
Integration and Optimization of Rule-basedConstraint SolversSlim Abdennadher1 and Thom Fr�uhwirth21Computer S
ien
e Department, University of Muni
hSlim.Abdennadher�informatik.uni-muen
hen.de2Computer S
ien
e Fa
ulty, University of UlmThom.Fruehwirth�informatik.uni-ulm.deAbstra
t. One lesson learned from pra
ti
al
onstraint solving appli
a-tions is that
onstraints are often heterogeneous. Solving su
h
onstraintsrequires a
ollaboration of
onstraint solvers. In this paper, we introdu
ea methodology for the tight integration of CHR
onstraint programs intoone su
h program. CHR is a high-level rule-based language for writing
onstraint solvers and reasoning systems. A
onstraint solver is well-behaved if it is terminating and
on
uent. When merging
onstraintsolvers, this property may be lost. Based on previous results on CHRprogram analysis and transformation we show how to utilize
ompletionto regain well-behavedness. We identify a
lass of solvers whose unionis always
on
uent and we show that for preserving termination su
h a
lass is hard to �nd. The merged and
ompleted
onstraint solvers may
ontain redundant rules. Utilizing the notion of operational equivalen
e,whi
h is de
idable for well-behaved CHR programs, we present a methodto dete
t redundant rules in a CHR program.1 Introdu
tionMany real appli
ations of
onstraint-based reasoning involve heterogeneous
on-straints. Solving su
h
onstraints requires a
ollaboration of two or more
on-straint solvers. In this paper, we are
on
erned with solvers written in CHRlanguage.CHR (Constraint Handling Rules) [8℄ is a
on
urrent
ommitted-
hoi
e
on-straint logi
 programming language
onsisting of guarded rules that manipulate
onjun
tions of
onstraints. In CHR, we distinguish two kinds of rules: simpli-�
ation rules repla
e
onstraints by simpler
onstraints. Propagation rules addnew
onstraints whi
h may
ause further simpli�
ation.Usually, CHR solvers are well-behaved, i.e. terminating and
on
uent. Con
uen
emeans that it does not matter for the result whi
h of the appli
able rules areapplied in a
omputation. On
e termination has been established [9℄, there is ade
idable, suÆ
ient and ne
essary test for
on
uen
e [1℄. Con
uen
e also implies
onsisten
y of the logi
al reading of the solver program [1℄.Given two well-behaved CHR
onstraint solvers, then their tight integration issimply the union of their rules. There is no restri
tion on the signature of the

solvers. In parti
ular, solvers may fully or partially de�ne the same
onstraints.Any
omputation that was possible in one of the solvers will also be possible inthe union of the solvers, sin
e additional rules
annot inhibit the appli
ation ofold rules (as
an be seen from the operational semanti
s of CHR).However, the union of the solvers
ould lose termination and/or
on
uen
e, andthus their well-behavedness.Example 1. Consider a solver program with the single simpli�
ation rule fa, bg that repla
es the CHR
onstraint a by the
onstraint b and a solverprogram with the single rule fb , ag that repla
es the CHR
onstraint b by the
onstraint a. The union of the two programs, fa , b, b , ag, is obviouslynon-terminating.Consider a program P1 with the single rule fa , bg and a program P2 withthe single rule fa ,
g. Their union fa , b, a ,
g is terminating, butobviously non-
on
uent, sin
e a
omputation for a may result in either b or
depending on the (
ommitted)
hoi
e of the rule.While establishing termination for CHR programs without propagation rules isin pra
ti
e often rather simple [9℄, termination is in general unde
idable for CHRprograms. On the other hand,
ompletion
an make non-
on
uent programs
on-
uent [2℄ by adding new rules. Thus there is a
han
e to automati
ally produ
efrom two well-behaved
onstraint solvers a solver that behaves well, too.Example 2. Consider the union of P1 and P2 of Example 1, fa , b, a ,
g. To make the union
on
uent, the rule b ,

an be added.In the paper, we also
onsider the spe
ial
ase of so-
alled non-overlapping solversthat de�ne di�erent
onstraints. Non-overlapping solvers may have
ommon(shared) CHR
onstraints and fun
tion symbols and have
ommon built-in
on-straints. We prove that they are well-behaved if their union is terminating. While
on
uen
e is modular (preserved) for well-behaved, non-overlapping solvers, wewill argue that it is very hard to �nd a synta
ti

lass of solver programs thatadmits modularity for termination.In pra
ti
e, non-overlapping solvers are integrated using so-
alled bridge rules be-tween the di�erent
onstraints they de�ne. These bridge rules often destroy well-behavedness and we show by example how
ompletion fares with su
h solvers.The resulting
onstraint solver may
ontain redundant rules. Sin
e propagationin a rule-based
onstraint solver
orresponds to a �xpoint
omputation with itsrules, it is preferable to have a minimal set of rules to a

