LMU

INSTITUT FUR INFORMATIK

) v Ludwig——

Lehr- und Forschungseinheit fir Maximilians —
Programmier- und Modellierungssprachen Universitit
Oettingenstrafle 67, D-80538 Miinchen Miinchen

A Confluence Test for Concurrent
Constraint Programs

Slim Abdennadher, Thom Friuhwirth, Michael Marte,
Holger Meuss

http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-1995-4, Oktober 1995

A Confluence Test for Concurrent
Constraint Programs

Slim Abdennadher!, Thom Frithwirth?,
Michael Marte!, Holger Meuss!

!Ludwig-Maximilians-Universitat, Munich, Germany
{Slim.Abdennadher,Michael.Marte,Holger. Meuss }@informatik.uni-muenchen.de

ECRC, Arabellastrasse 17, Munich, Germany
Thom.Fruehwirth@ecrc.de

August 21, 1997

Abstract

We address the problem of identifying confluent parts of concurrent cons-
traint programs. The confluence property guarantees that a concurrent pro-
gram will always compute the same result independent of the execution stra-
tegy.

In this paper, we introduce a simple test for confluence based on work in
rewrite systems. Furthermore, we show how to use this test to certify the
combination of concurrent constraint programs where the same predicate is
defined more than once.

1 Introduction

Concurrent constraint (CC) programming [8, 9] brings together ideas from cons-
traint and concurrent logic programming [10]. One problem with CC languages is
that it is difficult to reason about and to analyze concurrent programs [4]. Recent
work, e.g. [6] (which also contains more references), has tried to solve the problem
by giving a declarative semantics to CC programs. By “declarative semantics”
we mean a semantics that admits a logical interpretation. The idea to make CC
languages declarative 1s to introduce a non-standard semantics which is confluent.
Basically, confluence guarantees that the outcome of a computation will be the
same, independent of the execution strategy.

Our work complements this line of work by giving a simple test that is able to
identify parts of a CC program which are confluent already in the standard seman-
tics. In other words, the test allows to distinguish between the declarative and
non-declarative parts of CC programs. By the way, very recent work in program
analysis [2] starts from a subset of CCP that is confluent under a standard semantics.
Our findings are the result of adapting work in conditional term rewrite systems
(CTRS) [1, 5, 7] for CC languages. We will also detail the subtleties involved when

transferring a theorem about confluence in CTRS to CC languages.

In addition it turns out that our confluence test 1s also useful when combining
program parts (libraries or modules) in which the same predicate is defined (totally
or partially) several times. A variant of the test can ensure that the different
definitions are “compatible” and hence that the program parts can be combined by
simply taking their union.

The paper is organized as follows. The next section gives the preliminaries of
conditional rewriting and of concurrent constraint programming. Section 3 presents
the notion of confluence for CC programs. Section 4 deals with implementation
issues of the confluence test presented. Section b considers a practical application
of the confluence test in combining systems. Section 6 concludes with a summary
and directions for future work.

2 Preliminaries

2.1 Conditional Rewriting

We will give a quick introduction into the basic concepts of conditional term rewri-
ting and confluence following [1]. For surveys on the topic consider [5, 7].

Definition. A conditional (term) rewrite system (CTRS) is a set of conditional
rewrite rules. A conditional rewrite rule is a (first-order) formula of the form

up Jog AL AU, Loy [L=y

where I, r,uy, ..., tun, 1, ..., v, are (first-order) terms built from a set F' of function
symbols and a set X of variables. The formula is (implicitly) universally quantified
at the outermost scope. The subformulae uy | vi,...,uy | vo(n > 0) are called

conditions. We will abbreviate conditions by writing, instead, v | v | { — r.

Definition. A rewrite step is performed by applying a rewrite rule to a term. A
term ¢ rewrites to a term ¢’ by means of a rewrite rule (u | v | { — 7) by replacing
an instance (o of the left-hand side [in the term ¢ by the corresponding instance
ro of the right-hand side r, provided the corresponding instance uo | vo of the
condition holds, i.e. uo and vo rewrite to the same term w in zero or more steps.

