LMU

INSTITUT FUR INFORMATIK

Lehr- und Forschungseinheit fir
Programmier- und Modellierungssprachen Universitic

Oettingenstrafle 67, D-80538 Minchen Miinchen

Ludwig——

Maximilians—

Confluent Simplification Rules

Slim Abdennadher, Thom Fruhwirth, Holger Meuss

http://www.pms.informatik.uni-muenchen.de/publikationen

Forschungsbericht/Research Report PMS-FB-1996-7, Januar 1996

Confluent Simplification Rules
Slim Abdennadher!, Thom Frithwirth?, Holger Meuss!

!Computer Science Department, University of Munich
Wagmullerstr. 23, 80538 Munich, Germany
{Slim.Abdennadher,Holger.Meuss }@informatik.uni-muenchen.de

ECRC, Arabellastr. 17, Munich, Germany
Thom.Fruehwirth@ecrc.de

Abstract

We introduce the notion of confluence for Constraint Handling Rules
(CHR), a powerful language for writing constraint solvers. With CHR one
simplifies and solves constraints by applying rules. Confluence guarantees
that a CHR program will always compute the same result for a given set of
constraints independent of which rules are applied. We give a decidable,
sufficient and necessary syntactic condition for confluence.

Confluence turns out to be an essential syntactical property of CHR
programs for two reasons. First, confluence implies correctness (as will
be shown in this paper). In a correct CHR program, application of CHR
rules preserves logical equivalence of the simplified constraints. Secondly,
even when the program is already correct, confluence is highly desirable.
Otherwise, given some constraints, one computation may detect their in-
consistency while another one may just simplify them into a still complex
constraint.

As a side-effect, the paper also gives soundness and completeness re-
sults for CHR programs. Due to their special nature, and in particular
correctness, these theorems are stronger than what holds for the related
families of (concurrent) constraint programming languages.

Keywords: constraint reasoning, semantics of programming languages,
committed-choice languages, confluence and determinacy.

1 Introduction

Constraint Handling Rules (CHR) [Fri95] have been designed as a special-
purpose language for writing constraint solvers. A constraint solver stores and
simplifies incoming constraints. CHR is essentially a committed-choice language
consisting of guarded rules that rewrite constraints into simpler ones until they
are solved.

In contrast to the family of the general-purpose concurrent constraint languages

1

(CC) [Sar93] and the ALPS' [Mah87] framework, CHR allow “multiple heads”,
1.e. conjunctions of atoms in the head of a rule. Multiple heads are a feature that
is essential in solving conjunctions of constraints. With single-headed CHR rules
alone, unsatisfiability of constraints could not always be detected (e.g X<Y,¥<X)
and global constraint satisfaction could not be achieved.

Nondeterminacy in CHR arises when two or more rules can fire. It is obviously
desirable that the result of a computation in a solver will always be the same,
semantically and syntactically, no matter in which CHR rules are applied. This
property of constraint solvers will be called confluence and investigated in this
paper.

We will introduce a decidable, sufficient and necessary syntactic condition for
confluence. This condition adopts the notion of critical pairs as known from
term rewrite systems [DOS88, KK91, Pla93]. Monotonicity of constraint store
updates, an inherent property of constraint logic programming languages, plays
a central role in proving that joinability of critical pairs is sufficient for local
confluence.

Confluence turns out to be important with regard to both theoretical and prac-
tical aspects: We show that confluence implies correctness of a program. By
correctness we mean that the declarative semantic of a CHR program is a con-
sistent theory. Unlike CC programs, CHR programs can be given a declarative
semantics since they are only concerned with defining constraints (i.e. first or-
der predicates), not procedures in their generality. Furthermore we show how to
strengthen the declarative reading of a CHR program if it is confluent. A prac-
tical application of our definition of confluence lies in program analysis, where
we can identify non—confluent parts of CHR programs by examining the critical
pairs. Programs with non—confluent parts essentially represent an ill-defined
constraint solving algorithm.

Our work extends previous approaches to the notion of determinacy in the field
of CC languages: Maher investigates in [Mah87] a class of flat committed choice
logic languages (ALPS). He defines the class of deterministic ALPS programs
as those programs whose guards are mutually exclusive. The class of determin-
istic ALPS programs is less expressive than confluent CHR programs. Saraswat
defines for the CC framework a similar notion of determinacy [Sar93], which
is also more restrictive than confluence. We also give two reasons, why CHR
cannot be made deterministic in general.

Our approach is orthogonal to the work in program analysis in [MO95] and
[FGMP95], where a different, less rigid notion of confluence is defined: A CC
program is confluent, if different process schedulings (i.e. different orderings of
decisions at nondeterministic choice points) give rise to the same set of possible
outcomes. The idea of [MO95] is to introduce a non-standard semantics, which
is confluent for all CC programs.

The paper is organized as follows. The next section introduces the syntax of
constraint handling rules, their declarative and operational semantics. Then
this section contributes to the relationship between the declarative and opera-
tional semantics of CHR programs by giving soundness and completeness results.
Section 3 presents the notion of confluence for CHR. In section 4 we show that

1Saraswat showed in [Sar93], that ALPS C2§1 be recognized as a subset of cc(|,—)

confluence implies logical correctness of a program. This leads to a stronger
completeness and soundness result for finite failed computation. Finally, we
conclude with a summary and directions for future work.