elerate the �xpoint
om-putation. Based on the operational equivalen
e notion [3℄, we present a methodto dete
t and remove redundant rules in a CHR
onstraint solver.Related Work. There is a renewed interest in languages and models for
on-straint solver
ooperation. An overview of the issues in
ooperative
onstraintsolving
an be found in [11℄. Re
ent work in this area in
ludes BALI [13℄, as
heme for integrating heterogeneous solvers by en
apsulation: a
ooperationlanguage based on strategies is
ompiled into solver spe
i�

ommuni
ation
ode.Similarly, the framework of [7℄ relies on strategies to spe
ify when
omponent

solvers are to be applied. The framework of [12℄ requires spe
i�
 interfa
es fromthe
onstraint solvers and a meta
onstraint solver to
oordinate the
ooper-ating solvers. Examples and implementations of this framework
on
entrate onnumeri
al
onstraints.When CHR is used as an implementation language for
onstraint solvers, desir-able properties like
on
uen
e and operational equivalen
e
an be de
ided on
etermination has been established. There is no need for spe
i�
 interfa
es, be
ausethe
onstraint solvers
ommuni
ate freely via shared variables using their
om-mon built-in
onstraints. In well-behaved CHR solvers, it does not matter whi
hof the appli
able rules are applied. In parti
ular, in well-behaved merged solvers,it does not matter from whi
h solvers the rules are
oming from. Thus any typeof
ooperation strategies [11℄, be it hard-
oded, be it based on priorities or ex-pli
it operators, is possible. Moreover, the strategies
an be very �ne-grained, atthe level of the appli
ation of a single rule from the solver program, i.e. single
omputation step.The work of [15, 6℄ fo
uses on building a
onstraint solver for the union of the-ories with given solvers. These theories are usually
ast as equational theories.In [6℄, the theories are assumed to be disjoint. In [15℄,
ombination of theoriessharing
onstru
tors have been investigated. In CHR, equalities referring to dis-tin
t theories are assumed to be represented by di�erent
onstraint symbols.CHR programs represent �rst-order theories, that
an be unioned without anyrequirements. Operationally, however, we want to make sure that the resultingsolver is still well-behaved.Outline of Paper. In Se
tion 2, we de�ne the CHR language and summarizeprevious results on
on
uen
e,
ompletion, and operational equivalen
e. In thenext se
tion of the paper, we show how to merge CHR
onstraint solvers utilizing
ompletion. We then investigate when termination and
on
uen
e are preservedunder union of solver programs. We
onsider the spe
ial
ase of so-
alled non-overlapping solvers that de�ne di�erent
onstraints and introdu
e the notionof so-
alled bridge rules to integrate su
h solvers. In Se
tion 6, we show howto remove redundant rules from a solver utilizing operational equivalen
e. Apreliminary version of this paper was presented at JFPLC'02, a national fren
hworkshop [4℄.2 PreliminariesIn this se
tion we give an overview of syntax and semanti
s for
onstraint han-dling rules (CHR) as well as previous results on
on
uen
e,
ompletion, andoperational equivalen
e. More detailed presentations
an be found in [10, 1, 5, 2,3℄.2.1 Syntax of CHRWe use two disjoint sets of predi
ate symbols for two di�erent kinds of
on-straints: built-in
onstraint symbols and CHR
onstraint symbols (user-de�ned

symbols). We
all an atomi
 formula with a
onstraint symbol a
onstraint. Built-in
onstraints are handled by prede�ned
onstraint bla
k-box solvers. We assumethat these solvers are well-behaved. Built-in
onstraints in
lude =, true, andfalse. The semanti
s of the built-in
onstraints is de�ned by a
onsistent �rst-order
onstraint theory CT . In parti
ular, CT de�nes = as the synta
ti
 equalityover �nite terms.CHR
onstraints are de�ned by a CHR program.De�nition 1. A CHR program is a �nite set of rules. There are two kinds ofrules: A simpli�
ation rule is of the form Name � H , C B: A propagationrule is of the form Name � H) C B; where Name is an optional, uniqueidenti�er of a rule, the head H is a non-empty
onjun
tion of CHR
onstraints,the guard C is a
onjun
tion of built-in
onstraints, and the body B is a goal. Agoal is a
onjun
tion of built-in and CHR
onstraints. A guard \true" is oftenomitted together with the
ommit symbol .A CHR symbol is de�ned in a CHR program if it o