Note that it is not possible to instantiate variables of the rewritten term ¢ in a
rewrite step, instead we only match a subterm of ¢ against [.

We write s — ¢, if s rewrites to ¢ in one step; s—*¢, if s rewrites to ¢ in zero or
more steps, we say t 18 derivable from s.

Two terms are said to be joinable, if they derive the same term, 1.e. s—*w and
t—"w for some term w. We write s | ¢, if s and ¢ are joinable.

Example. [7] The following is a system for computing maz and the relation >
on natural numbers. Natural numbers are represented as terms of the form s*(0),
where s is the successor function.

(x >y) | true | max(z,y) — (1)
(x >y) | false | maz(z,y) —y (2)
true | true | (s(z) > s(y)) — (& > y) (3)
true | true | (s(x) > 0) — true (4)
true | true | (0>) — false (5)

The rewrite step for computing the maximum of s(0) and s(s(s(0))) is

maz(s(0), 5(s(s(0)))) = s(5(5(0)).

Rule (1) is not applicable because its condition is not satisfied. Rules (3), (4) and
(5) are not applicable because maz does not match against >. Rule (2) is applicable
because the atoms of the condition are joinable:

(3

(5(0) > s(s(5(0)))) 2 (0> s(s(0))) Y false.

Definition. A rewrite system is said to be terminating (or noetherian) if there are
no infinite derivations t; — t5 —

The above example is terminating, since - roughly speaking - the left-hand sides
of the rewrite rules are always smaller in size than the right-hand sides and the
conditions.

Definition. A rewrite system is said to be confluent (or Church-Rosser), if terms
are joinable whenever they are derivable from the same term.

Definition. If the left-hand side g of a rule (p | ¢ | ¢ — d) unifies, via most
general substitution o, with a non-variable subterm s in a left-hand side { of a rule
(p l ¢|!—r), then the conditional equation

(po,p'o) | (¢o,q'o) | lodo] = ro

is called a eritical pair of the two rules, where lo[do] is obtained by replacing s in {
by d and applying o.

Definition. A critical pair (¢ | d | s = 1) is said to be joinable if so | to for any
substitution o such that co | do. A critical pair (¢ | d | s =) is said to be feasible
if there is a substitution o for which co | do.

Example. The rewrite system for maz and > has one critical pair. The heads of
the rules (1) and (2) unify via the substitution o = id resulting in the critical pair

(x >y,2>y) | (true, false) |z =y.

This is a so called trivial critical pair for it is not feasible (under the usual interpre-
tation of > as strict order relation).

Example. [1] The following is a system for computing the relation < on natural
numbers.

true | true | 0<0—true (6)
true | true | s(z) <0 — false (7)
true | true | s(z) <s(y) —x <y (8)
u<v|true | u<s(v)—true (9)

The heads of the rules (8) and (9) unify via the substitution ¢ = {u — s(x),v — y},
so we have the critical pair

(true,s(z) < y) | (true,true) | x <y = true.

This critical pair is feasible, i. e. if the condition of rule (9) holds we can go the
two ways

s(x) < s(y) ©) true

and

s(x) < s(y) ®) z < y —" true because s(z) <y | true.

Hence this critical pair is joinable.

Definition. A critical pair is an owverlay if it is obtained from two left-hand sides
that unify at their roots.

In the above examples, we dealt with overlays only.

2.2 Concurrent Constraint Programming

We assume some basic familiarity with concurrent (constraint) programming (CCP)
[8, 9, 10]. There is a distinguished class of predicates, the (built-in) constraints.
There is a built-in constraint solver that solves, checks and simplifies these cons-
traints.

Definition. A C'C programis a finite set of CC clauses. A CC clause is an expression
of the form

H&G,...,Gy | B, ..., By}

where the head H is an atom but not a constraint, and the guard G1,...G)y, 1s a
conjunction of constraints and the body By, ..., B, is a conjunction of atoms called
goals.

The operational semantics of CC can be described by a transition system.

