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Abstract "1 ef'

Constraint handling rules (CHRs) are a high levellanguage (extension) für writ-
ing constraint systems. The full version of this paper appears in [Fru95].

1 Introduction

Constraint logic programming [JaLa87, VH89, HS90, VH91, F*92, JaMa94]
combines the advantages of logic programming and constraint solving. In logic
programming, problems are stated in a declarative way using rules to define
relations (predicates). Problems are solved by the built-in logic programming
engine (LPE) using chronological backtrack search. In constraint solving, effi-
cient special-purpose algorithms are employed to salve problems involving dis-
tinguished relations reterred to as constraints.

A practical problem remains: Constraint solving is usually 'hard-wired'
in a built-in constraint solver (CS) written in a low-Ievel language. While ,
efficient, this approach makes it hard to modify a CS or build a CS over a -.,j
new domain, let alone verify its correctness. We proposed constraint handling
rules (CHRs) [Fru92, Fru93a, Fru93b, Fru94, B*94, Fru95, FrHa95] to overcome
this problem. CHRs are a language extension providing a declarative means to
introduce user-defined constraints iota a given high-level hast language. In this
extended abstract the hast language is Prolog, a CLP language with equality
over Herbrand terms as the only built-in constraint.

CHRs define szmplification of and propagation over user-defined constraints.
Simplification replaces constraints by simpler constraints while preserving log-
ical equivalence, e.g.

X>Y,Y>X <=> fal~I~.

Propagation adds new constraints which are logically redundant hut may cause
further simplification, ?g.

X>Y,Y>Z ==> x>z.
_e

'Part of trus work is sup~)orted by ESPRIT Project 5291 CHIC.
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When repeatedly applied by a constraint handling engine (CHE) the constraints
are incrementally solved as in a CS, e.g.

A>B,B>C,C>A results in falBe.

CHIP was the first CLP language to introduce constructs (demons, forward
rules, conditionals) [VH89] für user-defined constraint handling (like constraint
solving, simplification, propagation). These various constructs have beeil gen-
eralized into CHRs. CHRs are based on guarded rules, as can be found in
concurrent logic programming languages [Sha89], in the Swedish branch of the
Andorra family [HaJa90], Saraswats cc-framework ofconcurrent constraint pro-
gramming [Sar93] , and in the 'Guarded Rules' of [Smo9!]. However all these
languages (except CHIP) lack features essential to define non-trivial constraint
handling, namely für handling conjunctions of constraints and defining con-
straint propagation. CHRs provide these two features using multi-headed rules
and propagation rules.

2 Constraint Handling Rules

Here we assume that constraint handling rules extend a given constraint logic
programming language. The syntax and semantics given hefe reftect this choice.
It should be stressed, however, that the bogt language für CHRs need not be a
CLP language. Indeed work has been clone at DFKI in the context of LISP
[Her93]. This section follows [FrHa95].

2.1 Syntax

A CLP+CH program is a finite set of clauses from the CLP language and from
the language of CHRs. Clauses are built from atoms of the form p(tl, ...tn)
where p is a predicate symbol of arity n (n ~ 0) and tl, ...tn is a n-tuple of
terms. A term is a variable, e.g. X, or of the form f(tl, ...tn) where f is a
function symbol cif arity n (n ~ 0) applied to a n-tuple of terms. Function
symbols of arity 0 are also called constants. Predicate and function symbols
start with lowercase letters while variables start with uppercase letters. Infix
notation may be u~ed für specific predicate symbols (e.g. X = Y) and functions
symbols (e.g. -Xj+ Yj. There are two classes of distinguished atoms, built-
in constraints and user-defined constraints. In most CLP languages there is a
built-in constraint für syntactic equality over Herbrand terms, =, performing
unification. The built-in constraint true, which is always satisfied, can be seen
as an abbreviation für 1=1. falBe (short für 1=2) is the built-in constraint

representing inconsistency.
A CLP clause is of the form

H:-BI,...Bn. ('n~O)

where the head H is an atom but not a built-in constraint, the body BI, . . . Bn
is a conjunction of literals called goals. The empty body (n = 0) of a CLP

clause may be denoted by the built-in constraint true. A query is a CLP clause
without head.
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There are two kinds of CHRsl. A simplification CHR is of the form

H1,.. .Hi <=> GI", .Gj I BI,.. .Bk'

A propagation CHR is of the form

H1,...Hi ==> G1,...Gj I B1,...Bk.

A label declaration für a user-defined constraint H is of the form

label_with H ifG1,...Gj

where (i > O,j :;::: 0, k ~ 0) and the multi-head H1,.. .Hi is a conjunction of
user-defined constraints and the guard GI,.., G j is a conjunction of literals
which neither are, nor depend on, user-defined constraints.

