
INSTITUT F�UR INFORMATIKLehr- und Forschungseinheit f�urProgrammier- und ModellierungssprachenOettingenstra�e 67, D{80538 M�unchen
A Con
uence Test for ConcurrentConstraint ProgramsSlim Abdennadher, Thom Fr�uhwirth, Michael Marte,Holger Meuss
http://www.pms.informatik.uni-muenchen.de/publikationenForschungsbericht/Research Report PMS-FB-1995-4, Oktober 1995

A Con
uence Test for ConcurrentConstraint ProgramsSlim Abdennadher1, Thom Fr�uhwirth2,Michael Marte1, Holger Meuss11Ludwig-Maximilians-Universit�at, Munich, GermanyfSlim.Abdennadher,Michael.Marte,Holger.Meussg@informatik.uni-muenchen.de2ECRC, Arabellastrasse 17, Munich, GermanyThom.Fruehwirth@ecrc.deAugust 21, 1997AbstractWe address the problem of identifying con
uent parts of concurrent cons-traint programs. The con
uence property guarantees that a concurrent pro-gram will always compute the same result independent of the execution stra-tegy.In this paper, we introduce a simple test for con
uence based on work inrewrite systems. Furthermore, we show how to use this test to certify thecombination of concurrent constraint programs where the same predicate isde�ned more than once.1 IntroductionConcurrent constraint (CC) programming [8, 9] brings together ideas from cons-traint and concurrent logic programming [10]. One problem with CC languages isthat it is di�cult to reason about and to analyze concurrent programs [4]. Recentwork, e.g. [6] (which also contains more references), has tried to solve the problemby giving a declarative semantics to CC programs. By \declarative semantics"we mean a semantics that admits a logical interpretation. The idea to make CClanguages declarative is to introduce a non-standard semantics which is con
uent.Basically, con
uence guarantees that the outcome of a computation will be thesame, independent of the execution strategy.Our work complements this line of work by giving a simple test that is able toidentify parts of a CC program which are con
uent already in the standard seman-tics. In other words, the test allows to distinguish between the declarative andnon-declarative parts of CC programs. By the way, very recent work in programanalysis [2] starts froma subset of CCP that is con
uent under a standard semantics.Our �ndings are the result of adapting work in conditional term rewrite systems(CTRS) [1, 5, 7] for CC languages. We will also detail the subtleties involved whentransferring a theorem about con
uence in CTRS to CC languages.In addition it turns out that our con
uence test is also useful when combiningprogram parts (libraries or modules) in which the same predicate is de�ned (totallyor partially) several times. A variant of the test can ensure that the di�erentde�nitions are \compatible" and hence that the program parts can be combined bysimply taking their union. 1

The paper is organized as follows. The next section gives the preliminaries ofconditional rewriting and of concurrent constraint programming. Section 3 presentsthe notion of con
uence for CC programs. Section 4 deals with implementationissues of the con
uence test presented. Section 5 considers a practical applicationof the con
uence test in combining systems. Section 6 concludes with a summaryand directions for future work.2 Preliminaries2.1 Conditional RewritingWe will give a quick introduction into the basic concepts of conditional term rewri-ting and con
uence following [1]. For surveys on the topic consider [5, 7].De�nition. A conditional (term) rewrite system (CTRS) is a set of conditionalrewrite rules. A conditional rewrite rule is a (�rst-order) formula of the formu1 # v1 ^ : : :^ un # vn j l ! r;where l; r; u1; : : : ; un; v1; : : : ; vn are (�rst-order) terms built from a set F of functionsymbols and a set X of variables. The formula is (implicitly) universally quanti�edat the outermost scope. The subformulae u1 # v1; : : : ; un # vn(n � 0) are calledconditions. We will abbreviate conditions by writing, instead, u # v j l ! r.De�nition. A rewrite step is performed by applying a rewrite rule to a term. Aterm t rewrites to a term t0 by means of a rewrite rule (u # v j l ! r) by replacingan instance l� of the left-hand side l in the term t by the corresponding instancer� of the right-hand side r, provided the corresponding instance u� # v� of thecondition holds, i.e. u� and v� rewrite to the same term w in zero or more steps.Note that it is not possible to instantiate variables of the rewritten term t in arewrite step, instead we only match a subterm of t against l.We write s ! t, if s rewrites to t in one step; s!