Definition. A computation state is a tuple
< Gs,Cp >,

where G's is the goal store (resolvent) and Cp is the constraint store for the cons-
traints respectively. A store is a conjunction of atoms represented as a set.

The wnitial state consists of a query G's and an empty constraint store,

< Gs, {} >.

A final state is either failed (due to an inconsistent constraint store represented by
the unsatisfiable constraint false),

< Gs,{false} > (equivalent to < {},{false} >),
or successful if Cg 18 not false
< GS, Cp >.

The following computation steps are possible to get from one computation state to
the next.

Solve < {C}lUGs, Cp > — < Gs,Cp >
if (CACp) < Ch

The constraint solver updates the constraint store C'p if a new constraint €' was
found in the goal store. To update the constraint store means to produce a new cons-
traint store C'; that is logically equivalent to the conjunction of the new constraint
and the old constraint store. Given a CC program P.

Unfold < {H'}UGs,Cg > ——— < GsUBo,Cg >
if (H < G| B) is a variant of a clause in P and there is a substitution
o with Ho = H’ and Cg — Go

1'We use the syntax of [10] here.

To unfold an atomic goal H' means to add Bo to (s, provided H' matches the
head of a CC clause (H < G | B) via substitution ¢ and Go is satisfied under the
constraint store Cpg.

A guard G is satisfied (Cp — G) if it is logically entailed (implied) by the constraint
store C'g. Entailment can be computed by testing if adding G leaves the constraint
store unchanged, i.e. < G,Cg >=<{},Cp >.

3 Confluence of CC Programs

Definition. A set of CC clauses is confluent, if each possible order of computation
steps starting from an arbitrary computation state leads to the same final state.

In the following we assume that the built-in constraint solver is confluent, termina-
ting and logically correct. This allows us to treat the solver as a black box.

Now we want to prove confluence of CC clauses by applying the following theorem
in [1] to the CC formalism.

Theorem (Confluence of CTRS). A terminating conditional rewrite system is
confluent, of all its critical pairs are joinable overlays.

To make the theorem applicable, we relate CC programs to rewrite systems: The
role of terms is taken by computation states. A rewrite step has its equivalent in a
computation step. Thus we can define:

Definition. A set of CC clauses is terminating if any possible application of solve
and unfold results in a final state.

We define critical pairs for CCP analogously to critical pairs in CTRS, where CC
guards take the role of CTRS conditions:

Definition. If the head H; of a CC clause (H; < G4 | By) unifies, via most general
substitution ¢, with the head Hy of a another CC clause (Hy < G2 | Bz) then the
conditional equation

G10' A GQO' | BlUI? :BZU

1s called a critical pair of the two CC clauses.

In CC programs every critical pair is obviously an overlay, because goal atoms can
only match against heads of CC clauses and predicates do not occur inside atoms.

Definition. A critical pair (G' | Bi=7 =B3) is said to be joinable if the computa-
tions of < G'A By, {} > and < G A Ba2,{} > result in the same final state. Like
in a CTRS, if the computation is nondeterministic because different computation
steps can be taken (by applying different clauses) from a given state, it suffices to
consider one sequence of computation steps only.

Definition. A critical pair (G | Bi=? =Bas) is feasible if < G, {} > does not fail.

It is easy to see that we now have an appropriate translation. If we apply this
translation to the proof given in [1] we obtain the following result.

Theorem (Confluence of CC Programs). A terminating concurrent constraint
program is confluent, if all its critical pairs are joinable.

It is important to note that we rely on the following facts, some of which we already
mentioned:

Built-in constraints The built-in constraint solver with its termination, conflu-
ence and correctness properties guarantees that feasibility and joinability are
detected. If one studies the range example in section 6, it is easy to see that
these properties of the underlying constraint system are essential. If the imple-

mentation of max would not reduce the goals Max<Min, max(Min,Max,Max) to
the normal form false, the joinability of critical pairs could not be detected.