2 Syntax and Semantics of CHR

We assume some familiarity with (concurrent) constraint programming (CCP)
[JL87, JM94, SRPI1, Sar93, Sha89]. There is a distinguished class of predicates,
the constraints. We assume, that there is a built-in constraint solver that solves,
checks and simplifies built-in (predefined) constraints. On the other hand, the
user-defined constraints are those defined by a CHR program. This implies,
that we have two disjoint sets of constraint symbols for the built—in and the
user—defined constraints.

As a special purpose language, CHR usually extend a host language such as
Prolog or Lisp with (more) constraint solving capabilities. This also means,
that auxiliary computations in CHR programs can be performed in the host
language. Without loss of generality, to keep this paper self-contained, we will
not address host language issues here. We also restrict ourselves to the main

kind of CHR rule.

Definition 2.1 A CHR program is a finite set of simplification rules?. A sim-
plification rule is of the form

Hl,...,HiQGl,...,G]' |Bl,...,Bk.

where the multi-head Hy,..., H; is a conjunction® of user-defined constraints
and the guard Gy, ...,G; is a conjunction of built-in constraints and the body
By, ..., By 1s a conjunction of built-in and user-defined constraints called goals.

2.1 Declarative Semantics

Unlike CC programs, CHR programs can be a given a declarative semantics since
they are only concerned with defining constraints (i.e. first order predicates),
not procedures in their generality.

Declaratively, a simplification rule
Hl,...,HiQGl,...,G]' |Bl,...,Bk.

is a logical equivalence provided the guard is true in the current context

where £ are the variables occuring in Hy, ..., H, and y, 7 are the other variables

occuring in G1,...,G; and By, ... By respectively.

?There are two other kinds of rules [BFL-194], which are not treated here.
3For conjunctions in rules we use ”,” instead of "A”.
4we use Z as an abbreviation for a sequenC§ of variables

The declarative interpretation of a CHR program P is given by the set P of
logical equivalences and a consistent built—in theory CT" which determines the
meaning of the built-in constraints appearing in the program. The constraint
theory C'T specifies among other things the ACI properties of the logical con-
junction A in the built-in constraint store, the properties of the equality con-
straints = (Clarks axiomatization) and the properties of the basic constraints
true and false.

Definition 2.2 A CHR program P is correctiff P U C'T' is consistent.

2.2 Operational Semantics of CHR

We define the operational semantics as a transition system.

2.2.1 States
Definition 2.3 A staleis a triple
<CU, CB, V>.

Cy 1s a conjunction of both user-defined and built-in constraints that remains
to be solved. Cp is a conjunction of built-in constraints accumulated up to this
point of execution. V is an ordered set of variables.

Definition 2.4 A variable X in a state <Cy,Cpg, V> is called global, if it ap-
pears in V. It is called local otherwise.

Definition 2.5 The pair (Cy,C2) (Cy and Cy are conjunctions of constraints)
is called enclosed by the ordered set V iff all variables shared by C7 and C5 are
contained in V.

We can attribute to each state <Cy, Cg, V> the formula
Y1, ..., Y Cu ACB

as a logical meaning, where Y7, ..., Y, are the local variables in Cy and Cp.
Note that the global variables remain unbound in the formula.

2.2.2 Update

We define now the basic operation of the built—in constraint solver: The main
task of update is transforming a state into a logically equivalent state with a
normalized built—in constraint store. update performs the following tasks:

e normalize the built—in constraint store according to CT’
e propagate equality constraints through the state

e remove redundant equality constrfints where one side is a local variable.

Definition 2.6 update normalizes a state by performing the following opera-
tions in sequence:

1. update produces a unique representation of the built-in constraint store
according to the theory CT.

2. Equality constraints of the form X =t receive a special treatment: occur-
rences of X in all constraints (except the equality itself) in the built-in
constraint store and goal store are replaced by .

3. All equality constraints of the form X=t or Y =X are removed, if X is
local. These equality constraints will be called local. This reflects the
validity of formulas (3X X=a), which follows from the axioms in C'T (see
example 2.1).

Example 2.1
update(<p(Y) A q(2), Y=f(X) A Z=q, [Y]>) = <p(f(X)) A q(a), Y=F(X),[Y]>
Under an enclosement condition update is compatible with addition of con-

straints. This result is given by the following lemma, which is proven by con-
tradiction.

Lemma 2.1 If C'is a conjunction of built—in constraints and (C, C'g) is enclosed

by V and update(<Cy,Cp,V>) = <C{;,Ck, V> then

update(<Cy,Cp A C,V>) = update(<C{;,Cy AC,V>).
The enclosement condition in the lemma above reflects the sensitivity of update
with respect to local variables. It guarantees that equality constraints involving

variables appearing in the added constraint C' are not removed due to locality.
If the condition is violated, the claim is false:

Example 2.2
update(<true, X=2,[|>) = <true, true, [|>,
adding the built-in constraint X=1 on both sides results for the left side in:
update(<true, X=2 A X=1,[]>) = <true, false, [|>
but for the right side in:

update(<true, true A X=1,[]>) = <true, true, []>

Definition 2.7 Entailment (—,) tests whether a given conjunction of built—
in constraints is implied by another conjunction of built—in constraints in the
context of a state and is defined as follows:

<Cy1,CB1,V> —, <Cy2,Cpa, V> iff
<C{1,Ch, V> = update(<Clry, Cpy A Chy, V>).
where update(<Cp1, Cp1, V>) = <Cf;y, Chy, V> and update(<Cry2, Cpa, V>) =

<Clry, Cy, V>. .

2.2.3 Computation Steps

Given a CHR program P we define the transition relation —p by introducing
two kinds of computation steps:

Solve <CACy,Cg,V> +—p update(<Cy,CACg,V>)
if C'1s a built-in constraint.