�t, if s rewrites to t in zero ormore steps, we say t is derivable from s.Two terms are said to be joinable, if they derive the same term, i.e. s!�w andt!�w for some term w. We write s # t, if s and t are joinable.Example. [7] The following is a system for computing max and the relation >on natural numbers. Natural numbers are represented as terms of the form si(0),where s is the successor function.(x > y) # true j max(x; y)! x (1)(x > y) # false j max(x; y)! y (2)true # true j (s(x) > s(y)) ! (x > y) (3)true # true j (s(x) > 0)! true (4)true # true j (0 > x)! false (5)The rewrite step for computing the maximum of s(0) and s(s(s(0))) ismax(s(0); s(s(s(0)))) (2)! s(s(s(0))):Rule (1) is not applicable because its condition is not satis�ed. Rules (3), (4) and(5) are not applicable because max does not match against >. Rule (2) is applicablebecause the atoms of the condition are joinable:2

(s(0) > s(s(s(0)))) (3)! (0 > s(s(0))) (5)! false:De�nition. A rewrite system is said to be terminating (or noetherian) if there areno in�nite derivations t1 ! t2 ! : : :.The above example is terminating, since - roughly speaking - the left-hand sidesof the rewrite rules are always smaller in size than the right-hand sides and theconditions.De�nition. A rewrite system is said to be con
uent (or Church-Rosser), if termsare joinable whenever they are derivable from the same term.De�nition. If the left-hand side g of a rule (p0 # q0 j g ! d) uni�es, via mostgeneral substitution �, with a non-variable subterm s in a left-hand side l of a rule(p # q j l ! r), then the conditional equation(p�; p0�) # (q�; q0�) j l�[d�] = r�is called a critical pair of the two rules, where l�[d�] is obtained by replacing s in lby d and applying �.De�nition. A critical pair (c # d j s = t) is said to be joinable if s� # t� for anysubstitution � such that c� # d�. A critical pair (c # d j s = t) is said to be feasibleif there is a substitution � for which c� # d�.Example. The rewrite system for max and > has one critical pair. The heads ofthe rules (1) and (2) unify via the substitution � = id resulting in the critical pair(x > y; x > y) # (true; false) j x = y:This is a so called trivial critical pair for it is not feasible (under the usual interpre-tation of > as strict order relation).Example. [1] The following is a system for computing the relation � on naturalnumbers. true # true j 0 � 0! true (6)true # true j s(x) � 0! false (7)true # true j s(x) � s(y) ! x � y (8)u � v # true j u � s(v) ! true (9)The heads of the rules (8) and (9) unify via the substitution � = fu! s(x); v ! yg,so we have the critical pair(true; s(x) � y) # (true; true) j x � y = true:This critical pair is feasible, i. e. if the condition of rule (9) holds we can go thetwo ways s(x) � s(y) (9)! trueand s(x) � s(y) (8)! x � y !� true because s(x) � y # true:3

Hence this critical pair is joinable.De�nition. A critical pair is an overlay if it is obtained from two left-hand sidesthat unify at their roots.In the above examples, we dealt with overlays only.2.2 Concurrent Constraint ProgrammingWe assume some basic familiaritywith concurrent (constraint) programming (CCP)[8, 9, 10]. There is a distinguished class of predicates, the (built-in) constraints.There is a built-in constraint solver that solves, checks and simpli�es these cons-traints.De�nition. A CC program is a �nite set of CC clauses. ACC clause is an expressionof the form H , G1; : : : ; Gm j B1; : : : ; Bn1where the head H is an atom but not a constraint, and the guard G1; : : :Gm is aconjunction of constraints and the body B1; : : : ; Bn is a conjunction of atoms calledgoals.The operational semantics of CC can be described by a transition system.De�nition. A computation state is a tuple< Gs;CB >,where Gs is the goal store (resolvent) and CB is the constraint store for the cons-traints respectively. A store is a conjunction of atoms represented as a set.The