Guard checking The guard G of a CC clause (H < G | B) is an abbreviation for
writing < G,Cp > | < true,Cp >. So guard checking in CC computation
steps consists in checking joinability (like in CTRS).

ACI Goals and constraints in the stores are connected by conjunction, A, which
is associative, commutative and idempotent (ACT). However, these properties
would only influence the application of the confluence theorem if it changed
the computation steps that can be taken. In the operational semantics of
CC programs, the ACI properties are expressed through the set notion. The
AC properties enable us to choose any atom in a conjunction as the one to
apply the next computation step (solve or unfold). This corresponds with the
situation in a rewrite system, where any subterm can be rewritten, indepen-
dent of its position. The restriction to overlays in the theorem corresponds
with the fact that we can only unfold atoms with a program clause and not
arbitrary terms appearing in arbitrary positions. Idempotence 1s also not a
problem, since multiple occurrences of the same atom are trivially confluent
if the associated predicate is confluent.

Join The joinability check of CC clauses compares final states, whereas in CTRS
any states can be compared. The first condition seems stronger, but this is not
the case: If we have two identical non-final states, according to the definition
of joinability, we can always choose a sequence of computation steps for both
of them such that they lead to the same final state. We can not “miss” any
identical states by restricting ourselves to final states.

Local and global knowledge The checking of the guard in CTRS only requires
local knowledge, namely knowledge of the identity of the subterm being dealt
with. In CC clauses we have a different situation: The entailment test requires
knowledge of the current state of the constraint store, i.e. global knowledge.
This means (translated to CTRS terminology) that knowledge not only of
the subterm but also of the context of the subterm is required. However, the
proof of the theorem does not rely on the fact that only local knowledge is
available.

Matching In CTRS we can rewrite terms containing variables. But it is important
to note that these variables will never be instantiated by application of rewrite
rules. This meets with the restriction in the computation step unfold, where
matching of the goal atom with the respective head is required. Of course,
variables can be further constrained and instantiated in the body of a CC
clause.

4 Implementation Issues

Usually, not all parts of a CC program will be confluent. We therefore restrict
ourselves to confluent predicates.

Definition. A CC predicate p is weakly confluent, if all critical pairs of CC clauses
with p in the head are joinable.

It is clear that a CC program is confluent if all its predicates are weakly confluent.
However, if only some predicates are confluent, we can only speak of weak conflu-
ence, since the confluent predicates may be defined in terms of some non-confluent
predicates.

Definition. A CC predicate p is strongly confluent, if it is weakly confluent and all
predicates occurring in the bodies (except p itself) are strongly confluent.

Strong confluence of a predicate it is not a local property anymore, since it depends
on the program as a whole, i.e. on the confluence of other predicates. For similar
definitions of confluence see also the recent [2].

We are currently developing a tool in ECL'PS¢(ECRC Constraint Logic Program-
ming Platform) which tests confluence of constraint handling rules (CHRs) [3]. CC
programs are a subset of the CHR language. Th implementation has its theoretical
foundation in the theorem given above, and checks joinability of critical pairs of a
given predicate.

In the following we will present the basic structure of our program. First, the CC
clauses of the program are both loaded and compiled as well as made explicit as
facts rule/4. The test for weak confluence of a predicate pred is started with the
query confluence(pred).

confluence(Pred) tests if Pred is weakly confluent and outputs critical pairs that
are not joinable. The potential critical pairs are generated by taking two
clauses of the CC program and unifying their heads (Head1=Head?2).

feasible(Guardl,Guard2,Guard) succeeds if the conjunction of Guardl and Guard2
simplifies to Guard. To compute Guard, we use a predicate localcall(Goal,F)
that locally computes and returns the final state (the goal and constraint store)
F of a query Goal. If there 1s more than one final state, they are returned on
backtracking. localcall/2 does not instantiate variables in Goal but rather
represents substitutions as equalities appearing in F. It is implemented using
the built-in predicate subcall/2 of ECL!PS®. If a critical pair is feasible it is
tested for joinability.