2.2 Semantics

Declaratively, CLP programs are interpreted as formulas in first order logic.
Extending a CLP language with CHRs preserves its declarative semantics. A
CLP+CH program P is a conjunction of universally quantified clauses.

A CLP clause is an implication2

Hf-BIÄ...Bn'

A simplification CHR is a logical equivalence provided the guard is true in the
current context

(G1Ä...Gj)-t (H1Ä...Hi++B1Ä...Bk).

A propagation CHR is an implication provided the guard is true

(GI Ä.. .Gj) -t (H1 Ä... Hi -t BI Ä... Bk).

Procedurally, a CHR can fire if its guard allows it. A firing simplification
CHR replaces the head constraint by the body, a firing propagation CHR adds
the body to the head constraints. No theorem proving in the general sense is
required to reason with the formulas expressed by CHRs.

The operational semantics of CLP+CH can be described by a transition

system.
A computatioTt' state is a tuple

< Gs,CU,CB >,

where Gs is a set' of goals, Cu and CB are constraint stores für user-defined
and built-in constraints respectively. A constraint store is a set of constraints.
A set of atoms represents a conjunction of atoms.

The initial state consists of a query Gs and empty constraint stores,

I <Gs,{},{}>.
1 A third, hybrid kind a(; weIl as options and declarations aI'e described in [B*94].

2For simplicity of presentation, we do not use Clark's completion here.
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A final state is either Jailed (d ue to an inconsistent built-in constraint store
represented by the unsatisfiable constraint f alse),

< Gs,Cu,{false} >,

or successJul (no goals left to solve) ,

< {},CU,CB >.

The union of the constraint stores in a successful final state is called conditional
answer für the query Gs, written answer(Gs).

The built-in constraint solver (CS) works on built-in constraints in CB and
Gs, the user-defined CS on user-defined constraints in Cu and Gs using CHRs,
and the logic programming engine (LPE) on goals in Gs and Cu using CLP
clauses. The following computation steps are possible to get from Olle compu-
tation state to the next.

Salve
< {C}uGs,Cu,CB > ~ < Gs,Cu,CB >
if (C A CE) H CB

,
The built-in CS updates the constraint store CB if a new constraint C was

'" found in Gs. To update the constraint store means to produce a new constraint
f store CB that is logically equivalent to the conjunction of the new constraint

and the old constraint store.
We will write H =set H' to denote equality between the sets Hand H', i.e.

H = {Al,. . ., An} and there is apermutation of H', perm(H') = {BI,.. ., Bn},
such that Ai = Bi für all 1 ~ i ~ n.

Introduce
< {H}UGs,CU,CB > ~ < Gs,{H}UCU,CB >
if H is a user-defined constraint

Simplify
< Gs,H'UCU,CB > ~ < Gsu B,CU,CB >
if (H <=> GIB) E P and CB -7 (H =set H') A answer(G)

Propagate
< Gs,H'UCU,CB > ~ < GsUB,H'uCU,CB >
if (H ==> GIB) E P and CB -7 (H =set H') A answer(G)

The constraint handling engine (CHE) applies CHRs to user-defined constraints
in Gs and Cu wh~never all user-defined constraints needed in the multi-head
are present and the guard is satisfied. A guard G is satisfied if its local execution
does not involve user-defined constraints and the result answer(G) is entailed
(implied) by the built-in constraint store CE. Equality is entailed between
two terms if they match. To introduce a user-defined constraint means to take
it from the goal litera!s Gs and put it iota the user-defined constraint store
Cu. To simpliJy user-defined constraints H' means to replace them by B if H'
matches the head Hof a simplification CHR H <=> GIB and the guard G
is satisfied. To propagate Jrom user-defined constraints H' means to add B to
Gs if H' matches the head H of a propagation CHR H ==> GIB and G is

satisfied.
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Unfold
< {H'}uGs,CU,CB> f t <GsuB,Cu,{H=H'} u CB>
if (H : - B) E P.

The logic programming engine (LPE) unfolds goals in Gs. To unfold an atomic
goal H' means to look für a clause H: - Band to replace the H' by (H = H')
and B. As there are usually several clauses für a goal, unfolding is nondeter-
ministic and thus a goal can be solved in different ways using different clauses.
There can be CLP clauses für user-defined constraints. Thus they can be un-
folded as weIl. This unfolding is called (built-in) labeling. Details can be found
in [Fru92, B*94].