initial state consists of a query Gs and an empty constraint store,< Gs; fg >.A �nal state is either failed (due to an inconsistent constraint store represented bythe unsatis�able constraint false),< Gs; ffalseg > (equivalent to < fg; ffalseg >),or successful if CB is not false< Gs;CB >.The following computation steps are possible to get from one computation state tothe next.Solve < fCg [Gs;CB > 7�! < Gs;C 0B >if (C ^CB)$ C 0BThe constraint solver updates the constraint store CB if a new constraint C wasfound in the goal store. To update the constraint store means to produce a new cons-traint store C 0B that is logically equivalent to the conjunction of the new constraintand the old constraint store. Given a CC program P .Unfold < fH 0g [Gs;CB > 7�! < Gs [B�;CB >if (H , G j B) is a variant of a clause in P and there is a substitution� with H� = H 0 and CB ! G�1We use the syntax of [10] here. 4

To unfold an atomic goal H 0 means to add B� to Gs, provided H 0 matches thehead of a CC clause (H , G j B) via substitution � and G� is satis�ed under theconstraint store CB.A guard G is satis�ed (CB ! G) if it is logically entailed (implied) by the constraintstore CB. Entailment can be computed by testing if adding G leaves the constraintstore unchanged, i.e. < G;CB >=< fg; CB >.3 Con
uence of CC ProgramsDe�nition. A set of CC clauses is con
uent, if each possible order of computationsteps starting from an arbitrary computation state leads to the same �nal state.In the following we assume that the built-in constraint solver is con
uent, termina-ting and logically correct. This allows us to treat the solver as a black box.Now we want to prove con
uence of CC clauses by applying the following theoremin [1] to the CC formalism.Theorem (Con
uence of CTRS). A terminating conditional rewrite system iscon
uent, if all its critical pairs are joinable overlays.To make the theorem applicable, we relate CC programs to rewrite systems: Therole of terms is taken by computation states. A rewrite step has its equivalent in acomputation step. Thus we can de�ne:De�nition. A set of CC clauses is terminating if any possible application of solveand unfold results in a �nal state.We de�ne critical pairs for CCP analogously to critical pairs in CTRS, where CCguards take the role of CTRS conditions:De�nition. If the head H1 of a CC clause (H1 , G1 j B1) uni�es, via most generalsubstitution �, with the head H2 of a another CC clause (H2 , G2 j B2) then theconditional equation G1� ^G2� j B1�=? =B2�is called a critical pair of the two CC clauses.In CC programs every critical pair is obviously an overlay, because goal atoms canonly match against heads of CC clauses and predicates do not occur inside atoms.De�nition. A critical pair (G j B1=? =B2) is said to be joinable if the computa-tions of < G ^ B1; fg > and < G ^ B2; fg > result in the same �nal state. Likein a CTRS, if the computation is nondeterministic because di�erent computationsteps can be taken (by applying di�erent clauses) from a given state, it su�ces toconsider one sequence of computation steps only.De�nition. A critical pair (G j B1=? =B2) is feasible if < G; fg > does not fail.It is easy to see that we now have an appropriate translation. If we apply thistranslation to the proof given in [1] we obtain the following result.Theorem (Con
uence of CC Programs). A terminating concurrent constraintprogram is con
uent, if all its critical pairs are joinable.It is important to note that we rely on the following facts, some of which we alreadymentioned:Built-in constraints The built-in constraint solver with its termination, con
u-ence and correctness properties guarantees that feasibility and joinability aredetected. If one studies the range example in section 6, it is easy to see thatthese properties of the underlying constraint system are essential. If the imple-5

mentation of max would not reduce the goals Max<Min, max(Min,Max,Max) tothe normal form false, the joinability of critical pairs could not be detected.Guard checking The guard G of a CC clause (H , G j B) is an abbreviation forwriting < G;CB > # < true; CB >. So guard checking in CC computationsteps consists in checking joinability (like in CTRS).ACI Goals and constraints in the stores are connected by conjunction, ^, whichis associative, commutative and idempotent (ACI). However, these propertieswould only in
