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solvers. In partiular, solvers may fully or partially de�ne the same onstraints.Any omputation that was possible in one of the solvers will also be possible inthe union of the solvers, sine additional rules annot inhibit the appliation ofold rules (as an be seen from the operational semantis of CHR).However, the union of the solvers ould lose termination and/or onuene, andthus their well-behavedness.Example 1. Consider a solver program with the single simpli�ation rule fa, bg that replaes the CHR onstraint a by the onstraint b and a solverprogram with the single rule fb , ag that replaes the CHR onstraint b by theonstraint a. The union of the two programs, fa , b, b , ag, is obviouslynon-terminating.Consider a program P1 with the single rule fa , bg and a program P2 withthe single rule fa , g. Their union fa , b, a , g is terminating, butobviously non-onuent, sine a omputation for a may result in either b or depending on the (ommitted) hoie of the rule.While establishing termination for CHR programs without propagation rules isin pratie often rather simple [9℄, termination is in general undeidable for CHRprograms. On the other hand, ompletion an make non-onuent programs on-uent [2℄ by adding new rules. Thus there is a hane to automatially produefrom two well-behaved onstraint solvers a solver that behaves well, too.Example 2. Consider the union of P1 and P2 of Example 1, fa , b, a ,g. To make the union onuent, the rule b ,  an be added.In the paper, we also onsider the speial ase of so-alled non-overlapping solversthat de�ne di�erent onstraints. Non-overlapping solvers may have ommon(shared) CHR onstraints and funtion symbols and have ommon built-in on-straints. We prove that they are well-behaved if their union is terminating. Whileonuene is modular (preserved) for well-behaved, non-overlapping solvers, wewill argue that it is very hard to �nd a syntati lass of solver programs thatadmits modularity for termination.In pratie, non-overlapping solvers are integrated using so-alled bridge rules be-tween the di�erent onstraints they de�ne. These bridge rules often destroy well-behavedness and we show by example how ompletion fares with suh solvers.The resulting onstraint solver may ontain redundant rules. Sine propagationin a rule-based onstraint solver orresponds to a �xpoint omputation with itsrules, it is preferable to have a minimal set of rules to aelerate the �xpoint om-putation. Based on the operational equivalene notion [3℄, we present a methodto detet and remove redundant rules in a CHR onstraint solver.Related Work. There is a renewed interest in languages and models for on-straint solver ooperation. An overview of the issues in ooperative onstraintsolving an be found in [11℄. Reent work in this area inludes BALI [13℄, asheme for integrating heterogeneous solvers by enapsulation: a ooperationlanguage based on strategies is ompiled into solver spei� ommuniation ode.Similarly, the framework of [7℄ relies on strategies to speify when omponent



solvers are to be applied. The framework of [12℄ requires spei� interfaes fromthe onstraint solvers and a meta onstraint solver to oordinate the ooper-ating solvers. Examples and implementations of this framework onentrate onnumerial onstraints.When CHR is used as an implementation language for onstraint solvers, desir-able properties like onuene and operational equivalene an be deided onetermination has been established. There is no need for spei� interfaes, beausethe onstraint solvers ommuniate freely via shared variables using their om-mon built-in onstraints. In well-behaved CHR solvers, it does not matter whihof the appliable rules are applied. In partiular, in well-behaved merged solvers,it does not matter from whih solvers the rules are oming from. Thus any typeof ooperation strategies [11℄, be it hard-oded, be it based on priorities or ex-pliit operators, is possible. Moreover, the strategies an be very �ne-grained, atthe level of the appliation of a single rule from the solver program, i.e. singleomputation step.The work of [15, 6℄ fouses on building a onstraint solver for the union of the-ories with given solvers. These theories are usually ast as equational