if we look at fair exeutions where all possible rewrites are eventuallyexeuted | then this orresponds to onsidering stritly positive probabilitiesfor all rules in a orresponding PCHR program. In other words, if for theCHR support we have S 7�!� Si then there exists a probabilisti derivationfor the original PCHR S 7�!�pi Si for some pi > 0 and vie versa. For PCHRprograms with non-zero probabilities we therefore have:Proposition 3.12 If all probabilities in a PCHR program P are stritly pos-itive then P is onuent i� its CHR support is onuent.This means that the introdution of probabilities does not worsen thesituation with respet to onuene: CHR programs whih are onuent arealso onuent in their probabilisti version.For PCHR programs we an de�ne a notion of probabilisti onuenewhih is more \realisti" than the notion of onuene in the sense that itallows us to ignore those omputations whih although possible are almostnever performed (their probability is zero). Note that suh omputations mustbe in�nite; in fat, as the (�nite) produt of non-zero numbers is always non-zero, we an only get probability zero as the limit of an in�nite produt. Asa onsequene, non-terminating programs whih are lassially non-onuentmight result onuent aording to the new notion.De�nition 3.13 A PCHR program is probabilistially onuent if for all statesS; S1; S2 the following holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 areprobabilistially joinable.Two states S1 and S2 of a PCHR program are probabilistially joinable ifthere exist states T1 and T2 suh that S1 7�!�1 T1 and S2 7�!�1 T2 and T1 andT2 are variants of eah other.That means we require that from an initial state S all derivations willmeet again at the same (or equivalent under variane) state with probabilityone. Note that this does not exlude the existene of derivations whih donot reah that unique (up to variane) state, provided that their probabilityis zero, that is they are in�nite. 10



Fr�uhwirth, Di Pierro, WiklikyIt is easy to see that any onuent PCHR program is also probabilistiallyonuent. If a PCHR program is onuent then all derivations from an initialstate S will meet at some unique (up to variane) state T . In partiular,onuene requires that there are no (in�nite or �nite) derivations whih donot reah T . That implies that indipendently of the probability of eah ofthe derivations whih lead to T they must all sum up to one. However, theopposite is not true in general as the program in Example 3.5 implementing aone-dimensional random walk shows: It is probabilistially onuent (it alwaysterminates in the state where X=Y) but not onuent (from the state X=Y=0we an reah X=1, Y=0 and X=0, Y=1 whih are not joinable).4 ImplementationWe implement PCHR by soure-to-soure program transformation (STS) inCHR [10℄. In STS, users will write STS programs to manipulate other pro-grams during their ompilation. The key idea of STS for CHR is that CHRrules will be translated into relational normal form by introduing speialCHR onstraints for the omponents of a rule, whih are head, guard, bodyand ompiler pragmas. The STS program is a speial purpose onstraint solverthat ats on this representation. When a �xpoint is reahed, the relationalform is translated bak into CHR rules and normal ompilation ontinues.The result of this approah are strikingly simple STS programs. They areonise, ompat and thus easy to inspet and analyse. Indeed, the ompleteSTS program to implement probabilisti CHR onsists of a few rules thateasily �t one page. The STS system for CHR was implemented by ChristianHolzbaur from the University of Vienna while visiting Thom Fr�uhwirth at theLudwig-Maximilians-University Munih.Before we look at the STS, we show by means of an example, how the objetprogram is represented and transformed. The example shows that PCHR anbe used to generate an n bit random number. More examples of PCHR anbe found in [9℄.Example 4.1 [n Bit Random Number℄ The random number is representedas a list of N bits that are generated reursively and randomly one by one.r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=>0.5: N>0 | L=[0|L1℄, rand(N-1,L1).r3 � rand(N,L) <=>0.5: N>0 | L=[1|L1℄, rand(N-1,L1).As long as there are bits to generate, the next bit will either get value 0or 1, both with same probability. When the remaining list length N is zero, anon-probabilisti simpli�ation rule loses the list.The three rules above will be represented as the following onjuntion ofonstraints to whih the STS program will be applied:11



Fr�uhwirth, Di Pierro, Wiklikyonstraint(rand/2),head(r1,rand(N,L),id1,remove), guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove), guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))), pragma(r2,0.5),head(r3,rand(N,L),id3,remove), guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))), pragma(r2,0.5).For eah CHR onstraint symbol in the objet program, there is a orre-sponding STS onstraint onstraint. Eah of the remaining STS onstraintshead, guard, body and pragma starts with an identi�er for the rule theyome from. The seond argument is the respetive omponent of the rule.For the onstraint head, the third argument is an identi�er for the onstraintmathing the rule head, and the last argument indiates if the onstraint is tobe kept or removed. This information is neessary, beause any type of CHRrule is represented in the same normalised, relational way.Now we onsider the STS program for PCHR whih will be applied to theabove example ode in relational form. It simply states how the omponentsof the rules should be translated in ase the rule is probabilisti. The tworules below basially de�ne a standard transformation that makes the onitset of the objet rules expliit. The onit set is the set of all rules that areappliable at a partiular derivation step. While in normal CHR, any rulean be hosen and it is a ommitted hoie, in probabilisti CHR we have toollet the unnormalised probabilities from all andidates in the onit setand then randomly hoose one rule aording to their probabilities (weights).pragma(R,N), head(R,H,I,remove),body(R,G) <=> number(N) |pragma(R,N), head(R,H,I,keep),body(R,(remove_onstraint(I),G)).pragma(R,N), body(R,G) <=> number(N) |body(R,and(N,G)).The �rst transformation rule maps all probabilisti rules into propagationrules that expliitly remove the head onstraint(s) in the body of the ruleusing the standard CHR built-in remove onstraint. (The same e�et ouldalso be ahieved using an auxiliary variable and without this standard CHRbuilt-in, but it would be less eÆient.) The seond transformation rule wrapsthe body of a probabilisti rule with the run-time CHR onstraint and, whose�rst argument is the probability measure (weight) from the pragma. Note thatthe transformation rules are applied in textual order.Last but not least there is a �nal, third rule that adds a last objet rule12