uence the application of the con
uence theorem if it changedthe computation steps that can be taken. In the operational semantics ofCC programs, the ACI properties are expressed through the set notion. TheAC properties enable us to choose any atom in a conjunction as the one toapply the next computation step (solve or unfold). This corresponds with thesituation in a rewrite system, where any subterm can be rewritten, indepen-dent of its position. The restriction to overlays in the theorem correspondswith the fact that we can only unfold atoms with a program clause and notarbitrary terms appearing in arbitrary positions. Idempotence is also not aproblem, since multiple occurrences of the same atom are trivially con
uentif the associated predicate is con
uent.Join The joinability check of CC clauses compares �nal states, whereas in CTRSany states can be compared. The �rst condition seems stronger, but this is notthe case: If we have two identical non-�nal states, according to the de�nitionof joinability, we can always choose a sequence of computation steps for bothof them such that they lead to the same �nal state. We can not \miss" anyidentical states by restricting ourselves to �nal states.Local and global knowledge The checking of the guard in CTRS only requireslocal knowledge, namely knowledge of the identity of the subterm being dealtwith. In CC clauses we have a di�erent situation: The entailment test requiresknowledge of the current state of the constraint store, i.e. global knowledge.This means (translated to CTRS terminology) that knowledge not only ofthe subterm but also of the context of the subterm is required. However, theproof of the theorem does not rely on the fact that only local knowledge isavailable.Matching In CTRS we can rewrite terms containing variables. But it is importantto note that these variables will never be instantiated by application of rewriterules. This meets with the restriction in the computation step unfold, wherematching of the goal atom with the respective head is required. Of course,variables can be further constrained and instantiated in the body of a CCclause.4 Implementation IssuesUsually, not all parts of a CC program will be con
uent. We therefore restrictourselves to con
uent predicates.De�nition. A CC predicate p is weakly con
uent, if all critical pairs of CC clauseswith p in the head are joinable.It is clear that a CC program is con
uent if all its predicates are weakly con
uent.However, if only some predicates are con
uent, we can only speak of weak con
u-ence, since the con
uent predicates may be de�ned in terms of some non-con
uentpredicates.De�nition. A CC predicate p is strongly con
uent, if it is weakly con
uent and allpredicates occurring in the bodies (except p itself) are strongly con
uent.6

Strong con
uence of a predicate it is not a local property anymore, since it dependson the program as a whole, i.e. on the con
uence of other predicates. For similarde�nitions of con
uence see also the recent [2].We are currently developing a tool in ECLiPSe(ECRC Constraint Logic Program-ming Platform) which tests con
uence of constraint handling rules (CHRs) [3]. CCprograms are a subset of the CHR language. Th implementation has its theoreticalfoundation in the theorem given above, and checks joinability of critical pairs of agiven predicate.In the following we will present the basic structure of our program. First, the CCclauses of the program are both loaded and compiled as well as made explicit asfacts rule/4. The test for weak con
uence of a predicate pred is started with thequery confluence(pred).confluence(Pred) tests if Pred is weakly con