theories.In [6℄, the theories are assumed to be disjoint. In [15℄, ombination of theoriessharing onstrutors have been investigated. In CHR, equalities referring to dis-tint theories are assumed to be represented by di�erent onstraint symbols.CHR programs represent �rst-order theories, that an be unioned without anyrequirements. Operationally, however, we want to make sure that the resultingsolver is still well-behaved.Outline of Paper. In Setion 2, we de�ne the CHR language and summarizeprevious results on onuene, ompletion, and operational equivalene. In thenext setion of the paper, we show how to merge CHR onstraint solvers utilizingompletion. We then investigate when termination and onuene are preservedunder union of solver programs. We onsider the speial ase of so-alled non-overlapping solvers that de�ne di�erent onstraints and introdue the notionof so-alled bridge rules to integrate suh solvers. In Setion 6, we show howto remove redundant rules from a solver utilizing operational equivalene. Apreliminary version of this paper was presented at JFPLC'02, a national frenhworkshop [4℄.2 PreliminariesIn this setion we give an overview of syntax and semantis for onstraint han-dling rules (CHR) as well as previous results on onuene, ompletion, andoperational equivalene. More detailed presentations an be found in [10, 1, 5, 2,3℄.2.1 Syntax of CHRWe use two disjoint sets of prediate symbols for two di�erent kinds of on-straints: built-in onstraint symbols and CHR onstraint symbols (user-de�ned



symbols). We all an atomi formula with a onstraint symbol a onstraint. Built-in onstraints are handled by prede�ned onstraint blak-box solvers. We assumethat these solvers are well-behaved. Built-in onstraints inlude =, true, andfalse. The semantis of the built-in onstraints is de�ned by a onsistent �rst-order onstraint theory CT . In partiular, CT de�nes = as the syntati equalityover �nite terms.CHR onstraints are de�ned by a CHR program.De�nition 1. A CHR program is a �nite set of rules. There are two kinds ofrules: A simpli�ation rule is of the form Name � H , C B: A propagationrule is of the form Name � H ) C B; where Name is an optional, uniqueidenti�er of a rule, the head H is a non-empty onjuntion of CHR onstraints,the guard C is a onjuntion of built-in onstraints, and the body B is a goal. Agoal is a onjuntion of built-in and CHR onstraints. A guard \true" is oftenomitted together with the ommit symbol .A CHR symbol is de�ned in a CHR program if it ours in the head of a rule inthe program.Example 3. We de�ne a CHR onstraint for a partial order relation �:r1 � X�X , true.r2 � X�Y ^ Y�X , X=Y.r3 � X�Y ^ Y�Z ) X�Z.r4 � X�Y ^ X�Y , X�Y.The CHR program implements reexivity (r1), antisymmetry (r2), transitivity(r3) and idempotene (r4) in a straightforward way. The reexivity rule r1states that X�X is logially true. The antisymmetry rule r2 means X�Y ^ Y�Xis logially equivalent to X=Y. The transitivity rule r3 states that the onjuntionof X�Y and Y�Z implies X�Z. The idempotene rule r4 states that X�Y ^ X�Yis logially equivalent to X�Y.2.2 Operational Semantis of CHRThe operational semantis of CHR is given by a transition system. A state issimply a goal, i.e. a onjuntion of built-in and CHR onstraints. Given a CHRprogram P we de�ne the transition relation 7!P by introduing two omputationsteps (transitions), one for eah kind of CHR rule (f. Figure 1). In the �gure, allmeta-variables stand for onjuntions of onstraints. The notation Gbi denotesthe built-in onstraints of G. Sine the two transitions are struturally verysimilar, we �rst desribe their ommon behavior and only at the end point outtheir di�erenes. A fresh variant of a rule is appliable to a state H 0 ^ G if H 0mathes its head H and if its guard C is implied by the built-in onstraintsappearing in G. A \fresh variant" of a rule is obtained by renaming its variablesto fresh variables, listed in the sequene �x. \Mathing" means that H 0 is aninstane of H , i.e. it is only allowed to instantiate (bind) variables of H butnot variables of H 0. This is ahieved by equating H 0 and H but existentially