The built—in constraint solver updates the state after adding the built—in con-
straint C' to the built—in store C'g.

Simplify <H' A Cy,Cp,V> —p update(<Cy AB,H=H'ACpg,V>)
if (H < G | B) is a variant with fresh variables of a rule in P and
<H',Cp,V>—,<H' H=HANG,V>.

To simplify user-defined atoms means to apply a simplification rule on these
atoms. This can be done if the atoms match with the head atoms of the rule
and the guard is entailed by the built-in constraint store. The atoms occuring
in the body of the rule are added to the goal constraint store.

Notation. By c(t1,...,tn)=c(s1,...,8,) We meant;=s; A... Atp=s,,ifcisa
user-defined constraint. By p1A.. Ap,=q1A.. . Agy, we mean pr1=q1A.. App=¢pn.

Definition 2.8 S +—7% S’ holds iff

S =25"or S =update(S’) or S+p Sy —p...+=p S, —p S (n>0).

We will write — instead of —p and —* instead of —7%, if the program P is

fixed.

Lemma 2.2 Update has no influence on application of rules, i.e.
S+ S” implies update(S) — 5.

The nitial state consists of a goal G, an empty built-in constraint store and the
list V of the variables occuring in G,

<G, true, V>.

A computation state is a final state if

e its built-in constraint store is false, then it is called fatled,

e no computation step can be applied and its built-in constraint store is not
false. Then it 1s called successful.

Definition 2.9 A computation of a goal G is a sequence Sy, Sy, ... of states
with S; — S;41 beginning with the the initial state Sy = <G, true, V> and
ending in a final state or diverging. A finite computation is successful if the
final state is successful. It is failed othebrwise.

Definition 2.10 A computable constraint C of G is the conjunction 32 Cy ACE,
where Cy and Cg occur in a state <Cy,Cg, V>, which appears in a computa-
tion of G. Z are the local variables.

A final constraint C is the conjunction & Cy A Cpg, where Cy and C'g occur in
a final state <Cy,Cpg,V>.

2.2.4 Equivalence and Monotonicity

The following definition reflects the AC1 properties of the goal store and the
fact that all states with an inconsistent built—in constraint store are i1dentified.

Definition 2.11 We identify states according to the equivalence relation 2

<Cy,Cp,V>= <C{;,,Cp, V> iff Cyy can be transformed to C}; using the AC1
properties of the conjunction A, or Cpg 1s false.

We have to ensure that the equivalence = is well-defined, i.e. that it i1s compat-
ible with the operations we perform on states. We have six different operations
working on states, 1-3 are explicitly used for computation steps, whereas 4-6
occur only in the proof for the theorem on local confluence:

Solve

Simplify

update

add a constraint to the goal store or built-in constraint store
form a variant

S O = W N =

replace the global variable store by another ordered set of variables

It is easy to see that all these operations are congruent with the relation =2, i.e.
the following holds for each instance o of an operation:

Sy 2= S5 implies o(S1) = 0(S2)

Therefore we can reason about states modulo =.

The next definition defines the notion of monotonicity, which guarantees that
addition of new built-in constraints does not inhibit entailment (and hence the
application of Simplify):

Definition 2.12 A built-in constraint solver is sald to be monotonic iff the

following holds:

<Cy1,CB,V>—,<Cyq, G, V> implies <Cpy1,Cp AC,V>—,<Cys, G, V>.

Lemma 2.3 Every built-in constraint solver (where update fulfills the stated
requirements) is monotonic.

2.3 Relation between the declarative and the operational
semantics

We present results relating the operational and declarative semantics of CHR.
These results are based on work of Jaffar and Lassez [JL87], Maher [Mah87]
and van Hentenryck [vHO1].

Lemma 2.4 Let P be a CHR program, GG be a goal. If C is a computable
constraint of (G, then

P.CTEVY (C = G)?

Proof. By induction over the number of computation steps.

Theorem 2.1 (Soundness of successful computations) Let P be a CHR
program and G be a goal. If G has a successful computation with final constraint
C' then

P,CTEVY (C < G).

Proof. Immediately from lemma 2.4.

The following theorem is stronger than the completeness result presented in
[Mah87], in the way that we can reduce the disjunction in the strong complete-
ness theorem to a single disjunct. This is possible, since the computation steps
preserve logical equivalence (lemma 2.4).

Theorem 2.2 (Completeness of successful computations) Let P be a CHR
program and G be a goal. If P,CT =V (C' — () and C is satisfiable, then G

has a successful computation with final constraint €’ such that

P.CTEVY (C =).

The next theorem gives a soundness and completeness result for correct CHR
programs.

Theorem 2.3 (Soundness and Completeness of failed computations)
Let P be a correct CHR program and G be a Goal. The following are equivalent:

a) P,CT | -3¢
b) G has a finitely failed computation.

3 Confluence of CHR programs

We extend the notion of determinacy as used by Maher in [Mah87] and Saraswat
in [Sar93] to CHR by introducing the notion of confluence. The notion of de-
terministic programs is less expressive and too strict for the CHR formalism,

5VF is the universal closure of a formula F',

because it is not always possible to transform a CHR program into a deter-
ministic one. This has two reasons, of which the first also holds for the CC
formalism:

The constraint system must be closed under negation so that a single-headed
CHR program can be transformed into one with non-overlapping guards.

Example 3.1 We want to extend the built-in solver, which contains the built-
in constraints < and =, with a user-defined constraint maximum(X,Y,Z) which
holds if Z is the maximum of X and Y. The following could be part of a definition
for the constraint maximum:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X1,Y1,Z1) < Y1<X1 | Z1=X1.