Label.
< Gs, {H'} UCU,CB > f t < Gsu B,Cu, {H = H'} U CB>
if (H : - B) E P and (label_with H" if G) E P and CB --+ (H' =
H") t\ answer(G)

Note that any constraint solver written with CHRs will be incremental and
concurrent. By "increll1ental" we mean that constraints can be added to the
constraint store Olle at a time using the "introduce"-transition. Then CHRs
may fire and simplify the user-defined constraint store. The rules can be ap-
plied concurrently, even using chaotic iteration (i.e. the same constraint can be
simplified by diffe(ent rules at the same time), because correct CHRs can only
replace constraint& by equivalent Olles or add redundant constraints.

3 Examples

In the following we illustrate the behavior of Prolog extended with CHRs.

3.1 Booleans

In the domain of boolean constraints, the behavior of an and-gate may be
described by rules such as

. If Olle input is 0 then the output is 0,

. If the output is 1 then both inputs are 1.

We can define the and-gate with constraint handling rules as:

and(X,Y,Z) <=> x=o I Z=O.
and(X,Y,Z) <=> y=o I Z=O.
and(X,Y,Z) <=> Z=l I X=l,Y=l.
and(X,Y,Z) <=> X=l I Y=Z.
and(X,Y,Z) <=> Y=l I X=Z.
and(X,Y,Zl),and(X,Y,Z2) ==> Zl=Z2.

The first rute gays that the constraint goal and(X, Y,Z), when it is known
that the first input argument X is 0, can be reduced to asserting that the output

5
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Z must be O. Hence the query and(X,Y,Z) ,x=o will result in X=O, z=o. The
last rule says that if a goal contains both and(X,Y,Zl) and and(X,Y,Z2) then
a consequence is that Zl and Z2 must be the same.

Consider the well-known full-adder circuit:

add(1l,12,13,Ol,02):-
xor(1l,12,Xl),
and(1l,12,Al),
xor(Xl,13,Ol),
and(13,Xl,A2),
or(Al,A2,02).

The query add(1l, 12 ,0 ,01,1) will produce 11=1,12=1,01=0. The compu-
tation proceeds as foliows: Because 13=0, the result of the and-gate with input
13, the output A2, must be O. As 02=1 and A2=0, the other input Al of the
ar-gate must be 1. Because Al is also the output of an and-gate, its inputs 11
and 12 must be both 1. Hence the output Xl ofthe first xor-gate must be 0,
and therefore also the output 01 of the second xor-gate must be O.

3.2 Inequalities

In this example, we define an inequality constraint.

'!. Constraint Declaration
(la) constraints ~/2.
(lb) label_with X~Y if ground(X).
(lb) label_with X~Y if ground(Y).

'!. Constraint Definition
(2a) X~Y ;- leq(X,Y).
(2b) leq(O,Y).
(2c) leq(s(X) ,s(Y)) :- leq(X,Y).

'!. Constraint Handling
(3a) X~Y <=> X=Y I true. '!. reflexivity
(3b) X~Y,Y~X <=> X=Y. '!. identity
(3c) X.<::;Y,Y.<::;Z ==> X'<::;Z. '!. transitivity

In clause (2a), .<::; is defined by a predicate leq which is defined by the two i
CLP clauses (2b) and (2c). The predicate definition specifies the user-defined !

constraint, it is thus called a constraint definition. The CHRs of (3) specify
how .<::; simplifies and pro pagates as a constraint. They implement reflexivity,
identity and transitivi.ty of less-than-or-equal in a straightforward way. CHR

! (3a) states that X'<::;X is logically true. Hence, whenever we see the goal X'<::;X we
can simplify it to true. Similarly, CHR (3b) means that if we find X'<::;Y as weil as
X'<::;Y in the current goal, we can replace it by the logically equivalent X=Y. CHR
(3a) detects satisfiability of a constraint, and CHR (3b) solves a conjunction
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of constraints returning a substitution. CHR (3c) states that the conjunction

X~YJ Y~Z implies X~Z.
If no simplification and propagation is possible anymore, a constraint goal

is chosen für labeling and its constraint definition is executed. The label decla-
ration (lb) and (lc) state that we may call X:;Y as a predicate if either X or Y
are ground.

Same examples:

:- A:;B, A=B.
'I. by CHR 3a

true.

:- A~BJ B~A. I
I/

CHR ,~
/t by 3b i

A=B.

:- A~BJC:;AJB:;C.
'I. C:;A,A:;B propagates C~B by 3c.
'I. C~BJB~C sirnplifies to B=C by 3b.
'I. B~AJA:;B sirnplifies to A=B by 3b.

A=B,B=C.

:- s(s(O))~AJA:;s(s(s(O))).
'I. s(s(O)):;A,A:;s(s(s(O))) propagates s(s(O)):;s(s(s(O))).
'I. Labeling with s(s(O))~s(s(s(O))) succeeds.
'I. Labeling with s(s(O))~A succeeds with A=s(s(X)).
'I. Labeling with~ A:;s(s(s(O))) succeeds with X=O.