SimplifyIf (H , C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbi ! 9�x(H=H 0 ^ C))then (H 0 ^G) 7!SimplifyP (G ^B ^ C ^H=H 0)PropagateIf (H ) C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbi ! 9�x(H=H 0 ^ C))then (H 0 ^G) 7!PropagateP (H 0 ^G ^B ^ C ^H=H 0)Fig. 1. Computation Steps of Constraint Handling Rulesquantifying all variables from the rule, �x. This equation H 0=H is shorthand forpairwise equating the arguments of the onstraints in H 0 and H , provided theironstraint symbols are equal.If an appliable rule is applied, the equation H=H 0, its guard C and its bodyB are added to the resulting state. A rule appliation annot be undone (CHRis a ommitted-hoie language without baktraking). When a simpli�ationrule is applied in the transition Simplify, the mathing CHR onstraints H 0are removed from the state. The Propagate transition is like the Simplifytransition, exept that it keeps the onstraints H 0 in the resulting state. Trivialnon-termination aused by applying the same propagation rule again and againis avoided by applying it at most one to the same onstraints [1℄.A omputation of a goal G in a program P is a sequene S0; S1; : : : of stateswith Si 7!P Si+1 beginning with the initial state S0 for G and ending in a�nal state or diverging. A �nal state is one where either no omputation step ispossible anymore or where the built-in onstraints are inonsistent. 7!�P denotesthe reexive and transitive losure of 7!P . When it is lear from the ontext, wewill drop the referene to the program P .Example 4. Reall the solver program for � of Example 3. Operationally therule r1 removes ourrenes of onstraints that math X�X. The antisymmetryrule r2 means that if we �nd X�Y as well as Y�X in the urrent store, we anreplae them by the logially equivalent X=Y. The transitivity rule r3 propagatesonstraints. We add the logial onsequene X�Z as a redundant onstraint. Theidempotene rule r4 absorbs multiple ourrenes of the same onstraint.A omputation of the goal A�B ^ C�A ^ B�C proeeds as follows:A�B ^ C�A ^ B�C 7!PropagateA�B ^ C�A ^ B�C ^ C�B 7!SimplifyA�B ^ B�A ^ B=C 7!SimplifyA=B ^ B=C



2.3 ConueneThe onuene property of a program guarantees that any omputation for agoal results in the same �nal state no matter whih of the appliable rules areapplied.De�nition 2. A CHR program is alled onuent if for all states S; S1; S2:If S 7!� S1 and S 7!� S2 then S1 andS2 are joinable. Two states S1 and S2 are alled joinable if there exist states T1and T2 suh that S1 7!� T1 and S2 7!� T2 and T1 and T2 are variants1.To analyze onuene of a given CHR program we annot hek joinability start-ing from any given anestor state S, beause in general there are in�nitely manysuh states. However for terminating programs, one an restrit the joinabilitytest to a �nite number of \minimal" states.A CHR program is alled terminating, if there are no in�nite omputations.For many existing CHR programs simple well-founded orderings are suÆientto prove termination [9℄. In general, suh orderings are not suÆient beauseof non-trivial interations between simpli�ation and propagation rules. In thispaper we assume that the onstraint solvers are terminating.De�nition 3. Let R1 be a simpli�ation rule and R2 be a (not neessarilydi�erent) rule, whose variables have been renamed apart. Let Hi ^ Ai be thehead and Ci be the guard of rule Ri (i = 1; 2). Then a ritial anestor state ofR1 and R2 is (H1 ^ A1 ^H2 ^ (A1=A2) ^ C1 ^ C2);provided A1 and A2 are non-empty onjuntions and CT j= 9((A1=A2) ^ C1 ^C2).Let S be a ritial anestor state of R1 and R2. If S 7! S1 using rule R1 andS 7! S2 using rule R2 then the tuple (S1; S2) is a ritial pair of R1 and R2. Aritial pair (S1; S2) is joinable, if S1 and S2 are joinable.The following theorem from [1, 5℄ gives a deidable, suÆient and neessaryondition for onuene of a terminating CHR program:Theorem 1. A terminating CHR program is onuent i� all its ritial pairsare joinable.Example 5. Reall the program for � of Example 3. The following ritial pairstems from the ritial anestor state X�Y ^ Y�X ^ Y�Z of r2 and r3(S1; S2) = (X=Y ^ X�Z; X�Y ^ Y�X ^ Y�Z ^ X�Z)is joinable: S1 is a �nal state, i.e. no omputation step is possible. A omputationbeginning with S2 results in S1:X�Y ^ Y�X ^ Y�Z ^ X�Z 7!SimplifyX�Z ^ X�Z ^ X=Y 7!SimplifyX�Z ^ X=Y1 Two states are variants of eah other if they are equal up to a variable renaming.