This program cannot be transformed into an equivalent one without overlapping
guards.

The second reason is that CHR rules have multiple heads. We can get into a
situation, where two rules can be applied to different but overlapping conjunc-
tions of constraints. In general it is not possible to avoid commitment of one of
the rules (and thus making the program deterministic®) by adding constraints
to the guards.

Example 3.2 Consider the following part of a CHR program defining interac-
tions between the boolean operations not, imp and or.

not(X,Y), imp(X,Y) < true | X=0, Y=1.
not(X1,Y1), or(X1,Z1,Y1) & true | X1=0, Yi=1, Z1=1.

Note that both rules can be applied to the goal not (A,B) Aimp(4,B)Aor(4,C,B).
When we want that only the fist rule can be applied, we have to add a constraint
to the guard of the first rule, that or(A,C,B) doesn’t exist. Such a condition is
meta—logical and syntactically not allowed.

In the following we will adopt and extend the terminology and techniques of con-
ditional term rewriting systems (CTRS) [DOS88]. A straightforward translation
of results in the field of CTRS was not possible, because the CHR formalism gives
rise to phenomena not appearing in CTRS. These include the existence of global
knowledge (the built—in constraint store) and local variables.

Definition 3.1 A CHR program is called terminating, if there are no infinite
computation sequences.

Definition 3.2 Two states S; and S5 are called joinable if there exist states
51, S, such that S; —* 8] and Sy —* 5% and S} is a variant of S} (S] ~ S%).

6 We extend the notion of deterministic programs to our formalism in the natural way that
only one rule can commit by any given goal.

9

Definition 3.3 A CHR program is called confluent if the following holds for all
states 5,57, Sa:

IfS—*5;,5+—"5, then S; and S5 are joinable.

Definition 3.4 A CHR program is called locally confluent if the following holds
for all states 5,57, Sa:

If $— 51,5 +— S5, then S; and S5 are joinable.

For the following reasoning we require, that rules of a CHR program contain
disjoint sets of variables. This requirement means no loss of generality, because
every CHR program can be easily transformed into one with disjoint sets of
variables.

In order to give a characterization for local confluence we have to introduce the
notion of critical pairs:

Definition 3.5 If one or more atoms H;,,..., H;, of the head of a CHR rule
Hi,...,H, < G | B unify with one or more atoms atom H; ,...,] of the

head of another or the same CHR rule H], ..., H < G’ | B’ then the triple

(GAG'NH;, =H} N.. AHi =Hj | BAH A . AH; =|= B'AH;, A AH;, | V)

k41
is called a critical pair of the two CHR rules. {iy,...,4,} and {j1,...,jm} are
permutations of {1,...,n} and {1,...,m} respectively, V is the set of variables
appearing in Hy,...,H,, H{,..., H},.
Example 3.3 Consider example 3.1. There are two trivial” and the following
nontrivial critical pair:

(X<Y A YI<X1 A X=X1 A Y=Y1 A Z=Z1 |
Z=Y =|= z1=X1 | [X,Y,Z,X1,Y1,Z1])

The rules of example 3.2 have the nontrivial critical pair (We omit the global
variable store for reasons of clarity):

(X=X1 A Y=Y1 |
imp(X,Y) A X1=0 A Yi=1 A Z1=1 =|= or(X1,Z1,Y1) A X=0 A Y=1 | [..])

Trivial critical pairs in example 3.1 are stemming from unifying the heads of
either the first or second rule with themselves. Note that not every critical pair
stemming from one rule only is trivial. If the head of a rule contains a constraint
symbol more than once, the resulting critical pair may be nontrivial.

Definition 3.6 A critical pair (G | By =|= Bz | V) is called joinable if
<Bi1,G, V> and <Bj, G, V> are joinable.

"We call critical pairs of the form (G | B zlb: B | V) trivial.

Example 3.4 The first critical pair in example 3.3 is joinable, if the built-in
constraint solver simplifies X<Y A Y<X to the constraint X=Y.

The following lemmas are necessary to prove theorem 3.2. The proofs for these
lemmas can be found in the appendix. The first lemma states that the global
variables are not touched when testing the variance of two states. Crucial for
this lemma is the fact that V' is an ordered set.

Lemma 3.1 If
<Cy1,Cp1, V>~ <Cys,Cp2, V>
then the variables in V' are not modified by variable renaming.

The following lemma shows that enclosement guarantees that addition of built—
in constraints is compatible with update:

Lemma 3.2 If (C,Cy A Cp) is enclosed by V and

<Cy,Cg,V> w—* <C[,Cqh, V> then
<Cy,Cp NC, V> +—* update(<C{;,C5 AC,V>).

We apply lemma 3.2 to prove lemma 3.3, stating the enclosement conditions
under which joinability of states is compatible with addition of built—in con-
straints.

Lemma 3.3 If

<Cy1,Cp1, V> —=* <Cfy,Chy, V>,
<Cps2,Cpa, V> —* <O, Chy, V>,
<C[/]1,C/31,V> ~ <C[/]2aC/BZaV>a

and (C, Cy1 A Cpy) and (C,Cya A Cp2) are enclosed by V', then

a)
<Cy1,Cp1 ANC, V> * update(<Cfry, Oy A C,V>),
<Cya2,Cpa ANC, V> * update(<C{ 4, Oy A C,V>),
update(<C{,Cp AC,V>) ~ update(<Clry, Oy A C,V>),

I

I

<Cu1 ANC,Cp1, V> * update(<Ciry AC, Chy, V>),
<Cpya ANC,Cpa, V> * update(<Ciy A C, Clhy, V>),
update(<C{; AC,Chy, V>) ~ update(<Cly AC, Chy, V>).