A=s(s(O)).
'I. On backtracking A~s(s(s(O))) succeeds with X=s(O).

A=s(s(s(O))).
'I. On backtracking A~s(s(s(O))) fails.

false.

3.3 Implementation

The operation al semantics are still rar from the actual workings of an efficient
implementation. At the moment, there exist two implementations, Olle proto-
type in LISP [Her93], a,nd Olle fully developed compiler in a Prolog extension.

The compiler für CHRs together with a manual is available as a library of
ECLiPSe [B*94], ECRC's advanced constraint logic programming platform, uti-
lizing its delay-mechanism and built-in meta-predicates to create, inspect and
manipulate delayed goals. All ECLiPSe documentation is available by anony-
maus ftp from ftp.ecrc.de, directory jpubjeclipsejdoc. In such a sequential
implementatiön, the transitions are tried in the textual order given above. To
reflect the complexity of a program in the number of CHRs, at most two head

7
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constraints are allowed in a rule3. This restriction also makes complexity für
search of the head constraints of a CHR linear in the number of constraints on
average (quadratic in the warst case) by using partitioning and indexing meth- .
ods. Termination of a propagation CHR is achieved by never firing it a second
time with the same pair of head constraints.

The CHRs library includes adebugger and a visual tracing toolkit as weIl
as a full color demo using geometric constraints in a real-lire application für
wireless telecommunication. About 20 constraint sol vers currently come with
the release - für booleans, finite domains (similar to CHIP [VH89]), also over
arbitrary ground terms, reals and pairs, incremental path consistency, temporal
reasoning (quantitative and qualitative constraints over time points and inter-
vals [Fru94]), für solving linear polynomials over the reals (similar to CLP(R) i
[J*92]) and rationals, für lists, sets, trees, terms and last hut not least für ter- ;

minological reasoning [FrHa95]. The average number of rules in a constraint
solver is as low as 24. Typically it took only a few days to produce a reasonable
prototype solver, since the usual formalisms to describe a constraint theory, i.e.
inference rules, rewrite rules, sequents, first-order axioms, can be expressed as
CHRs programs in a straightforward way. Thus Olle can directly express how
constraints simplify and propagate without worrying about implementation de-
tails. Starting from this executable specification, the rules then can be refined
and adapted to the,specifics of the application.

On a wide range of solvers and examples, the run-time penalty für OUT
declarative and high-level approach turned out to be a constant factor in co m-
parison to dedicated built-in solvers (if available). Moreover, the slow-down is
orten within an order of magnitude. On same examples (e.g. those involving
finite domains with the element-constraint), our approach is faster, since we can
exactly define the amount of constraint simplification and propagation that is
needed. This means that für performance and simplicity the solver can be kept
as incomplete as the application allows it. Same solvers (e.g. disjunctive geo-
metric constraints in the phone demo) would be very hard to recast in existing
CLP languages.

4 Reasoning

Finally, a few words on reasoning about constraints defined by CHRs. Besides
correctness, we can also prove termination and conftuence of CHRs viewed as
conditional rewrite rules by adopting and extending well-known techniques such
as termination proofs a,nd unfailing completion from rewriting systems. Briefly,
termination is proyed by giving an ordering on atoms showing that the body of
a rule is always s~aller than the head of the rule. Such an ordering in addition
introduces an intuitive notion of a "simpler" constraint, so that we also support
the intuition that constraints get indeed simplified. Note that when combining
constraint solvers that share constraints, nonterminating simplification steps
may arise even if each solver is terminating. E.g. Olle solver defines less-than in
terms of greater-thanand the other defines greater-than in terms of less-than.

3 A rule with more head constraints can be rewritten into several two-headed mies.
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The notion of confluence is important für combining constraint solvers as
weIl as für concurrent applications of CHRs. Concurrent CHRs are not applied
in a fixed order. As correct CHRs are logical consequences of the program, any
result of a simplification step will have the same meaning, however it is not
guaranteed anymore that the result is syntactically the same. In particular,
a solver may be complete with Olle order of applications hut incomplete with
another Olle. Syntactically different constraint evaluations mayaiso arise if
combined sol vers share constraints, depending on which solver comes first. A
set of CHRs is confluent (or equivalently: Church Rosser), if each possible order
of applications starting from any goal leads to the same resulting goal. An
extension of unfailing completion makes a set of CHRs confluent. ! ,
5 Concl usions ~

Constraint handling rules (CHRs) are a language extension für implementing
user-defined constraints. Rapid prototyping of novel applications für constraint
techniques is encollraged by the high level of abstraction and declarative nature

of CHRs.
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