uent and outputs critical pairs thatare not joinable. The potential critical pairs are generated by taking twoclauses of the CC program and unifying their heads (Head1=Head2).feasible(Guard1,Guard2,Guard) succeeds if the conjunction of Guard1 and Guard2simpli�es to Guard. To compute Guard, we use a predicate localcall(Goal,F)that locally computes and returns the �nal state (the goal and constraint store)F of a query Goal. If there is more than one �nal state, they are returned onbacktracking. localcall/2 does not instantiate variables in Goal but ratherrepresents substitutions as equalities appearing in F. It is implemented usingthe built-in predicate subcall/2 of ECLiPSe. If a critical pair is feasible it istested for joinability.joinable(Head,Body1,Body2,Guard) is true if Body1 and Body2 are joinable un-der the condition that the guard Guard is true. Again, localcall/2 is usedto locally execute each of the bodies together with the combined guard. Sincethe CC program has been loaded as well, we can execute the bodies directlywithout interpretation overhead. Then the result of both computations iscompared. It is checked that the results are variants, i.e the same up to rena-ming of variables. If the pair is not joinable it is displayed together with therules it derives from.confluence(Pred):-rule(Pred,Head1,Guard1,Body1), % take two CC clausesrule(Pred,Head2,Guard2,Body2),Head1=Head2, % critical pair possible?feasible(Guard1,Guard2,Guard),not joinable(Guard,Body1,Body2),% pretty print output of critical pair that is not joinablefalse. % test all clause pairsconfluence(_Pred). % donefeasible(Guard1,Guard2,Guard):-localcall((Guard1,Guard2),Guard).7

joinable(Guard,Body1,Body2):-localcall((Guard,Body1),Result1),localcall((Guard,Body2),Result2),variant(Result1,Result2). % Results are the same?ExampleThe following example is an implementation of merge, i.e. merging two lists intoone list as the elements of the input lists arrive. Thus the order of elements in the�nal list can di�er from computation to computation.merge([],L2,L3) <=> true | L2=L3.merge(L1,[],L3) <=> true | L1=L3.merge([X|L1],L2,L3) <=> true | L3=[X|L],merge(L1,L2,L).merge(L1,[X|L2],L3) <=> true | L3=[X|L],merge(L1,L2,L).There are 4 critical pairs. For example, the critical pair coming from the �rst twoclauses istrue | (L3=[]) =?= (L3=[])stemming from any query which is an instance of merge([],[],L3). Obviously thiscritical pair is joinable.If merge/3 meets the speci�cation, there is also space for nondeterminism thatcauses non-con
uence. Indeed, our con
uence tester produces one critical pair thatis not joinable::-confluence(merge).CRITICAL PAIR, NOT JOINABLE:true |(L3 = [X|L], merge(L1, [Y|L2], L))=?=(L3 = [Y|L], merge([X|L1], L2, L))Differing final states:(L3 = [X|L], L = [Y|L'], merge(L1, L2, L'))=?=(L3 = [Y|L], L = [X|L'], merge(L1, L2, L'))Used clauses:* merge([X|L1], [Y|L2], L3) <=> true | L3 = [X|L], merge(L1, [Y|L2], L)instance ofmerge([X|L1], L2, L3) <=> true | L3 = [X|L], merge(L1, L2, L)* merge([X|L1], [Y|L2], L3) <=> true | L3 = [Y|L], merge([X|L1], L2, L)instance ofmerge(L1, [X|L2], L3) <=> true | L3 = [X|L], merge(L1, L2, L)8

No (more) unjoinable critical pairs.yes.It can be seen from the output of our con
uence tester that a query like merge([X|L1],[Y|L2], L3) can either result in putting X before Y in the output list L3 or viceversa, hence - not surprisingly - merge/3 is not con
uent.5 Combining Concurrent Constraint ProgramsWe want to combine CC programs which overlap in the de�nition of some predicatep. A typical scenario is that of modules or libraries implementing similar functiona-lity. Clearly, we want to make sure that the operational semantics of both de�nitionof p do not di�er. We can use our con
uence test to ensure that.De�nition. Two sets of CC clauses de�ning the same predicate p are compatible ifall the critical pairs coming from taking one clause of each set are joinable.If the con
uence test fails, we can locate the clauses responsible for the problem. Ifthe test succeeds, we can just take the union of the clauses in both programs. Thismeans that the predicate p can even be partially de�ned in the programs which arecombined.ExampleThe following example is a combination of two CC programs S1 and S2 overlappingin the de�nition of range(X,Min,Max), which is true if the value of X is betweenMin and Max.S1 contains the following CC clause de�ning range:range(X,Min,Max) <=> true |max(Min,Max,Max), max(X,Min,X), max(X,Max,Max).whereas S2 has the following de�nition of range:range(X,Min,Max) <=> Max<Min | false.range(X,Min,Max) <=> Min=<Max | Min=<X, X=<Max.We want to know whether the de�nitions of range are compatible. We assumethat the underlying constraint solver de�nes the constraints <, =<, max , = andthat it is terminating, con