I

I

11

Definition 3.7 We call two states <Cy1,Cpg1, V> and <Cypya, Cga, V> update
equivalent iff

update(<Cyi, Cp1, V>) = update(<Cya, Cpa, V>)

Lemma 3.4 If <Cy,Cpg,V> and <C{;,Ck, V> are update equivalent and
<Cy,Cg,V>+—" 5, then <C{;,ChH, V> —* 5.

Proof. The lemma follows directly from lemma 2.2.

The next lemma gives a condition when joinability is compatible with changing
the global variable store:

Lemma 3.5 Let <Cpy1,Cp1, V> and <Cysa, Cpa, V> be joinable. Then the
following holds:

a) <CU1, CBl, V> and <CU2, CBQ, V'> are joinable,
if V' consists only of variables contained in V.
b) <CU1, CBl, Vo V'> and <CU2, CBQ, Vo V'> are joinable,
if 1 contains only fresh variables (o denotes concatenation).

The following theorem is an analogy to Newman’s Lemma for term rewriting
systems [Pla93] and is proven analogously:

Theorem 3.1 (confluence of CHR programs) If a CHR program is locally
confluent and terminating, it is confluent.

Theorem 3.2 gives a characterization for locally confluent CHR programs. The
proof is given in the appendix and relies on lemmas 3.1 to 3.5.

Theorem 3.2 (local confluence of CHR programs) A terminating CHR pro-
gram 1s locally confluent if and only if all its critical pairs are joinable.

The theorem also means that we can decide whether a program (which we do
not know is terminating or not) will be confluent in case it is terminating.

Example 3.5 This example illustrates the case that an unjoinable critical pair
is detected. The following CHR program is an implementation of merge/3, i.e.
merging two lists into one list as the elements of the input lists arrive. Thus the
order of elements in the final list can differ from computation to computation.

merge([1,L2,L3) < true | L2=L3.
merge(M1,[],M3) & true | M1=M3.
merge([X|N1],N2,N3) & true | N3=[X|N], merge(N1,N2,N).
merge(01,[Y[02],03) & true | 03=[Y|0], merge(01,02,0).

There are 8 critical pairs, 4 of them stemming from different rules.

If merge/3 meets the specification, there is space for nondeterminism that causes
non-confluence. Indeed, a look at the critical pairs reveals one critical pair
stemming from the third and fourth rull§ that is not joinable:

([xln1l=01 A N2=[Y|02] A N3=03 |
N3=[XIN] A merge(N1,N2,N) =|= 03=[Y|0] A merge(01,02,0) | [..1)

It can be seen from the unjoinable critical pair above that a state like
<merge([al, [b],L),true, [L1> can either result in putting a before b in the
output list L or vice versa, since a Simplify—step can result in differing un-
joinable states, depending on which rule is applied. Hence - not surprisingly -
merge/3 is not confluent.

4 Correctness and Confluence of CHR Programs

Definition 4.1 Given a CHR program P, we define the computation equiva-
lence «—%: S; —p Sz iff S; — Sy or S1—=S5. S <5 S iff there is a sequence
Si,...5, such that Sy is S, S, is §" and S; «=p S;11 for all i. We will write <

instead of < p and <" instead of <%, if the program P is fixed.

For the sake of simplicity and clarity we prove the following two lemmas only
for the special case that all rules are ground-instantiated, without guards and
that ¢rue and false are the only built—in constraints used. One can extend the
proof to full CHR by transforming each rule of a CHR program into (possibly
infinitely many) ground-instantiated rules. This includes evaluating the built—in
constraints in the guards and bodies.

Lemma 4.1 If P is confluent, then <true,true, V> <7} <true,false, V> does
not hold.

Proof. We show by induction on n that there are no states S1,7%,52,...,Th_1, Sy
such that

<true,true, V> *—~ S —* T} *—1 55 =" .. =" T,_1 *—~ 5, =" <true,false, V>

Base case: <true,true, V> *— 57 —" <true,false, V> cannot exist, because
<true, true, V> and <true,false, V> are different (no variants) final states and
P is confluent.

Induction step: We assume that the induction hypothesis holds for n, i.e.
<true, true, V> *— S; —* T} *— 5y =" .. =% T, 1 "5, —" <true, false, V>
doesn’t exist. We prove the assertion for n + 1 by contradiction:

We assume that a sequence of the form <true, true, V> *— 57 —* T} *— 5y —*
Ty "= .. " Sy " T, %= Sp41 —" <true, false, V> exists. We will lead this
assumption to a contradiction.

Since P 1s confluent, <true, false, V> and T, are joinable. Since <true, false, V>
is a final state, there is a computation of T}, that results in <true,false, V>
(T,, —* <true,false,V>), and hence S, —* <true, false, V>. Therefore there is
a sequence of the form

<true, true, V> *— S; —* T} " Sy =" Ty "~ ... " S, T, " 5, —*

<true, false, V>,
which is a contradiction to the inducti?g hypothesis.

Lemma 4.2 If <true, true, V> «* <true, false, V> does not hold, then PUCT
is consistent.

Proof. We show consistency by defining an interpretation which is a model of

P, and therefore of P UCT.

We define Iy := {{C1,...,Cp}I<C1 A ... ACy,true, V> <% <true,true, V>}.
Let be I := (JIo)\{true} (|JM is the union of all members of M). false & I,
because <false true, V> «—* <true, true, V> does not hold. Therefore I is a
Herbrand interpretation.

