
From XML Schema to JSON Schema:
Translation with CHR

Falco Nogatz, Thom Frühwirth

Faculty of Engineering and Computer Sciences, Ulm University, Germany
{falco.nogatz,thom.fruehwirth}@uni-ulm.de

Abstract. Despite its rising popularity as data format especially for web
services, the software ecosystem around the JavaScript Object Notation
(JSON) is not as widely distributed as that of XML. For both data
formats there exist schema languages to specify the structure of instance
documents, but there is currently no opportunity to translate already
existing XML Schema documents into equivalent JSON Schemas.
In this paper we introduce an implementation of a language translator.
It takes an XML Schema and creates its equivalent JSON Schema doc-
ument. Our approach is based on Prolog and CHR. By unfolding the
XML Schema document into CHR constraints, it is possible to specify
the concrete translation rules in a declarative way.

Keywords: Constraint Handling Rules, Language Translator, XML Schema,
XSD, JSON Schema

1 Introduction

XML, the Extensible Markup Language [1], is today one of the most used formats
to save and exchange structured data. Being a recommendation of the World
Wide Web Consortium (W3C) since 1998, a large software ecosystem has been
evolved, including data formats to specify the schema of XML documents. One
of them is the XML Schema Definition (XSD) [2].

Since its proposal in 2006, there is an alternative data format especially used
in web services: JSON, the JavaScript Object Notation. Its formal language to
specify the format of a JSON document, called JSON Schema, is still in draft
status [3]. Although there are validation tools implementing the IETF draft, the
number of JSON Schemas used in practice is still moderate. One of the reasons
is that there is currently no mechanism to translate an already existing XML
Schema into equivalent JSON Schema.

As an application of XML, XSD documents are valid XML instances. Al-
though JSON Schema is JSON-based as well, the naive approach of using an
already existing XML to JSON translator as published by [6] would not result
in a valid JSON Schema document. To satisfy the Core Meta-Schema [5], the
demanded translator has to provide some additional logic, extending the general
problems of translating XML to JSON instances as presented in [4].

In this paper, we propose an approach for an XSD to JSON Schema language
translator based on Prolog and Constraint Handling Rules (CHR) [8]. The trans-
lator unfolds a given XML Schema into CHR constraints. By creating a CHR
constraint for every XSD node it is possible to specify the concrete translation
rules of common XML Schema fragments in a declarative way in form of CHR
rules.

The paper is organized as follows. In Section 2, we will give an example to
illustrate the problem and we will determine the considered versions of the XSD
and JSON Schema specifications. The paper continues by presenting the intro-
duced CHR constraints. In Section 3 the overall translation process is presented.
Finally, the paper ends with concluding remarks in Section 4.

2 Preliminaries

The aim of this work is to create a Prolog/CHR module that offers a predicate
xsd2json(XSD,JSON) which holds the equivalent JSON Schema as JSON for a
given XSD instance. Before getting into the concrete translation process we want
to introduce the used techniques and specify the scope of this tool. In what
follows we explain the problem instance by giving an example of a simple XSD
and its expected translated JSON Schema equivalent.

2.1 Problem Definition

Following the formal description of the XML Schema language [7], an XML
Schema consists of four components: elements (xs:element nodes), simple types
(xs:simpleType nodes), complex types (xs:complexType nodes) and attributes
(xs:attribute nodes). Because the also introduced attribute groups and model
groups are only placeholders in complex type definitions, we will omit those
components for our translator. In Section 3.4, we will introduce translation rules
for each of the four given components, depending on their structure and values.

Although the XML Schema 1.1 Specification has been the official W3C rec-
ommendation since April 2012, we restrict ourselves to the XML Schema 1.0
Specification. The more up-to-date specification primarily introduces conditional
types and assertions based on XPath expressions. Since there is currently no
XPath equivalent for JSON, it would not be possible to translate those new
XPath-based elements at all.

For the target language JSON Schema we refer to the latest version of the
specification, Draft 04 [3], which is already supported by a number of JSON
validators in multiple languages. A list of current implementations can be found
in [10].

2.2 Problem Instance Example

As a motivating example, we will consider a small XML document, as shown in
Figure 1, and its related XSD, as specified in Figure 3.