2.4 CompletionCompletion is the proess of adding rules to a non-onuent program until itbeomes onuent. Rules are built from a non-joinable ritial pair to allow atransition from one of the states into the other while maintaining termination.In ontrast to other ompletion methods, in CHR we need in general more thanone rule to make a ritial pair joinable: a simpli�ation rule and a propagationrule [2℄. When these rules are added, new ritial pairs may be produed, butalso old non-joinable ritial pairs may be removed, beause the new rules makethem joinable. Completion tries to ontinue introduing rules this way until theprogram beomes onuent. The essential part of a ompletion algorithm is theintrodution of rules from ritial pairs.De�nition 4. Let� be a termination order and let (Cud1 ^Cbi1 ; Cud2 ^Cbi2)be a ritial pair, where the states are ordered suh that Cud1 is a non-emptyonjuntion and Cud1 � Cud2. Then the orientation of the ritial pair resultsin the two rules:Cud1 , Cbi1 j Cud2 ^ Cbi2Cud2 ) Cbi2 j Cbi1 if Cud2 is a non-emptyonjuntion and CT 6j= Cbi2 ! Cbi1Examples of ompletion will be shown in the next setion of the paper. In theseexamples, unless otherwise notied, a simple termination order will suÆe, whereC1 � C2 if C1 = (C2 ^ C), i.e. the onjuntion C1 ontains all onjunts of C2and more (C is non-empty).In [2℄ it was shown that if the ompletion proedure stops suessfully, thenthe resulting program is well-behaved. But ompletion annot always be su-essful: ompletion is aborted if a ritial pair annot be transformed into rules.Completion may not terminate, beause new rules produe new ritial pairs.2.5 Operational EquivaleneThe following de�nition lari�es when two programs are operationally equivalent:if for eah goal, all �nal states in one program are the same as the �nal statesin the other program.De�nition 5. Let P1 and P2 be programs. A state S is P1; P2-joinable, i� thereare two omputations S 7!�P1 S1 and S 7!�P2 S2, where S1 and S2 are �nal states,and S1 and S2 are variants of eah other.P1 and P2 are operationally equivalent if all states are P1; P2-joinable.In [3℄, we gave a deidable, suÆient and neessary syntati ondition for op-erational equivalene of well-behaved CHR programs: when testing operationalequivalene, similar to our onuene test, we an restrit ourselves to a �nitenumber of ritial states that onsist of the head and the guard of a rule. Theseritial states are run in both programs, and their outome must be the same.