We show that I = P:
For all formulas Hy A...A H, — B1 A...A B, € P the following equivalences
hold:

TEH A...AH,
iff {Hy,... Hy) CI
iff <HiA...AHp,, true, V> <% <true, true, V>>
iff <BiA...A By, true, V> <" <true, true, V>
iff {Bi,...,Bn}CI
iff TE By A...ABun.

Therefore I |= Hy A...AH, < By A...A By, for all formulas Hy A... A H,, «—
Bl/\/\Bm mnpP.

Theorem 4.1 If P is confluent, then P U CT 1s consistent.
Proof. The theorem follows directly from the lemmas 4.1 and 4.2.

Maher proves the following result for deterministic programs: if any compu-
tation sequence terminates in failure, then every (fair) computation sequence
terminates in failure. We extend this result on confluent programs and give,
compared to theorem 2.3, a closer relation between the operational and declar-
ative semantics.

Definition 4.2 A computation is fair iff the following holds:
If a rule can be applied infinitely often to a goal, then it is applied at least once.

Lemma 4.3 Let P be a confluent CHR program and GG be a goal which has a
finitely failed derivation. Then every fair derivation of G is finitely failed.

The following theorem is a consequence of the above lemma and theorem 2.3.

Theorem 4.2 Let P be a confluent program and G be a Goal.
The following are equivalent:

a) P,CT | -3¢
b) G has a finitely failed computation.

¢) every fair computation of G is finitely failed.
14

5 Conclusion and Future Work

We introduced the notion of confluence for Constraint Handling Rules (CHR).
Confluence guarantees that a CHR program will always compute the same result
for a given set of user-defined constraints independent of which rules are applied.

We have given a characterization of confluent CHR programs through joinability
of critical pairs, yielding a decidable, syntactically based test for confluence. We
have shown that confluence is a sufficient condition for logical correctness of CHR
programs. Correctness is an essential property of constraint solvers.

We also gave various soundness and completeness results for CHR programs.
Some of these theorems are stronger than what holds for the related families of
(concurrent) constraint programming languages due to correctness.

Our approach complements recent work [MO95] that gives confluent, non-standard
semantics for CC languages to make them amenable to abstract interpretation
and analysis in general, since our confluence test can find out parts of CC pro-
grams which are confluent already under the standard semantics.

Current work integrates the two other kinds of CHR rules, the propagation and
the simpagation rules, into our condition for confluence. We are also develop-
ing a tool in ECL!PS*(ECRC Constraint Logic Programming System [Ecl94])
which tests confluence of CHR programs. Preliminary tests show that most ex-
isting constraint solvers written in CHR are indeed confluent, but that there are
inherently non-confluent solvers (e.g. performing Gaussian elimination), too.
We also plan to investigate completion methods to make a non-confluent CHR
program confluent.

Acknowledgements

We would like to thank Heribert Schutz and Norbert Eisinger for useful com-
ments on a preliminary version of this paper and Michael Marte for his imple-
mentation of a confluence tester.

References

[BFL*94] P. Brisset, T. Frithwirth, P. Lim, M. Meier, T. Le Provost,
J. Schimpf, and M. Wallace. ECL*PS®3.4 Extensions User Man-
wal. ECRC Munich Germany, July 1994.

[Ecl94] ECL'PS¢3.4 User Manual, July 1994.

[FGMP95] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Con-
fluence in concurrent constraint programming. In Alagar and Nivat,

editors, Proceedings of AMAST ’95, LNCS 936. Springer, 1995.

[Fri95] T. Frihwirth. Constraint handling rules. In A. Podelski, editor, Con-
straint Programming: Basics and Trends. LNCS 910, March 1995.

15

[JL87] J. Jaffar and J. L. Lassez. Constraint logic programming. In Pro-
ceedings of the 14" ACM Symposium on Principles of Programming
Languages POPL-87, Munich, Germany, pages 111-119, 1987.

[JM94] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.
Journal of Logic Programmaing, 20:503-581, 1994.

[KK91] Claude Kirchner and Héléne Kirchner. Rewriting: Theory and Ap-
plications. North-Holland, 1991.

[Mah87] M. J. Maher. Logic Semantics for a Class of Committed-Choice Pro-
grams. In Fourth International Conference on Logic Programming,

pages 858-876, Melbourne, Australia, May 1987.

[MO95] K. Marriott and M. Odersky. A confluent calculus for concur-
rent constraint programming with guarded choice. In Ugo Monta-
nari Francesca Rossi, editor, Principles and Practice of Constraint
Programmang, Proceedings First International Conference, CP’95,
Cassis, France, pages 310-327, Berlin, September 1995. Springer.

[Plag3] David A. Plaisted. Equational reasoning and term rewriting sys-
tems. In D. Gabbay, C. Hogger, J. A. Robinson, and J. Siekmann,
editors, Handbook of Logic in Artificial Intelligence and Logic Pro-
grammaing, volume 1, chapter 5, pages 273-364. Oxford University
Press, Oxford, 1993.

[Sar93] V. A. Saraswat. Concurrent Constraint Programming. MIT Press,
Cambridge, 1993.

[Sha89)] E. Shapiro. The family of concurrent logic programming languages.
In ACM Computing Surveys, volume 21:3, pages 413-510, Septem-
ber 1989.

[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantics
foundations of concurrent constraint programming. In Conference
Record of the Eighteenth Annual ACM Symposium on principles of

Programmaing Languages, pages 333-352, Orlando, Florida, January
1991. ACM Press.