urs in the head of a rule inthe program.Example 3. We de�ne a CHR
onstraint for a partial order relation �:r1 � X�X , true.r2 � X�Y ^ Y�X , X=Y.r3 � X�Y ^ Y�Z) X�Z.r4 � X�Y ^ X�Y , X�Y.The CHR program implements re
exivity (r1), antisymmetry (r2), transitivity(r3) and idempoten
e (r4) in a straightforward way. The re
exivity rule r1states that X�X is logi
ally true. The antisymmetry rule r2 means X�Y ^ Y�Xis logi
ally equivalent to X=Y. The transitivity rule r3 states that the
onjun
tionof X�Y and Y�Z implies X�Z. The idempoten
e rule r4 states that X�Y ^ X�Yis logi
ally equivalent to X�Y.2.2 Operational Semanti
s of CHRThe operational semanti
s of CHR is given by a transition system. A state issimply a goal, i.e. a
onjun
tion of built-in and CHR
onstraints. Given a CHRprogram P we de�ne the transition relation 7!P by introdu
ing two
omputationsteps (transitions), one for ea
h kind of CHR rule (
f. Figure 1). In the �gure, allmeta-variables stand for
onjun
tions of
onstraints. The notation Gbi denotesthe built-in
onstraints of G. Sin
e the two transitions are stru
turally verysimilar, we �rst des
ribe their
ommon behavior and only at the end point outtheir di�eren
es. A fresh variant of a rule is appli
able to a state H 0 ^ G if H 0mat
hes its head H and if its guard C is implied by the built-in
onstraintsappearing in G. A \fresh variant" of a rule is obtained by renaming its variablesto fresh variables, listed in the sequen
e �x. \Mat
hing" means that H 0 is aninstan
e of H , i.e. it is only allowed to instantiate (bind) variables of H butnot variables of H 0. This is a
hieved by equating H 0 and H but existentially

SimplifyIf (H , C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbi ! 9�x(H=H 0 ^ C))then (H 0 ^G) 7!SimplifyP (G ^B ^ C ^H=H 0)PropagateIf (H) C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbi ! 9�x(H=H 0 ^ C))then (H 0 ^G) 7!PropagateP (H 0 ^G ^B ^ C ^H=H 0)Fig. 1. Computation Steps of Constraint Handling Rulesquantifying all variables from the rule, �x. This equation H 0=H is shorthand forpairwise equating the arguments of the
onstraints in H 0 and H , provided their
onstraint symbols are equal.If an appli
able rule is applied, the equation H=H 0, its guard C and its bodyB are added to the resulting state. A rule appli
ation
annot be undone (CHRis a
ommitted-
hoi
e language without ba
ktra
king). When a simpli�
ationrule is applied in the transition Simplify, the mat
hing CHR
onstraints H 0are removed from the state. The Propagate transition is like the Simplifytransition, ex
ept that it keeps the
onstraints H 0 in the resulting state. Trivialnon-termination
aused by applying the same propagation rule again and againis avoided by applying it at most on
e to the same
onstraints [1℄.A
omputation of a goal G in a program P is a sequen
e S0; S1; : : : of stateswith Si 7!P Si+1 beginning with the initial state S0 for G and ending in a�nal state or diverging. A �nal state is one where either no
omputation step ispossible anymore or where the built-in
onstraints are in
onsistent. 7!�P denotesthe re
exive and transitive
losure of 7!P . When it is
lear from the
ontext, wewill drop the referen
e to the program P .Example 4. Re
all the solver program for � of Example 3. Operationally therule r1 removes o

urren
es of
onstraints that mat
h X�X. The antisymmetryrule r2 means that if we �nd X�Y as well as Y�X in the
urrent store, we
anrepla
e them by the logi
ally equivalent X=Y. The transitivity rule r3 propagates
onstraints. We add the logi
al
onsequen
e X�Z as a redundant
onstraint. Theidempoten
e rule r4 absorbs multiple o

urren
es of the same
onstraint.A
omputation of the goal A�B ^ C�A ^ B�C pro
eeds as follows:A�B ^ C�A ^ B�C 7!PropagateA�B ^ C�A ^ B�C ^ C�B 7!SimplifyA�B ^ B�A ^ B=C 7!SimplifyA=B ^ B=C