<?xml version="1.0" ?>

<percentages>

<value>99</value>

<value>42</value>

<value>0</value>

</percentages>

Fig. 1. Example XML

{

"value": [99, 42, 0]

}

Fig. 2. JSON document, valid against the
JSON Schema of Figure 4

The aim of the language translator is to create an equivalent JSON Schema
of the XSD given in Figure 3. It should respect the following the semantics:

– There is a list of values.
– The list contains at most five values.
– Every value must be a nonnegative integer.

Following the XSD specification in [7], there is additional information im-
plicitly given: By omitting the minOccurs attribute in an xs:element within an
xs:sequence its default value 1 is used, so the list has to contain at least one
value.

The equivalent JSON Schema that ensures these constraints is shown in
Figure 4 and its corresponding JSON document in Figure 2. The percentages

node of the XML document has no equivalent in the JSON Schema instance. This
is caused by the circumstance that the percentages element adds no constraints
and therefore might only be used to create a valid XML document, which requires
a single root element. The language translator uses such assumptions to create
a simple, but appropriate JSON Schema.

2.3 CHR Constraints

To provide translation rules for concrete XSD fragments, we use a combination
of the logic programming languages Prolog and CHR [8][14]. This enables us
to specify the translation rules in a declarative way. Since for each XSD node
a new CHR constraint will be generated, it is possible to create CHR rules
referencing constraints by their characteristics without having to implement the
tree traversal of the XSD document.

We use CHR with Prolog as its host language. The suggested implementation
can be found online at https://github.com/fnogatz/xsd2json and has been tested
with the CHR library for SWI-Prolog [12]. To hold the information of a given
XSD term we introduce the following CHR constraints:

– node(Namespace,Name,ID,Children IDs,Parent ID)

For each XML node in the XSD document a new node/5 constraint is gen-
erated, holding its namespace and tag name. To obtain a reference, a unique
identifier is added as well as the list of its parent’s and children’s identifiers.

– node attribute(ID,Key,Value,Source)

For each XSD attribute a new node attribute/4 constraint is propagated,

holding its name as Key, its Value and the identifier of the related node/5

constraint. The Source is source for explicitly set and default for inherited
attributes. For example maxOccurs="5" of the innermost xs:element of Fig-
ure 3 is mapped to a constraint node attribute(ID,maxOccurs,5,source).

– text node(ID,Text,Parent ID)

If an element’s child is simply a text and no nested XML node, a text node/3

constraint is generated. It gets a unique identifier like a regular child node
and holds the text as well as the identifier of its parent element.

All translated fragments are stored in json(ID,JSON) constraints, holding
the JSON Schema of the XSD node with the identifier ID. Because the entire
JSON Schema is built step by step, the innermost fragments of the XSD propa-
gate the first json/2 constraints. These will be picked up for the translation of
their parent elements, resulting in a JSON Schema for the entire XSD.

<?xml version="1.0" ?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="percentages">

<xs:complexType>
<xs:sequence>

<xs:element
name="value"
maxOccurs="5"
type="xs:nonNegativeInteger" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Fig. 3. Possible XSD for XML of Figure 1

{
"type": "object",
"properties": {

"value": {
"type": "array",
"items": {

"type": "integer",
"minimum": 0,
"exclusiveMinimum": false

},
"minItems": 1,
"maxItems": 5

}
},
"required": ["value"]

}

Fig. 4. Tanslated JSON Schema,
based on the XSD of Figure 3

3 Translation Process

The overall translation process can be split into six subtasks as illustrated in
Figure 5. The different steps can be distinguished by their function as well as by
the used programming language.

In the following we will present the various steps. The main part of the
translator, the translation rules of XSD fragments, is introduced in Section 3.4.

3.1 Read in XML Schema into Prolog

SWI-Prolog provides a wide support for working with XML documents. By use of
its SGML/XML parser [11], an XSD document can be read in as a nested Prolog
term. Figure 6 shows the term generated by the built-in
load structure/3 predicate [12] for the XSD of Figure 3.

Clean up and JSON Output

XML Flattening

Prolog

Fragment TranslationSetting Defaults

Wrap JSON Schema

Read in XML

CHR

Fig. 5. Steps of the overall translation process

[element(

’http://www.w3.org/2001/XMLSchema’:schema, % namespace and name

[xmlns:xs=’http://www.w3.org/2001/XMLSchema’], % attributes

[element(% nested elements

’http://www.w3.org/2001/XMLSchema’:element,

[name=percentages], % attributes

[...]) % the other nested elements

])]

Fig. 6. Nested Prolog term of the XSD document of Figure 3

3.2 XML Flattening

This nested Prolog term can be traversed recursively to propagate the related
node/5, node attribute/4 and text node/3 constraints. Their positions are
retained by their unique identifiers and references to parent and child nodes.