[VHI1] P. van Hentenryck. Constraint logic programming. In The Knowl-
edge Engineering Review, volume 6, pages 151-194, 1991.

[DOS88] N. Dershowitz, N. Okada, and G. Sivakumar. Confluence of con-
ditional rewrite systems. In 7st CTRS, pages 31-44. LNCS 308,
1988.

Appendix: Proofs for section 3

This appendix may be omitted in the final version in case of space
limitations.

In this appendix we prove lemmas 3.1,1%.2, 3.3, 3.5 and theorem 3.2.

Proof of lemma 3.1. Let <Cy1,Cp1, V>0 = <Cys,Cpa, V> and
<Cy1,Cg1,V> = <Cys,Cpa,V>1, where o and 7 are substitutions. Then
Vo = V and V = V7 and therefore for all variables X in the ordered set V,
Xo = X7 =X holds.

Proof of lemma 3.2. Let S = <Cy,Cp, V>, 5" = <C};,C,,V>. We prove
the claim by induction over the number n of computation steps applied:

n = 0: Then update(S) = 5" or S = S and therefore update(<Cy, Cp A C,V>) =
update(<CY;, C AC,V>), because of lemma 2.1 and (C, Cg) being enclosed in
V

n+1: Let S — <Cy1,Cp1,V> —* S’. Then the first computation step is
also applicable to <Cpr, Cp A C, V>, because the constraint solver is monotonic
(and therefore all rules applicable to S are also applicable to <Cy,Cp A C,V>).
Assume that <Cy,Cp A C, V> v/ update(<Cy1, Cp1 A C,V>). Then there are
constraints in C'g interfering with C', that have been deleted by update due to
locality of equality constraints. If the constraints interfere, they must share vari-
ables which we know to be contained in V. Therefore the equality constraints
could not be local and we have a contradiction.

The induction hypothesis gives that <Cyi,Cpi AC, V> —
update(<CY;,C AC,V>). Because update has no influence on application of
rules (lemma 2.2) we conclude:

<Cy,Cp N C, V> — update(<Cry, Cp1 A C,V>) =" update(<Cf;, Cg A C,V>).

Proof of lemma 3.3. a) Because of lemma 3.2 we only have to show that
update(<C{;q, Cpy A C,V>) ~ update(<Cl,, Cpy AC,V>): Let

<Cly, Cgy, V>0 = <Clry, Cy, V> and <Oy, Oy, V> = <Clry, Cgy, V>

o and 7 don’t touch variables in C' (lemma 3.1) therefore we have C'oc = C and
C't = C. Hence we can conclude that <C{;;,Cgy AC, V>0 = <Cly, Ca ANC, V>
and <Cfy, Ch AC, V> = <Cfq, Oy ACV>T, 16, <Oy, Cy AC, V> and
<Oy, Cgy AN C V> are variants, and therefore

update(<C{;,,Cgy A C,V>) ~ update(<C;,, gy AC,V>).

b) It is easy to see that <Cy1 A C,Cp1, V> —* update(<C{; AC,Clhy, V>)

and <Cpy A C,Cpga, V> —* update(<C{5, A C,Clo, V>) holds. The same ar-
gumentation as above holds here to prove the variance of update(<Cj;; A C,Cgy, V>)
and update(<C{4 A C, Clhy, V>).

Proof of lemma 3.5. Let

<Cy1,Cp1, V> —* <C[/]1’C/31’V>’
<Cya,Cpa, V> —* <Oy, Chay V>,
<C[/]1,C/31,V> ~ <C[/]2aC/BZaV>~

a) We know that the following holds:
<Cy1,CB1,V'> =" <Cfy,Chy, V'>, <Cys, Cp2, V'> —" <Cfpy, Oy, V>

where Cf; is Cly, with local equality constraints removed by update (due to
shrinking V to V' variables may changf7their status from global to local). The

same holds for C%, and C'z,. Therefore C5; and C’, must be variants, because
C%, and Cl, were variants, and Cf; and C%, derive from C%, and C%, by
deletion of the same local equality constraints.

b) We can apply the same computation steps to <Ci1,Cp1,VoV'> as to
<Cy1,Cp1,V> and therefore have <Cyy,Cp1, V> —* <C},,Ch, VoV >,
With exactly the same argumentation we have that <Cys,Cpgs, V> +—*
<Ol Cloy, VoV > <Cl,Chy, Vo V> and <Cf;,, Chs, V o V> are variants.

Proof of theorem 3.2. For the only if direction we assume that we have a
locally confluent CHR program with a critical pair, that is not joinable. We will
lead this assumption to a contradiction:
Let

(G|CL == Ca|V)

be a non joinable critical pair, i.e. the computations of <G, Cy, V> and <G, (s, V>
result in two final states, not being variants. Because <G, C1, V> and <G, Cy, V>
derive from a common state S by one application of Solve and Simplify, this
contradicts the local confluence of the program.

In order to prove the if direction we prove the following hypothesis by struc-
tural induction over the states. The wellfounded ordering used for induction is
induced by the (terminating) application of Solve and Simplify.

Induction hypothesis:

for all states <Cy,Cp, V>
the following implication holds for all Cyrq, Cy2, CB1,Chs :
<CU, CB, V> — <CU1, CBl, V> and <CU, CB, V> — <CU2, CBQ, V>
implies <Cyi1,Cp1, V> and <Cya, Cpa, V> are joinable.

The base case of the induction is trivial: we are in a situation where there are no
rules applicable to <Cy,Cp, V>. The antecedent of our induction hypothesis
turns out to be false in this situation, therefore the implication is true.