joinable(Head,Body1l,Body2,Guard) is true if Bodyl and Body2 are joinable un-
der the condition that the guard Guard is true. Again, localcall/2 is used
to locally execute each of the bodies together with the combined guard. Since
the CC program has been loaded as well, we can execute the bodies directly
without interpretation overhead. Then the result of both computations is
compared. It is checked that the results are variants, 1.e the same up to rena-
ming of variables. If the pair is not joinable it is displayed together with the
rules it derives from.

confluence(Pred):-

rule(Pred,Headl,Guardl,Bodyl), % take two CC clauses
rule(Pred,Head2,Guard2,Body2),

Headi=Head2, % critical pair possible?
feasible(Guardil,Guard2,Guard),

not joinable(Guard,Bodyl,Body2),

% pretty print output of critical pair that is not joinable
false. % test all clause pairs

confluence(_Pred). % done

feasible(Guardl,Guard2,Guard) : -

localcall((Guardl,Guard2),Guard).

joinable(Guard,Body1,Body2):-

localcall((Guard,Body1),Resultl),
localcall((Guard,Body2),Result2),

variant (Resultl,Result?2). % Results are the same?

Example

The following example is an implementation of merge, i.e. merging two lists into
one list as the elements of the input lists arrive. Thus the order of elements in the
final list can differ from computation to computation.

merge([],L2,L3) <=> true | L2=L3.
merge(L1,[],L3) <=> true | L1=L3.
merge([X|L1],L2,L3) <=> true | L3=[X|L],merge(L1,L2,L).
merge(L1, [X|L2],L3) <=> true | L3=[X|L],merge(L1,L2,L).

There are 4 critical pairs. For example, the critical pair coming from the first two
clauses is

true | (L3=[]) =7= (L3=[])

stemming from any query which is an instance of merge ([J1, [1,L3). Obviously this
critical pair is joinable.

If merge/3 meets the specification, there is also space for nondeterminism that
causes non-confluence. Indeed, our confluence tester produces one critical pair that
is not joinable:

:—confluence(merge).
CRITICAL PAIR, NOT JOINABLE:

true |
(L3 = [XIL], merge(Li, [Y[L2], L))

=7=

(L3 = [YIL], merge([X|L1], L2, L))
Differing final states:
(L3

=7=

(L3

xILl, L

[YIL’], merge(Li, L2, L’))

[yliLl, L

[XIL’], merge(Li, L2, L’))
Used clauses:

* merge([X|L1], [YIL2], L3) <=> true | L3 = [X|L], merge(L1, [YIL2], L)
instance of
merge([X|L1], L2, L3) <=> true | L3 = [X|L], merge(L1l, L2, L)

* merge([X|L1], [YIL2], L3) <=> true | L3 = [Y|L], merge([X|L1], L2, L)
instance of
merge(L1, [X|L2], L3) <=> true | L3 = [X|L], merge(L1, L2, L)

No (more) unjoinable critical pairs.
yes.

It can be seen from the output of our confluence tester that a query like merge ([X|L1],
[YIL2], L3) can either result in putting X before Y in the output list L3 or vice
versa, hence - not surprisingly - merge/3 is not confluent.

5 Combining Concurrent Constraint Programs

We want to combine CC programs which overlap in the definition of some predicate
p. A typical scenario is that of modules or libraries implementing similar functiona-
lity. Clearly, we want to make sure that the operational semantics of both definition
of p do not differ. We can use our confluence test to ensure that.

Definition. Two sets of CC clauses defining the same predicate p are compatible if
all the critical pairs coming from taking one clause of each set are joinable.

If the confluence test fails, we can locate the clauses responsible for the problem. If
the test succeeds, we can just take the union of the clauses in both programs. This
means that the predicate p can even be partially defined in the programs which are
combined.

Example

The following example is a combination of two CC programs 57 and Sy overlapping
in the definition of range(X,Min,Max), which is true if the value of X is between
Min and Max.