3.3 Setting Defaults

Because Prolog’s XML parser will only read in explicitly set attributes, we have
to add the default attributes as shown in Section 2.2. The translation rules used
in the next step refer to attributes like minOccurs and maxOccurs, which can be
omitted. To ensure these optional attributes are always present, we propagate a
node attribute/4 with the Source set to default, as mentioned in Section 2.3.
If there is an identical node attribute/4 constraint with its last component set
to source, the default one is removed by a CHR simpagation rule.

3.4 Fragment Translation

Before examining the most important step, we will have to a look at the intended
result of the overall translation process: a Prolog representation of JSON Schema.
Like for XML, SWI-Prolog comes with a library to serialize JSON. With the
http/json library [12] a JSON object is represented by json(L), in which L is a
list of the form [Key1=Value1,Key2=Value2,...]. JSON arrays are represented
by Prolog lists.

Referring to the constraints propagated in the steps before, we can trans-
late XSD fragments to their equivalent JSON Schema. All translation rules fol-
low the same form: They propagate a single json/2 constraint that holds the
JSON Schema of this XSD fragment; the guard ensures that all node/5 and
node attribute/4 constraints are of the XML Schema namespace. The rule’s
head contains the following parts:

– The node/5 constraint for which the json/2 representation is generated.
In most cases its children’s node/5 constraints are referenced by using the
Parent ID component.

– Some node attribute/4 and text node/3 constraints, depending on the
XSD fragment that has to be translated.

– Some json/2 constraints to merge already translated fragments. This way
it is possible to generate the JSON Schema translation of an XSD node by
combining the translations of its child nodes.

Hereby the propagation rule to generate the JSON Schema for the innermost
xs:element of Figure 3 is:

node(NS,element,ID,_C,_Parent), node_attribute(ID,type,With_NS,_)

==> xsd_namespace(NS), valid_xsd_type(With_NS,Type)

| convert_xsd_type(Type,JSON), json(ID,JSON).

This rule applies if the xs:element node has an XSD namespace and is of a
primitive XSD data type. XML Schema provides various predefined data types.
Although the number of data types defined for JSON is limited, it is possible
to restrict them similarly to constraining facets [9] in XSD. Therefore we can
define a convert xsd type/2 predicate by providing JSON’s equivalents of all
predefined XML data types like in Table 1 in excerpts.

Table 1: Translation of simple XSD data types (extract of [13])

XSD primitive type JSON Schema type definition
xs:string { "type": "string" }

xs:float, xs:double, xs:decimal { "type": "number" }

xs:nonNegativeInteger
{ "type": "integer",

"minimum": 0,

"exclusiveMinimum": false }

XSD’s primitive data types can be restricted by constraining facets [9], for
example to specify all possible values for a string. These facets can be translated
by using a similar table of equivalents, which are collected in [13].

The primitive data types and constraining facets apply only to xs:attribute

and certain xs:element nodes. However, an XSD is more than the definition of
simple types: via xs:complexType nodes attributes of elements can be specified
as well as their child nodes. The occurence of xs:element within an xs:sequence

as shown in Figure 3 is a common structure in XSD documents. Therefore we

have to translate nested XSD nodes as the last part of this step. The general
approach has already been introduced before: depending on specific node/5,
node attribute/4 and text node/3 constraints and sometimes already trans-
lated fragments given as json/2 constraints, we compose the translation of an
XSD node.

As an example we introduce the actual translation rule for the nested
xs:sequence/xs:element structure of the example in Figure 3:

node(NS1,sequence,Sequence_ID,_SC,_SP), node(NS2,element,El_ID,_EC,Sequence_ID),
json(El_ID,Element_JSON), node_attribute(El_ID,name,Element_Name,_)
node_attribute(El_ID,minOccurs,MinOccurs,_O), % _O to match both origins
node_attribute(El_ID,maxOccurs,MaxOccurs,_O), % ’default’ and ’source’

==>
xsd_namespace(NS1), xsd_namespace(NS2) % valid XSD namespaces?

| JSON = [type=object, % build JSON object
properties=json([

Element_Name=json([type=array,
items=Element_JSON,
minItems=MinOccurs,
maxItems=MaxOccurs

])])],
(MinOccurs_Number >= 1, Full_JSON = [required=[Element_Name]|JSON];

MinOccurs_Number < 1, Full_JSON = JSON), % required property?
json(Sequence_ID,json(Full_JSON)). % propagate JSON

Many applications of nested structures have been identified, documented in
[13] and implemented by similar propagation rules. Because a node/5 constraint
might apply to multiple CHR rules, there can be various json/2 constraints with
the same identifier. These are merged by a simpagation rule with the help of a
self-defined merge json Prolog predicate.