2.3 Con
uen
eThe
on
uen
e property of a program guarantees that any
omputation for agoal results in the same �nal state no matter whi
h of the appli
able rules areapplied.De�nition 2. A CHR program is
alled
on
uent if for all states S; S1; S2:If S 7!� S1 and S 7!� S2 then S1 andS2 are joinable. Two states S1 and S2 are
alled joinable if there exist states T1and T2 su
h that S1 7!� T1 and S2 7!� T2 and T1 and T2 are variants1.To analyze
on
uen
e of a given CHR program we
annot
he
k joinability start-ing from any given an
estor state S, be
ause in general there are in�nitely manysu
h states. However for terminating programs, one
an restri
t the joinabilitytest to a �nite number of \minimal" states.A CHR program is
alled terminating, if there are no in�nite
omputations.For many existing CHR programs simple well-founded orderings are suÆ
ientto prove termination [9℄. In general, su
h orderings are not suÆ
ient be
auseof non-trivial intera
tions between simpli�
ation and propagation rules. In thispaper we assume that the
onstraint solvers are terminating.De�nition 3. Let R1 be a simpli�
ation rule and R2 be a (not ne
essarilydi�erent) rule, whose variables have been renamed apart. Let Hi ^ Ai be thehead and Ci be the guard of rule Ri (i = 1; 2). Then a
riti
al an
estor state ofR1 and R2 is (H1 ^ A1 ^H2 ^ (A1=A2) ^ C1 ^ C2);provided A1 and A2 are non-empty
onjun
tions and CT j= 9((A1=A2) ^ C1 ^C2).Let S be a
riti
al an
estor state of R1 and R2. If S 7! S1 using rule R1 andS 7! S2 using rule R2 then the tuple (S1; S2) is a
riti
al pair of R1 and R2. A
riti
al pair (S1; S2) is joinable, if S1 and S2 are joinable.The following theorem from [1, 5℄ gives a de
idable, suÆ
ient and ne
essary
ondition for
on
uen
e of a terminating CHR program:Theorem 1. A terminating CHR program is
on
uent i� all its
riti
al pairsare joinable.Example 5. Re
all the program for � of Example 3. The following
riti
al pairstems from the
riti
al an
estor state X�Y ^ Y�X ^ Y�Z of r2 and r3(S1; S2) = (X=Y ^ X�Z; X�Y ^ Y�X ^ Y�Z ^ X�Z)is joinable: S1 is a �nal state, i.e. no
omputation step is possible. A
omputationbeginning with S2 results in S1:X�Y ^ Y�X ^ Y�Z ^ X�Z 7!SimplifyX�Z ^ X�Z ^ X=Y 7!SimplifyX�Z ^ X=Y1 Two states are variants of ea
h other if they are equal up to a variable renaming.

2.4 CompletionCompletion is the pro
ess of adding rules to a non-
on
uent program until itbe
omes
on
uent. Rules are built from a non-joinable
riti
al pair to allow atransition from one of the states into the other while maintaining termination.In
ontrast to other
ompletion methods, in CHR we need in general more thanone rule to make a
riti
al pair joinable: a simpli�
ation rule and a propagationrule [2℄. When these rules are added, new
riti
al pairs may be produ
ed, butalso old non-joinable
riti
al pairs may be removed, be
ause the new rules makethem joinable. Completion tries to
ontinue introdu
ing rules this way until theprogram be
omes
on
uent. The essential part of a
ompletion algorithm is theintrodu
tion of rules from
riti
al pairs.De�nition 4. Let� be a termination order and let (Cud1 ^Cbi1 ; Cud2 ^Cbi2)be a
riti
al pair, where the states are ordered su
h that Cud1 is a non-empty
onjun
tion and Cud1 � Cud2. Then the orientation of the
riti
al pair resultsin the two rules:Cud1 , Cbi1 j Cud2 ^ Cbi2Cud2) Cbi2 j Cbi1 if Cud2 is a non-empty
onjun
tion and CT 6j= Cbi2 ! Cbi1Examples of
ompletion will be shown in the next se
tion of the paper. In theseexamples, unless otherwise noti
ed, a simple termination order will suÆ
e, whereC1 � C2 if C1 = (C2 ^ C), i.e. the
onjun
tion C1
ontains all
onjun
ts of C2and more (C is non-empty).In [2℄ it was shown that if the
ompletion pro
edure stops su

essfully, thenthe resulting program is well-behaved. But
ompletion
annot always be su
-
essful:
ompletion is aborted if a
riti
al pair
annot be transformed into rules.Completion may not terminate, be
ause new rules produ
e new
riti
al pairs.2.5 Operational Equivalen
eThe following de�nition
lari�es when two programs are operationally equivalent:if for ea
h goal, all �nal states in one program are the same as the �nal statesin the other program.De�nition 5. Let P1 and P2 be programs. A state S is P1; P2-joinable, i� thereare two
omputations S 7!�P1 S1 and S 7!�P2 S2, where S1 and S2 are �nal states,and S1 and S2 are variants of ea
h other.P1 and P2 are operationally equivalent if all states are P1; P2-joinable.In [3℄, we gave a de
idable, suÆ
ient and ne
essary synta
ti

ondition for op-erational equivalen
e of well-behaved CHR programs: when testing operationalequivalen
e, similar to our
on
uen
e test, we
an restri
t ourselves to a �nitenumber of
riti
al states that
onsist of the head and the guard of a rule. These
riti
al states are run in both programs, and their out
ome must be the same.

De�nition 6. Let P1 and P2 be programs. Then a
riti
al state of P1 and P2is de�ned as follows:H ^ C where (H � C B) 2 P1 [P2 and � 2 f , ;) gTheorem 2. Two well-behaved programs P1 and P2 are operationally equiva-lent i� all
riti
al states of P1 and P2 are P1; P2-joinable.Examples for operational equivalen
e
an be found in the subsequent se
tions.3 Tight Integration of CHR Constraint Solvers withCompletionIn the introdu
tion, Example 1 illustrated that the union of two well-behaved(i.e. terminating and
on
uent) programs is not ne
essarily well-behaved. On
etermination of the union has been established, we
an use our
on
uen
e testto
he
k if the union of well-behaved programs is
on
uent again. We
all su
hprograms \
ompatible".De�nition 7. Let P1 and P2 be two well-behaved CHR programs and let theunion of the two programs, P1 [P2, be terminating. P1 and P2 are
ompatible ifP1 [P2 is
on
uent.The
riti
al pairs of P1 [P2 are the
riti
al pairs of P1 unioned with the
riti
alpairs of P2 unioned with
riti
al pairs
oming from one rule from P1 and onerule from P2. Sin
e P1 and P2 are already
on
uent, for
ompatibility it suÆ
esto
he
k only those
riti
al pairs
oming from rules in di�erent programs (
f.proof of up
oming Theorem 3). In other words, the
on
uen
e test
an be madein
remental in the addition of rules.If the
ompatibility test su