De�nition 6. Let P1 and P2 be programs. Then a ritial state of P1 and P2is de�ned as follows:H ^ C where (H � C B) 2 P1 [ P2 and � 2 f , ; ) gTheorem 2. Two well-behaved programs P1 and P2 are operationally equiva-lent i� all ritial states of P1 and P2 are P1; P2-joinable.Examples for operational equivalene an be found in the subsequent setions.3 Tight Integration of CHR Constraint Solvers withCompletionIn the introdution, Example 1 illustrated that the union of two well-behaved(i.e. terminating and onuent) programs is not neessarily well-behaved. Onetermination of the union has been established, we an use our onuene testto hek if the union of well-behaved programs is onuent again. We all suhprograms \ompatible".De�nition 7. Let P1 and P2 be two well-behaved CHR programs and let theunion of the two programs, P1 [P2, be terminating. P1 and P2 are ompatible ifP1 [ P2 is onuent.The ritial pairs of P1 [P2 are the ritial pairs of P1 unioned with the ritialpairs of P2 unioned with ritial pairs oming from one rule from P1 and onerule from P2. Sine P1 and P2 are already onuent, for ompatibility it suÆesto hek only those ritial pairs oming from rules in di�erent programs (f.proof of upoming Theorem 3). In other words, the onuene test an be madeinremental in the addition of rules.If the ompatibility test sueeds, we an just take the union of the rules in thetwo programs. This holds even for onstraints that are fully or partially de�nedin more than one of the programs whih are merged.Example 6. The well-behaved program P1 ontains the following CHR rulesde�ning max, where max(X,Y,Z) means that Z is the maximum of X and Y:max(X,Y,Z), X<Y Z=Y.max(X,Y,Z), X�Y Z=X.whereas well-behaved P2 de�nes max bymax(X,Y,Z), X�Y Z=Y.max(X,Y,Z), X>Y Z=X.Note that <, �, and � are built-in onstraints in this example.In order to perform the union of the two programs, we hek whether the def-initions of max are ompatible. There are three ritial anestor states omingfrom one rule in P1 and one rule in P2:



max(X,Y,Z) ^ X<Y ^ X�Ymax(X,Y,Z) ^ X�Y ^ X�Ymax(X,Y,Z) ^ X�Y ^ X>YSine the ritial pairs of these ritial anestor states are joinable, the twode�nitions of max are ompatible. Hene we an just take the union of the rulesand de�ne max by all four rules.Note that the onstraint max is \operationally stronger" in P1 [ P2 than in eahprogram alone, in the sense that more omputation steps are possible: in P1[P2(and P1) we have the omputationmax(X,Y,Z) ^ X�Y 7!P1[P2 Z=X ^ X�Ywhile in P2 the goal annot redue at all, it is a �nal state. But like P2, P1 is notas strong as P1 [P2: the goal max(X,Y,Z) ^ X�Y is a �nal state in P1, while ithas a non-trivial omputation in P1 [ P2 and P2.Example 7. Here we onsider a variation on a solver for max that does not useany built-in onstraints (exept for impliit syntatial equality). We de�ne maxwith the inequalities as CHR onstraints in two steps.Given the onstraint solver for � (example 3), we add the following simpli�ationrule desribing the interation of max and �:max1 � max(X,Y,Z) ^ X�Y , Z=Y ^ X�Y.The resulting solver is non-onuent. The ritial anestor state max(X,X,Z) ^X�X of the rule max1 and of the reexivity rule r1 of � produes the non-joinableritial pair (X=Z ^ X�X, max(X,X,Z)). We use ompletion to make the solveronuent. For the above-mentioned ritial pair it adds the rule:max2 � max(X,X,Z) , Z=X.Now, we onsider a solver for < whih is well-behavedX<X , false.X<Y ^ X<Y , X<Y.X<Y ^ Y<Z ) X<Z.and we add the rule desribing the interation of max and <:max3 � max(X,Y,Z) ^ Y<X , Z=X ^ Y<X.The resulting solver remains well-behaved.Finally, we union the solvers for � and for < that have been extended by thethree rules for max, i.e. max1, max2, and max3. The union of these solvers is notonuent. The ompletion method adds the following rule to make a non-joinableritial pair stemming from the rules max1 and max3 joinable:X�Y ^ Y<X , false.The rules derived by ompletion revealed interesting properties of max, i.e. rulesmax2 and max3, and the interation of � and <. The ompleted program iswell-behaved.