uent and logically correct. There are two critical pairs,coming from taking the only clause for range in S1 with one of the clauses in S2.Since these critical pairs are joinable, the two de�nitions of range are compatibleand hence we can just take the union of the clauses and de�ne range by all threeclauses2.6 ConclusionsWe think that our simple con
uence test can identify con
uent and hence decla-rative parts of concurrent (constraint) programs. This information should makeit easier to reason about and to analyze concurrent programs [4]. Our approachalso nicely complements recent work that gives con
uent, non-standard semanticsfor CC languages to make them amenable to abstract interpretation and analysisin general, since our con
uence test can �nd out parts of the program which arecon
uent already under the standard semantics.2Note that the con
uence test ensures compatibility, it does not deal with the undecidablesubsumption of clauses and predicates. 9

Furthermore, as we have illustrated, con
uence is also interesting from the softwareengineering point of view. A variant of the con
uence test can guarantee that thecombination of program parts (like modules or libraries) is just the union of theclauses, even if some con
uent predicates are fully or partially de�ned in severalprogram parts.With the work presented, we started to investigate the con
uence of constrainthandling rules (CHRs) [3], a superset of CC languages designed for writing cons-traint solvers. (Interestingly, in [4] it is remarked that CC atoms in general arebest seen as constraints). For this purpose, CHRs allow for \multiple heads", i.e.conjunctions of atoms in the head, and for propagation rules, i.e. rules that donot rewrite atoms, but only add additional atoms. Since we are only concernedwith writing constraints, all CHR clauses have a declarative reading as well. Con-
uence and logical correctness of such user-written constraints seem to be closelyrelated. Moreover, when combining constraint solvers, one is often confronted withconstraints that are partially de�ned in several solvers.Acknowledgements. Thanks to H�el�ene Kirchner for detailed comments on arough draft on con
uence of CHRs that lead to the work described here. Thanksto Esther Brichta for the rapid fax service.References[1] N. Dershowitz, N. Okada, and G. Sivakumar. Con
uence of conditional rewritesystems. In 1st CTRS, pages 31{44. LNCS 308, 1988.[2] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Con
uence inconcurrent constraint programming. In Alagar and Nivat, editors, Proceedingsof AMAST '95, LNCS 936. Springer, 1995.[3] T. Fr�uhwirth. Constraint handling rules. In A. Podelski, editor, ConstraintProgramming: Basics and Trends. LNCS 910, March 1995.[4] C. Hewitt and G. Agha. Guarded horn clause languages: Are they deductiveand logical. In Proceedings of the International Conference on Fifth GenerationComputer Systems, pages 650{657, Ohmsha, Tokyo, 1988.[5] Claude Kirchner and H�el�ene Kirchner. Rewriting: Theory and Applications.North-Holland, 1991.[6] K. Marriott and M. Odersky. A con
uent calculus for concurrent constraintprogramming with guarded choice. In Ugo Montanari Francesca Rossi, editor,Principles and Practice of Constraint Programming, Proceedings First Inter-national Conference, CP'95, Cassis, France, pages 310{327, Berlin, September1995. Springer.[7] David A. Plaisted. Equational reasoning and term rewriting systems. InD. Gabbay, C. Hogger, J. A. Robinson, and J. Siekmann, editors, Handbook ofLogic in Arti�cial Intelligence and Logic Programming, volume 1, chapter 5,pages 273{364. Oxford University Press, Oxford, 1993.[8] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantics foundationsof concurrent constraint programming. In Conference Record of the EighteenthAnnual ACM Symposium on principles of Programming Languages, pages 333{352, Orlando, Florida, January 1991. ACM Press.[9] V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,1993.[10] E. Shapiro. The family of concurrent logic programming languages. In ACMComputing Surveys, volume 21:3, pages 413{510, September 1989.10