eeds, we
an just take the union of the rules in thetwo programs. This holds even for
onstraints that are fully or partially de�nedin more than one of the programs whi
h are merged.Example 6. The well-behaved program P1
ontains the following CHR rulesde�ning max, where max(X,Y,Z) means that Z is the maximum of X and Y:max(X,Y,Z), X<Y Z=Y.max(X,Y,Z), X�Y Z=X.whereas well-behaved P2 de�nes max bymax(X,Y,Z), X�Y Z=Y.max(X,Y,Z), X>Y Z=X.Note that <, �, and � are built-in
onstraints in this example.In order to perform the union of the two programs, we
he
k whether the def-initions of max are
ompatible. There are three
riti
al an
estor states
omingfrom one rule in P1 and one rule in P2:

max(X,Y,Z) ^ X<Y ^ X�Ymax(X,Y,Z) ^ X�Y ^ X�Ymax(X,Y,Z) ^ X�Y ^ X>YSin
e the
riti
al pairs of these
riti
al an
estor states are joinable, the twode�nitions of max are
ompatible. Hen
e we
an just take the union of the rulesand de�ne max by all four rules.Note that the
onstraint max is \operationally stronger" in P1 [P2 than in ea
hprogram alone, in the sense that more
omputation steps are possible: in P1[P2(and P1) we have the
omputationmax(X,Y,Z) ^ X�Y 7!P1[P2 Z=X ^ X�Ywhile in P2 the goal
annot redu
e at all, it is a �nal state. But like P2, P1 is notas strong as P1 [P2: the goal max(X,Y,Z) ^ X�Y is a �nal state in P1, while ithas a non-trivial
omputation in P1 [P2 and P2.Example 7. Here we
onsider a variation on a solver for max that does not useany built-in
onstraints (ex
ept for impli
it synta
ti
al equality). We de�ne maxwith the inequalities as CHR
onstraints in two steps.Given the
onstraint solver for � (example 3), we add the following simpli�
ationrule des
ribing the intera
tion of max and �:max1 � max(X,Y,Z) ^ X�Y , Z=Y ^ X�Y.The resulting solver is non-
on
uent. The
riti
al an
estor state max(X,X,Z) ^X�X of the rule max1 and of the re
exivity rule r1 of � produ
es the non-joinable
riti
al pair (X=Z ^ X�X, max(X,X,Z)). We use
ompletion to make the solver
on
uent. For the above-mentioned
riti
al pair it adds the rule:max2 � max(X,X,Z) , Z=X.Now, we
onsider a solver for < whi
h is well-behavedX<X , false.X<Y ^ X<Y , X<Y.X<Y ^ Y<Z) X<Z.and we add the rule des
ribing the intera
tion of max and <:max3 � max(X,Y,Z) ^ Y<X , Z=X ^ Y<X.The resulting solver remains well-behaved.Finally, we union the solvers for � and for < that have been extended by thethree rules for max, i.e. max1, max2, and max3. The union of these solvers is not
on
uent. The
ompletion method adds the following rule to make a non-joinable
riti
al pair stemming from the rules max1 and max3 joinable:X�Y ^ Y<X , false.The rules derived by
ompletion revealed interesting properties of max, i.e. rulesmax2 and max3, and the intera
tion of � and <. The
ompleted program iswell-behaved.

4 Modularity of Termination and Con
uen
eWe have seen that well-behavedness is not modular, i.e. it is not preserved underunion of programs. We may ask ourselves if there are synta
ti

riteria for
lassesof programs that admit modularity of well-behavedness. In this se
tion we willshow that while for
on
uen
e, the answer is positive and simple (presupposingtermination), the situation seems very diÆ
ult for termination.When the two solvers do not have any de�ned CHR
onstraints in
ommon (i.e.a CHR symbol o