4 Modularity of Termination and ConueneWe have seen that well-behavedness is not modular, i.e. it is not preserved underunion of programs. We may ask ourselves if there are syntati riteria for lassesof programs that admit modularity of well-behavedness. In this setion we willshow that while for onuene, the answer is positive and simple (presupposingtermination), the situation seems very diÆult for termination.When the two solvers do not have any de�ned CHR onstraints in ommon (i.e.a CHR symbol ourring in the head of the rules in a solver does not our inthe head of the rules in the other solver), we all them non-overlapping. Notethat non-overlapping solvers may have ommon (shared) CHR onstraints andfuntion symbols and have ommon built-in onstraints (by de�nition, at leastsyntatial equality). We an show that the union of two non-overlapping well-behaved solvers is always well-behaved if the union is terminating.Theorem 3. Let P1 and P2 be two well-behaved CHR programs and let theunion of the two programs, P1 [ P2, be terminating. If P1 and P2 are non-overlapping then P1 [ P2 is onuent.Proof. To show that P1 [ P2 is onuent, we only have to show that all ritialpairs of P1 [ P2 are joinable, sine P1 [ P2 is terminating. The set of ritialpairs of P1 [ P2 onsists of all ritial pairs stemming from two rules appearingin P1 (ase 1. below), all ritial pairs stemming from two rules appearing in P2(ase 2) and all ritial pairs stemming from one rule appearing in P1 and onerule appearing in P2 (ase 3).1. P1 is well-behaved, thus all ritial pairs stemming from two rules appearingin P1 are joinable. Therefore, these ritial pairs are also joinable in P1 [P2.2. Analogous to ase 1.3. Critial pairs from rules of di�erent programs an only exist, if the headof the rules have at least one onstraint in ommon. Sine P1 and P2 arenon-overlapping, there exists no ritial pair stemming from one rule in P1and one rule in P2. utFor modularity of termination, the situation seems very diÆult: even if twoterminating programs do not have ommon CHR onstraint symbols, their unionmay be non-terminating.Example 8. Consider the following two programs:P1: (f(X)) , X=g(Y) ^ (Y).P2: d(g(Y)) , Y=f(Z) ^ d(Z).Any goal (of �nite size) terminates in eah of the two programs, but the goal(f(X)) ^ d(X) does not terminate in the union of the programs (due to om-mon funtion symbols).(f(X)) ^ d(X) 7!SimplifyX=g(Y) ^ (Y) ^ d(g(Y)) 7!SimplifyX=g(f(W)) ^ Y=f(W) ^ (f(W)) ^ d(W) 7!Simplify : : :



Atually, even if there are no ommon symbols in the program text, we may runinto trouble.Example 9. The previous example an be rewritten suh that instead of ommonfuntion symbols one uses built-in onstraints to the same e�et:P1: (FX) , f1(FX,X) | g1(X,Y) ^ (Y).P2: d(GY) , g2(GY,Y) | f2(Y,Z) ^ d(Z).where f1(X;Y ) and f2(X;Y ) are both de�ned as X = f(Y ) in the onstrainttheory for the built-in onstraints and analogously for g1(X;Y ) and g2(X;Y ).There are no ommon symbols in the CHR program itself, but only in the on-straint theory. Any goal terminates in eah of the two programs, but the goal(FX) ^ f1(FX,X) ^ d(X) does not terminate in the union of the programs.Summarizing, as soon as there are ommon symbols, no matter if they are CHRonstraints, built-in onstraints or funtion symbols (even when only shared inthe built-in onstraint theories), termination is in danger. But any non-trivialintegration of onstraint solvers will at least share some funtion symbols, oth-erwise there ould not be shared variables in goals, and without shared variablesthere is no non-trivial ommuniation between the solvers.5 Cooperation Using Bridge Rules and CompletionIn pratie, one will often add to the union of non-overlapping solvers a few so-alled bridge rules. These are rules that may translate onstraints from one solverto onstraints of the other solver to improve the overall solving power, i.e. morepropagation is possible. In general, they relate onstraints from di�erent solversto enable non-trivial ooperation. In other words, they de�ne ommuniationbetween the solvers by sharing data (onstraints).When adding bridge rules, are has to be taken to maintain termination. On theother hand, bridge rules an be used to re-introdue termination: we may makea union of solvers terminating by renaming symbols apart and using bridge rulesto ontrol the interation between the solvers. In any ase, terminating bridgerules will typially ause non-onuene and thus will be the starting point forompletion.Example 10. We want to build a Boolean onstraint solver from a well-behavedprogram P1 de�ning onjuntion and a well-behaved program P2 de�ning im-pliation. In P1, the onstraint and(X,Y,Z) stands for X ^ Y $ Z and in P2,imp(X,Y) stands for X ! Y.P1: and(X,X,Z) , X=Z.and(X,Y,1) , X=1 ^ Y=1.and(X,1,Z) , X=Z.and(X,0,Z) , Z=0.and(1,Y,Z) , Y=Z.and(0,Y,Z) , Z=0.