Fr�uhwirth, Di Pierro, Wiklikyfor eah de�ned CHR onstraint:onstraint(C) ==>head(R1,C,I,keep), guard(R1,true), body(R1,ollet(0,_)).The resulting propagation rule is added at the end of the objet programand just alls the CHR onstraint ollet(0, ) whih triggers the probabilitynormalisation and evaluation of the andidate set of appliable probabilistirule bodies.For our example of random n-bit numbers, the appliation of the STS rulesand the �nal translation bak into rule syntax results in the following ode:r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |and(1,(remove_onstraint(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |and(1,(remove_onstraint(C),B=[1|D℄,rand(A-1,D))).r4 � rand(A,B)#C ==> ollet(0,D).The #C added to the rule heads is CHR syntax for aessing the identi-�er of the onstraint that mathed the head. Note that the �rst rule is leftuntranslated sine it was not probabilisti.The probability normalisation and evaluation of the andidate set is ahievedby the following rules that are de�ned in the STS program for PCHR and thatare added to the transformed objet program:ollet(M,R), and(N,G) <=> and(R,M,M+N,G), ollet(M+N,R).ollet(M,R) <=> random(0,M,R).and(R,M,M1,G) <=> R < M | true.and(R,M,M1,G) <=> R >= M1 | true.and(R,M,M1,G) <=> M =< R, R < M1 | all(G).The onstraint ollet(M,R) takes a andidate rule body and(N,G) andreplaes it by and(R,M,M+N,G) before ontinuing with ollet(M+N,R). Thee�et of this rule is that eah andidate onstraint is extended by the ommonvariable R and by the interval M to M+N, where N is its unnormalised probabilitymeasure (weight).Instead of expliitly normalising the probabilities (weights), ollet addsthem up and �nally alls random(0,M,R) to produe a random number inthe interval from 0 to M. Note that this random number will be bound to thevariable R.The onjuntion of extended andidate rule bodies at like a onurrentolletion of agents. As soon as they reeive the random number throughthe variable (hannel) R, they an proeed. If the value of R is outside of13



Fr�uhwirth, Di Pierro, Wiklikytheir range of probabilities M to M1, the andidate agent simply goes away.Otherwise, it is the randomly hosen andidate and it will all its original rulebody G (that �rst removes its head onstraint rand).In this way, from the set of appliable rules, one of the rules is randomlyapplied. The probability distribution follows the weights of the rules.5 ConlusionsIn this paper we presented Probabilisti Constraint Handling Rules (PCHR)whih allow for an expliite ontrol of the likelihood that ertain rewrite rulesare applied. The resulting extension of traditional (non-deterministi) CHRsis straightforward. It nevertheless does exhibit interesting new aspets whihimprove the expressivenes and the apabilities of the original language. Forexample, we an express fairness diretly at the syntati level by means of anappropriate probability distribution on the rules, and we an analyse averageproperties.We implemented PCHR in CHR using soure-to-soure transformation(STS). The omplete STS program to implement probabilisti CHR onsistsof a few rules that easily �t one page.In the future, we would like to apply PCHRs to the searh proedures ofonstraint solver written in CHR. Simulated Annealing algorithms are promis-ing andidates for essentially probabilisti onstraint solving and/or optimi-sation algorithms.Another researh diretion | losely related to the appliation of PCHRto onstraint solving problems | is the study of the relation between \haotiiteration" in the ontext of lassial CHR [3℄ and \ergodiity" in a proba-bilisti setting [5℄: these two onepts seem to exhibit a striking similarity,and we think that a more detailed analysis of their relationship would lead tointeresting results in the semantis and reasoning about (P)CHR.Finally, the introdution of probabilities into the CHR framework seemsto be an essential step in allowing for an \average ase" analysis of lassial aswell as probabilisti algorithms. A partiular aspet in this ontext onernsthe investigation of the average running time of algorithms and/or the notionof probabilisti termination for PCHR, similar in spirit to what has been donefor PCCP [6℄.Referenes[1℄ Aarts, E. and J. Korst, \Simulated Annealing and Boltzmann Mahines," JohnWiley & Sons, Chiester, 1989.[2℄ Abdennadher, S., Operational semantis and onuene of onstraintpropagation rules, in: 3rd Intl Conf on Priniples and Pratie of ConstraintProgramming, LNCS 1330 (1997), pp. 252{266.14
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