urring in the head of the rules in a solver does not o

ur inthe head of the rules in the other solver), we
all them non-overlapping. Notethat non-overlapping solvers may have
ommon (shared) CHR
onstraints andfun
tion symbols and have
ommon built-in
onstraints (by de�nition, at leastsynta
ti
al equality). We
an show that the union of two non-overlapping well-behaved solvers is always well-behaved if the union is terminating.Theorem 3. Let P1 and P2 be two well-behaved CHR programs and let theunion of the two programs, P1 [P2, be terminating. If P1 and P2 are non-overlapping then P1 [P2 is
on
uent.Proof. To show that P1 [P2 is
on
uent, we only have to show that all
riti
alpairs of P1 [P2 are joinable, sin
e P1 [P2 is terminating. The set of
riti
alpairs of P1 [P2
onsists of all
riti
al pairs stemming from two rules appearingin P1 (
ase 1. below), all
riti
al pairs stemming from two rules appearing in P2(
ase 2) and all
riti
al pairs stemming from one rule appearing in P1 and onerule appearing in P2 (
ase 3).1. P1 is well-behaved, thus all
riti
al pairs stemming from two rules appearingin P1 are joinable. Therefore, these
riti
al pairs are also joinable in P1 [P2.2. Analogous to
ase 1.3. Criti
al pairs from rules of di�erent programs
an only exist, if the headof the rules have at least one
onstraint in
ommon. Sin
e P1 and P2 arenon-overlapping, there exists no
riti
al pair stemming from one rule in P1and one rule in P2. utFor modularity of termination, the situation seems very diÆ
ult: even if twoterminating programs do not have
ommon CHR
onstraint symbols, their unionmay be non-terminating.Example 8. Consider the following two programs:P1:
(f(X)) , X=g(Y) ^
(Y).P2: d(g(Y)) , Y=f(Z) ^ d(Z).Any goal (of �nite size) terminates in ea
h of the two programs, but the goal
(f(X)) ^ d(X) does not terminate in the union of the programs (due to
om-mon fun
tion symbols).
(f(X)) ^ d(X) 7!SimplifyX=g(Y) ^
(Y) ^ d(g(Y)) 7!SimplifyX=g(f(W)) ^ Y=f(W) ^
(f(W)) ^ d(W) 7!Simplify : : :

A
tually, even if there are no
ommon symbols in the program text, we may runinto trouble.Example 9. The previous example
an be rewritten su
h that instead of
ommonfun
tion symbols one uses built-in
onstraints to the same e�e
t:P1:
(FX) , f1(FX,X) | g1(X,Y) ^
(Y).P2: d(GY) , g2(GY,Y) | f2(Y,Z) ^ d(Z).where f1(X;Y) and f2(X;Y) are both de�ned as X = f(Y) in the
onstrainttheory for the built-in
onstraints and analogously for g1(X;Y) and g2(X;Y).There are no
ommon symbols in the CHR program itself, but only in the
on-straint theory. Any goal terminates in ea
h of the two programs, but the goal
(FX) ^ f1(FX,X) ^ d(X) does not terminate in the union of the programs.Summarizing, as soon as there are
ommon symbols, no matter if they are CHR
onstraints, built-in
onstraints or fun
tion symbols (even when only shared inthe built-in
onstraint theories), termination is in danger. But any non-trivialintegration of
onstraint solvers will at least share some fun
tion symbols, oth-erwise there
ould not be shared variables in goals, and without shared variablesthere is no non-trivial
ommuni
ation between the solvers.5 Cooperation Using Bridge Rules and CompletionIn pra
ti
e, one will often add to the union of non-overlapping solvers a few so-
alled bridge rules. These are rules that may translate
onstraints from one solverto
onstraints of the other solver to improve the overall solving power, i.e. morepropagation is possible. In general, they relate
onstraints from di�erent solversto enable non-trivial
ooperation. In other words, they de�ne
ommuni
ationbetween the solvers by sharing data (
onstraints).When adding bridge rules,
are has to be taken to maintain termination. On theother hand, bridge rules
an be used to re-introdu
e termination: we may makea union of solvers terminating by renaming symbols apart and using bridge rulesto
ontrol the intera
tion between the solvers. In any
ase, terminating bridgerules will typi
ally
ause non-
on
uen
e and thus will be the starting point for
ompletion.Example 10. We want to build a Boolean
onstraint solver from a well-behavedprogram P1 de�ning
onjun
tion and a well-behaved program P2 de�ning im-pli
ation. In P1, the
onstraint and(X,Y,Z) stands for X ^ Y $ Z and in P2,imp(X,Y) stands for X ! Y.P1: and(X,X,Z) , X=Z.and(X,Y,1) , X=1 ^ Y=1.and(X,1,Z) , X=Z.and(X,0,Z) , Z=0.and(1,Y,Z) , Y=Z.and(0,Y,Z) , Z=0.