3.5 Wrap JSON Schema

The previous step terminates as soon as the root element of the given XSD has
been translated and its json/2 constraints have been merged. In addition the
globally defined type definitions are merged into the definitions object of the
root’s json/2 constraint.

3.6 Clean-up and JSON Output

Finally, the created JSON Schema object is cleaned up: in the creation process,
the names of XML attributes (specified as xs:attribute in the XSD) were
prefixed with an @ symbol. If there is no xs:element in this xs:complexType

with the same name, the attribute’s @-prefix is removed.

4 Conclusion

In this work, a language translator to convert XML Schema to an equivalent
JSON Schema was implemented. The entire implementation is available online at

https://github.com/fnogatz/xsd2json, its detailed concept can be found in [13].
As the xsd2json Prolog/CHR module was developed in a bottom-up approach,
it also provides a test framework and a large number of test cases.

The xsd2json module is still under development to be applicable for all
XML Schema instances. Due to the lack of various features in JSON Schema
it might not be possible to support all constraining semantics. For example,
there is currently no XPath-like way to address a specific property inside a
nested JSON document. Therefore, the XSD elements xs:key, xs:keyref and
xs:unique cannot be supported as well as the new features like xs:assertion

introduced by the most up-to-date XML Schema 1.1 Specification.
Another missing feature is the handling of referenced XSD documents. While

the current implementation respects multiple namespaces, it translates only a
single file. Therefore xs:import and xs:include are not supported.

References

1. Tim Bray and Jean Paoli and C Michael Sperberg-McQueen and Eve Maler and
François Yergeau: Extensible markup language (XML). World Wide Web Journal
volume 2, number 2, pages 27–66 (1997)

2. XML Schema, Structures Part. World Wide Web Consortium (W3C), Recommen-
dation October 2004), http://www.w3.org/TR/xmlschema-1 (2004)

3. Kris Zyp: A JSON Media Type for Describing the Structure and Meaning of JSON
Documents (Draft 04). IETF Internet-Draft, http://tools.ietf.org/html/draft-zyp-
json-schema-04 (2013)

4. David Lee: JXON: an architecture for schema and annotation driven JSON/XML
bidirectional transformations. Balisage: The Markup Conference, Balisage Series on
Markup Technologies, volume 7 (2011)

5. JSON Schema and Hyperschema: Core/Validation Meta-Schema. http://json-
schema.org/schema (2013)

6. Senthil Nathan and Edward J Pring and John Morar: Convert XML to JSON in
PHP. http://www.ibm.com/developerworks/xml/library/x-xml2jsonphp/ (2007)

7. Allen Brown and Matthew Fuchs and Jonathan Robie and Philip Wadler: XML
Schema: Formal Description. W3C Working Draft, volume 25, pages 1–25 (2001)

8. Thom Frühwirth: Constraint Handling Rules. Cambridge University Press (2009)
9. Biron, Paul, Ashok Malhotra, and World Wide Web Consortium: XML schema part

2: Datatypes. World Wide Web Consortium Recommendation REC-xmlschema-2-
20041028 (2004)

10. JSON Schema and Hyperschema: JSON Schema Software. http://json-
schema.org/implementations.html (2013)

11. Jan Wielemaker: SWI-Prolog SGML/XML Parser. SWI, University of Amsterdam,
Roetersstraat, 15. Jg., p. 1018 (2005)

12. Thom Frühwirth and Jan Wielemaker and Leslie De Koninck and Markus Triska:
SWI Prolog Reference Manual 6.2.2. Books on Demand (2012)

13. Falco Nogatz: From XML Schema to JSON Schema – Comparison and Translation
with Constraint Handling Rules. (2013)

14. Thom Frühwirth and Frank Raiser: Constraint Handling Rules: Compilation, Ex-
ecution, and Analysis. Books on Demand (2011)