and(X,Y,Z) ^ and(X,Y,Z1) , and(X,Y,Z) ^ Z=Z1.P2: imp(0,X) , true.imp(X,0) , X=0.imp(1,X) , X=1.imp(X,1) , true.imp(X,Y) ^ imp(Y,X) , X=Y.We add the following bridge rule:and(X,Y,X) , imp(X,Y).The program ontaining P1 and P2 together with the bridge rule is not onuent:the ritial pair (true, imp(X,X)) stemming from the ritial anestor stateand(X,X,X) of the �rst rule of and and the bridge rule is not joinable. Completiongenerates the following rules from the non-joinable ritial pairs:imp(X,X) , true.imp(X,Y) ^ imp(X,Y) , imp(X,Y).imp(X,Y) ^ and(X,Y,Z) , imp(X,Y) ^ X=Z.Again, the automatially derived rules reveal interesting properties of the on-straints.6 Removal of Redundant Rules with OperationalEquivaleneSine propagation in a rule-based onstraint solver orresponds to a �xpointomputation with its rules, it is preferable to have a minimal set of rules toaelerate the �xpoint omputation and thus to improve the eÆieny of theonstraint solver. A smart �xpoint engine may detet redundant rules at run-time, but it is obviously heaper to remove them at ompile time or before.We an use a variation of the operational equivalene test [3℄ between programsto remove redundant rules from the (ompleted) union of onstraint solvers.De�nition 8. A rule R is redundant in a CHR program P i� for all states S:If S 7!�P S1 then S 7!�PnfRg S2, where S1 and S2 are �nal states and S1 and S2are variants of eah other.Example 11. In example 6, the union of the two programs de�ning maxr1 � max(X,Y,Z), X<Y Z=Y.r2 � max(X,Y,Z), X�Y Z=X.r3 � max(X,Y,Z), X�Y Z=Y.r4 � max(X,Y,Z), X>Y Z=X.was operationally stronger than eah program alone. However, the union ontainsredundant rules. For example, rule r3 an always make a transition when ruler1 does, with the same result, but not vie versa. Hene rule r1 is redundant,and analogously for rule r4.