and(X,Y,Z) ^ and(X,Y,Z1) , and(X,Y,Z) ^ Z=Z1.P2: imp(0,X) , true.imp(X,0) , X=0.imp(1,X) , X=1.imp(X,1) , true.imp(X,Y) ^ imp(Y,X) , X=Y.We add the following bridge rule:and(X,Y,X) , imp(X,Y).The program
ontaining P1 and P2 together with the bridge rule is not
on
uent:the
riti
al pair (true, imp(X,X)) stemming from the
riti
al an
estor stateand(X,X,X) of the �rst rule of and and the bridge rule is not joinable. Completiongenerates the following rules from the non-joinable
riti
al pairs:imp(X,X) , true.imp(X,Y) ^ imp(X,Y) , imp(X,Y).imp(X,Y) ^ and(X,Y,Z) , imp(X,Y) ^ X=Z.Again, the automati
ally derived rules reveal interesting properties of the
on-straints.6 Removal of Redundant Rules with OperationalEquivalen
eSin
e propagation in a rule-based
onstraint solver
orresponds to a �xpoint
omputation with its rules, it is preferable to have a minimal set of rules toa

elerate the �xpoint
omputation and thus to improve the eÆ
ien
y of the
onstraint solver. A smart �xpoint engine may dete
t redundant rules at run-time, but it is obviously
heaper to remove them at
ompile time or before.We
an use a variation of the operational equivalen
e test [3℄ between programsto remove redundant rules from the (
ompleted) union of
onstraint solvers.De�nition 8. A rule R is redundant in a CHR program P i� for all states S:If S 7!�P S1 then S 7!�PnfRg S2, where S1 and S2 are �nal states and S1 and S2are variants of ea
h other.Example 11. In example 6, the union of the two programs de�ning maxr1 � max(X,Y,Z), X<Y Z=Y.r2 � max(X,Y,Z), X�Y Z=X.r3 � max(X,Y,Z), X�Y Z=Y.r4 � max(X,Y,Z), X>Y Z=X.was operationally stronger than ea
h program alone. However, the union
ontainsredundant rules. For example, rule r3
an always make a transition when ruler1 does, with the same result, but not vi
e versa. Hen
e rule r1 is redundant,and analogously for rule r4.

Redundant rules
an be dis
overed using operational equivalen
e: We removeone rule from the program and
ompare it with the original program. If the twoprograms are operationally equivalent, then the rule was obviously redundantand we
an remove it. We
ontinue until we have tried to remove all rules. The�nal program found this way is not ne
essarily unique, sin
e the result maydepend on the order in whi
h rules are tried and removed.However, Theorem 2 may not be appli
able for our redundan
y
he
k: If weremove a rule from a well-behaved program, it may be
ome non-
on
uent. Inorder to
ome up with a de
idable rule redundan
y test, we �rst have to test
on
uen
e of the program without the
andidate rule for redundan
y. If theprogram is not
on
uent, it
annot be operationally equivalent to the initialprogram, and hen
e the
andidate rule
annot be redundant. If the program is
on
uent, we
an and must
he
k for operational equivalen
e.Theorem 4. Let P be a well-behaved program. A rule R is redundant withrespe
t to P i� PnfRg is well-behaved and all
riti
al states of P and PnfRgare P; PnfRg-joinable.Proof.) First, we prove the
laim that PnfRg is well-behaved by
ontradi
-tion. Assumption: PnfRg is not well-behaved. We
an distinguish two
ases:1. PnfRg is non-terminating, thus P is also non-terminating, whi
h is a
ontradi
tion to the fa
t that P is well-behaved.2. PnfRg is non-
on
uent, thus there exists a state S su
h that S 7!�PnfRgS1 and then S 7!�PnfRg S2, where S1 and S2 are �nal states, and S1and S2 are not variants of ea
h other. R is redundant with respe
t to P ,therefore there exists a state S3 su
h that S 7!�P S3, where S3 is a �nalstate, and S3; S1 as well as S3; S2 are variants of ea
h other. This is a
ontradi
tion to the
laim that S1 and S2 are not variants of ea
h other.Now we prove that all
riti
al states of P and PnfRg are P; PnfRg-joinable.R is redundant with respe
t to P , thus for all states S the following holds:S 7!�P S1 then S 7!�PnfRg S2, where S1 and S2 are �nal states and S1 and S2are variants of ea
h other. Therefore, all states are P; PnfRg-joinable. utIt is easy to see that we
an spe
ialize our operational equivalen
e test for re-dundan
y removal: We only have to
he
k if the
omputation step due to the
andidate rule that is tested for redundan
y
an be performed by the remainderof the program, but we do not have to
onsider any other rule pre�xes.Example 12. The
riti
al states of the program P in Example 11 are
s1: max(X,Y,Z) ^ X<Y
s2: max(X,Y,Z) ^ X�Y
s3: max(X,Y,Z) ^ X�Y
s4: max(X,Y,Z) ^ X>YNote that any subset of the program in Example 11 is still well-behaved. A pro-gram PnfRg (R 2 fr1; r2; r3; r4g) obviously
annot
ontribute any new
riti
alstates. So if we try to remove rule r1 we only have to
he
k the
riti
al state