S1 contains the following CC clause defining range:

range(X,Min,Max) <=> true |
max (Min,Max,Max), max(X,Min,X), max(X,Max,Max).

whereas S5 has the following definition of range:

range(X,Min,Max) <=> Max<Min | false.
range(X,Min,Max) <=> Min=<Max | Min=<X, X=<Max.

We want to know whether the definitions of range are compatible. We assume
that the underlying constraint solver defines the constraints <, =<, max , = and
that it is terminating, confluent and logically correct. There are two critical pairs,
coming from taking the only clause for range in S; with one of the clauses in S5.
Since these critical pairs are joinable, the two definitions of range are compatible
and hence we can just take the union of the clauses and define range by all three

clauses?.

6 Conclusions

We think that our simple confluence test can identify confluent and hence decla-
rative parts of concurrent (constraint) programs. This information should make
it easier to reason about and to analyze concurrent programs [4]. Our approach
also nicely complements recent work that gives confluent, non-standard semantics
for CC languages to make them amenable to abstract interpretation and analysis
in general, since our confluence test can find out parts of the program which are
confluent already under the standard semantics.

?Note that the confluence test ensures compatibility, it does not deal with the undecidable
subsumption of clauses and predicates.

Furthermore, as we have illustrated, confluence is also interesting from the software
engineering point of view. A variant of the confluence test can guarantee that the
combination of program parts (like modules or libraries) is just the union of the
clauses, even if some confluent predicates are fully or partially defined in several
program parts.

With the work presented, we started to investigate the confluence of constraint
handling rules (CHRs) [3], a superset of CC languages designed for writing cons-
traint solvers. (Interestingly, in [4] it is remarked that CC atoms in general are
best seen as constraints). For this purpose, CHRs allow for “multiple heads”, i.e.
conjunctions of atoms in the head, and for propagation rules, i.e. rules that do
not rewrite atoms, but only add additional atoms. Since we are only concerned
with writing constraints, all CHR clauses have a declarative reading as well. Con-
fluence and logical correctness of such user-written constraints seem to be closely
related. Moreover, when combining constraint solvers, one is often confronted with
constraints that are partially defined in several solvers.

Acknowledgements. Thanks to Héléene Kirchner for detailed comments on a
rough draft on confluence of CHRs that lead to the work described here. Thanks
to Esther Brichta for the rapid fax service.

References

[1] N. Dershowitz, N. Okada, and G. Sivakumar. Confluence of conditional rewrite

systems. In Ist C'TRS, pages 31-44. LNCS 308, 1988.

[2] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence in
concurrent constraint programming. In Alagar and Nivat, editors, Proceedings

of AMAST °95, INCS 936. Springer, 1995.

[3] T. Frihwirth. Constraint handling rules. In A. Podelski, editor, Constraint
Programmang: Basics and Trends. LNCS 910, March 1995.

[4] C. Hewitt and G. Agha. Guarded horn clause languages: Are they deductive
and logical. In Proceedings of the International Conference on Fifth Generation
Computer Systems, pages 650-657, Ohmsha, Tokyo, 1988.

[5] Claude Kirchner and Héléne Kirchner. Rewriting: Theory and Applications.
North-Holland, 1991.

[6] K. Marriott and M. Odersky. A confluent calculus for concurrent constraint
programming with guarded choice. In Ugo Montanari Francesca Rossi, editor,
Principles and Practice of Constraint Programming, Proceedings First Inter-
national Conference, CP’95, Cassis, France, pages 310-327, Berlin, September
1995. Springer.

[7] David A. Plaisted. Equational reasoning and term rewriting systems. In
D. Gabbay, C. Hogger, J. A. Robinson, and J. Siekmann, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 1, chapter b,

pages 273-364. Oxford University Press, Oxford, 1993.

[8] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantics foundations
of concurrent constraint programming. In Conference Record of the Eighteenth
Annual ACM Symposium on principles of Programmaing Languages, pages 333—
352, Orlando, Florida, January 1991. ACM Press.

[9] V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,
1993.

[10] E. Shapiro. The family of concurrent logic programming languages. In ACM
Computing Surveys, volume 21:3, pages 413-510, September 1989.

10