Redundant rules an be disovered using operational equivalene: We removeone rule from the program and ompare it with the original program. If the twoprograms are operationally equivalent, then the rule was obviously redundantand we an remove it. We ontinue until we have tried to remove all rules. The�nal program found this way is not neessarily unique, sine the result maydepend on the order in whih rules are tried and removed.However, Theorem 2 may not be appliable for our redundany hek: If weremove a rule from a well-behaved program, it may beome non-onuent. Inorder to ome up with a deidable rule redundany test, we �rst have to testonuene of the program without the andidate rule for redundany. If theprogram is not onuent, it annot be operationally equivalent to the initialprogram, and hene the andidate rule annot be redundant. If the program isonuent, we an and must hek for operational equivalene.Theorem 4. Let P be a well-behaved program. A rule R is redundant withrespet to P i� PnfRg is well-behaved and all ritial states of P and PnfRgare P; PnfRg-joinable.Proof. ) First, we prove the laim that PnfRg is well-behaved by ontradi-tion. Assumption: PnfRg is not well-behaved. We an distinguish two ases:1. PnfRg is non-terminating, thus P is also non-terminating, whih is aontradition to the fat that P is well-behaved.2. PnfRg is non-onuent, thus there exists a state S suh that S 7!�PnfRgS1 and then S 7!�PnfRg S2, where S1 and S2 are �nal states, and S1and S2 are not variants of eah other. R is redundant with respet to P ,therefore there exists a state S3 suh that S 7!�P S3, where S3 is a �nalstate, and S3; S1 as well as S3; S2 are variants of eah other. This is aontradition to the laim that S1 and S2 are not variants of eah other.Now we prove that all ritial states of P and PnfRg are P; PnfRg-joinable.R is redundant with respet to P , thus for all states S the following holds:S 7!�P S1 then S 7!�PnfRg S2, where S1 and S2 are �nal states and S1 and S2are variants of eah other. Therefore, all states are P; PnfRg-joinable. utIt is easy to see that we an speialize our operational equivalene test for re-dundany removal: We only have to hek if the omputation step due to theandidate rule that is tested for redundany an be performed by the remainderof the program, but we do not have to onsider any other rule pre�xes.Example 12. The ritial states of the program P in Example 11 ares1: max(X,Y,Z) ^ X<Ys2: max(X,Y,Z) ^ X�Ys3: max(X,Y,Z) ^ X�Ys4: max(X,Y,Z) ^ X>YNote that any subset of the program in Example 11 is still well-behaved. A pro-gram PnfRg (R 2 fr1; r2; r3; r4g) obviously annot ontribute any new ritialstates. So if we try to remove rule r1 we only have to hek the ritial state



from rule r1, that is s1, by running it in both programs:max(X,Y,Z) ^ X<Y 7!P X<Y ^ Z=Y by rule r1max(X,Y,Z) ^ X<Y 7!Pnfr1g X<Y ^ Z=Y by rule r3Sine rule r3 enables the same transition, rule r1 must be redundant. In ananalogous way, redundany of rule r4 an be shown. Rule r2, however, is notredundant:max(X,Y,Z) ^ X�Y 7!P X�Y ^ Z=X by rule r2max(X,Y,Z) ^ X�Y 67!Pnfr2gIn program Pnfr2g, the ritial state is a �nal state. Hene (the only) redun-dany free program onsists of the rules r2 and r3.7 ConlusionsIn this paper, we have shown that terminating and onuent, i.e. well-behavedCHR onstraint solvers an be merged provided termination is preserved: theirtight integration is the union of the rules, even if some onstraints are fully orpartially de�ned and/or used in several solvers or program parts. In ase thatthe resulting solver beomes non-onuent, we use our ompletion method toimprove its behavior.Non-overlapping solvers do not de�ne ommon onstraints but may freely sharethem otherwise. We have shown that their union is always well-behaved if itis terminating. We argued that a similar modularity result for termination islikely to be very hard to obtain. Future work will investigate how to maintaintermination of the union, i.e. modularity results, trying to build on work in termrewriting systems suh as [14℄.We have disussed bridge rules as a ommuniation means to integrate solverswith disjoint onstraints utilizing ompletion. Finally, we have introdued amethod to remove redundant rules from a CHR solver using our operationalequivalene test and our onuene test to improve the eÆieny of the CHRsolver.For future work, we are also interested in general notions of onuene and om-pletion, sine we have found that on larger examples, their urrent requirementsare unneessarily strit. A more eÆient method for deteting and removingredundant rules should be found.Another open question is how the results that we obtained for CHR an betransferred to rewrite systems and other rule-based languages. Our work ouldserve as a starting point for developing a methodology for integration that issupported by semi-automati tools.
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