from rule r1, that is
s1, by running it in both programs:max(X,Y,Z) ^ X<Y 7!P X<Y ^ Z=Y by rule r1max(X,Y,Z) ^ X<Y 7!Pnfr1g X<Y ^ Z=Y by rule r3Sin
e rule r3 enables the same transition, rule r1 must be redundant. In ananalogous way, redundan
y of rule r4
an be shown. Rule r2, however, is notredundant:max(X,Y,Z) ^ X�Y 7!P X�Y ^ Z=X by rule r2max(X,Y,Z) ^ X�Y 67!Pnfr2gIn program Pnfr2g, the
riti
al state is a �nal state. Hen
e (the only) redun-dan
y free program
onsists of the rules r2 and r3.7 Con
lusionsIn this paper, we have shown that terminating and
on
uent, i.e. well-behavedCHR
onstraint solvers
an be merged provided termination is preserved: theirtight integration is the union of the rules, even if some
onstraints are fully orpartially de�ned and/or used in several solvers or program parts. In
ase thatthe resulting solver be
omes non-
on
uent, we use our
ompletion method toimprove its behavior.Non-overlapping solvers do not de�ne
ommon
onstraints but may freely sharethem otherwise. We have shown that their union is always well-behaved if itis terminating. We argued that a similar modularity result for termination islikely to be very hard to obtain. Future work will investigate how to maintaintermination of the union, i.e. modularity results, trying to build on work in termrewriting systems su
h as [14℄.We have dis
ussed bridge rules as a
ommuni
ation means to integrate solverswith disjoint
onstraints utilizing
ompletion. Finally, we have introdu
ed amethod to remove redundant rules from a CHR solver using our operationalequivalen
e test and our
on
uen
e test to improve the eÆ
ien
y of the CHRsolver.For future work, we are also interested in general notions of
on
uen
e and
om-pletion, sin
e we have found that on larger examples, their
urrent requirementsare unne
essarily stri
t. A more eÆ
ient method for dete
ting and removingredundant rules should be found.Another open question is how the results that we obtained for CHR
an betransferred to rewrite systems and other rule-based languages. Our work
ouldserve as a starting point for developing a methodology for integration that issupported by semi-automati
 tools.

Referen
es1. S. Abdennadher. Operational semanti
s and
on
uen
e of
onstraint propagationrules. In Third International Conferen
e on Prin
iples and Pra
ti
e of ConstraintProgramming, CP97, LNCS 1330. Springer-Verlag, 1997.2. S. Abdennadher and T. Fr�uhwirth. On
ompletion of
onstraint handling rules. In4th International Conferen
e on Prin
iples and Pra
ti
e of Constraint Program-ming, CP98, LNCS 1520. Springer-Verlag, 1998.3. S. Abdennadher and T. Fr�uhwirth. Operational equivalen
e of
onstraint handlingrules. In Fifth International Conferen
e on Prin
iples and Pra
ti
e of ConstraintProgramming, CP99, LNCS. Springer-Verlag, 1999.4. S. Abdennadher and T. Fr�uhwirth. Using program analysis for integration and op-timization of rule-based
onstraint solvers. In Onziemes Journees Fran
ophones deProgrammation Logique et Programmation par Contraintes (JFPLC'2002), 2002.5. S. Abdennadher, T. Fr�uhwirth, and H. Meuss. Con
uen
e and semanti
s of
on-straint simpli�
ation rules. Constraints Journal, 4(2), May 1999.6. F. Baader and K. U. S
hulz. Combining
onstraint solving. In Constraints inComputational Logi
s, 2001.7. C. Castro and E. Monfroy. Basi
 operators for solving
onstraints via
ollaborationof solvers. In Pro
eedings of AISC 2000, LNAI 1930. Springer-Verlag, 2000.8. T. Fr�uhwirth. Theory and pra
ti
e of
onstraint handling rules. Journal of Logi
Programming, 37(1-3):95{138, 1998.9. T. Fr�uhwirth. Proving termination of
onstraint solver programs. In E. M.K.R. Apt, A.C. Kakas and F. Rossi, editors, New Trends in Constraints, LNAI1865. Springer-Verlag, 2000.10. T. Fr�uhwirth and S. Abdennadher. Essentials of Constraint Programming.Springer, 2003.11. L. Granvilliers, E. Monfroy, and F. Benhamou. Cooperative solvers in
onstraintprogramming: A short introdu
tion. In Workshop on Cooperative Solvers in Con-straint Programming (CoSolv) at CP 2001, 2001.12. P. Hofstedt. Better
ommuni
ation for tighter
ooperation. In First Intl. Confer-en
e on Computational Logi
 (CL 2000), LNAI 1861. Springer-Verlag, 2000.13. E. Monfroy. The
onstraint solver
ollaboration language of BALI. In Frontiersof Combining Systems 2, Vol. 7 of Studies in Logi
 and Computation. Resear
hStudies Press/Wiley, 2000.14. E. Ohlebus
h. Modular properties of
omposable term rewriting systems. Journalof Symboli
 Computation, 20(1), 1995.15. C. Tinelli and C. Ringeissen. Non-disjoint unions of theories and
ombinations ofsatis�ability pro
edures: First results. Te
hni
al report, Department of ComputerS
ien
e, University of Illinois at Urbana-Champaign, 1998.