Now assume that we are in state <Cpy,Cp, V> where there are two or more
possibilities of computation. We investigate all pairs of two possibilities and
show that they are joinable.

There are three cases:

Case. Solve+Solve: We required the constraint theory CT' to preserve com-
mutativity of the conjunction A in the built—in store, therefore the two compu-
tations will result in identical states.

Case. Solve+Simplify: We are in a situation <C A H' A Cy,Cpg, V> where
C'is a built—in constraint, and H' is a conjunction of user—defined constraints
matching with the head of a rule (H < G| B) and the guard is entailed, i.e.

<H' Cp,V>—,<H' H=HANG,V>.

If the Simplify step is done first, the Solve step is applicable hereafter. If we
show, that Simplify is applicable after application of Solve, we are finished.
Application of Solve results in a state update(<C A H' A Cy,C A Cg,V>).
Simplify is applicable if <H',C A Cp,V>—,<H', H'=H A G,V>. This holds
because the built—in constraint solver iISSmonotonic.

Case. Simplify+Simplify: Rules to be applied (we assume that they contain
disjoint sets of variables):

R = Hi,...H, & G|B
R = H{,...,H, & G|B

It is explicitly allowed, that R and R’ are in fact variants of the same CHR rule.

We have to show that application of R or R’ results in joinable states. We know
that Cp is satisfiable, otherwise no rule could be applied. We can distinguish
two different subcases:

Subcase. Disjoint peak: No head atom of the first rule R unifies with a head
atom of the other rule R'.

Application order R; R’ (first R then R') will lead to the same result as appli-
cation order R’; R. Because of the associativity and commutativity of the goal
store both orderings are indeed applicable.

Subcase. Critical peak. We can assume that the first atoms of the rules
unify (Hi=H{ A ... A H;=H!). (Included in this case is the overlay case:
n=n'AH=H{AN...NH,=H/.)

Let <G1 AGa A ... NGy, Cp, V> be the actual state, on which the rules R and
R’ are applicable. For the sake of simplicity we can assume that

<G1/\Gz/\.../\Gm,CB,V>—>O<G1/\Gz/\.../\Gm,C,V>,
where C' 18 the following conjunction of equality constraints:

C= Gi=Hy N...AN Gi=H; AN Gi=H] A...AN Gy=H! A
Gi+1iHZ'+1 AN Gp=H, A Gn+1iHZ{+1 FANPRAN Gn+n1_iiHT/Ll.
(This situation can be achieved by changing the order of goal atoms and atoms

in the heads of R and R'.)

We use abbreviations to represent the atoms in question:

G = GiA...ANGy,

G' = GiAN... ANGiANGuyi Ao ANGrgni,
H = H{A...ANH,,
H' = H{A...NH,
Ho = HiA...AH;,
H, = H{A...\NH],
Gresr = Gnii Ao AGpgnicigi Ao A Gy,
G/REST = Gipi AN .. NG AGpgpi—izi A AGpy.

and write (Py,..., Pp)=(P],..., P}) for PI=P{ A ... AN Py=P].
Application of R and R’ on the actual state will result in the following two
states:

S = update(<GRE5T ANB,Cp /\GiH,V>)
and S = update(<G’R€6T AB ,Cp NG'=H'V>).

We will show in the following that S and S’ are joinable:
We can see that the rules R and R’ have the critical pair

(GANG'NHa=H{ | BANH{ A AN, =|=B NHig1 A ANH, | V'),

which we know to be joinable. So there is a sequence of computation steps
resulting in two final states differing only by variable renaming for the two
initial states
<BANH{ 4 N...NH,,GNG'NHa=H{,V'>

and <B'AH 1 AN...ANH,, GANG'"NHy=HL,V'>
We can apply lemma 3.5b) here and add V to the global variables stores, because
V shares no variables with the two states:

<BANH{ 4 AN...NH,GANG'NHa=H{,V' o V>
and <B'AH;p 1 A...ANHy,GANG' NHr=H/, V' o V>.

are joinable.
According to lemma 3.3 a) and b) we can add the built-in constraints Cp A
G=HAG'=H’ and the user-defined constraints G,,11A...AGp, to the constraint
stores of each state without losmg joinability. The requlrements of the lemma
are met because the variables in H and H' are contained in V' and Cg, G, G/
and G411 A ... A Gy, share no variables with the previous states.

<BH'G,GANG'NH=H.ANCp NG=H NG'=H' V' o V>

and <B'HG,GANG'ANHa=H\ACp ANG=H NG'=H' V' o V>
are joinable. Here BH'(stands for B A Hi+1 Ao ANHLUNGp1 Ao AGy and
B'HG stands for BB AH; g1 A ... AH, NGy A AGpy
Now we can remove the global variables V' from the variable stores by applying
lemma 3.5a) and keep joinability of
<BH'G,GANG'NH=H . NCp NG=HANG'=H' V>
and <B'HG,GANG' NHa=HLANCp ANG=H ANG'=H',V>.

We know that
<GIA NG, Ce NG=HANG'ZH V>— <G A .. . NG, Ha=HL, NGAG V>,
hence
update(<BH'G,GAG' NHa=H,ANCp ANG=H ANG'=H' V>) =

update(<BH'G,Cp NG=H NG'=H',V>).

With the analogous reasoning for
<B'HG,GANG'NH=H,ANCp ANG=HANG'=H' V>

and applying lemma 3.4 we can remove G A G’ A Hn=H], in both states, whilst
keeping joinability of

<BH'G,Cg NG=H NG'=H' V>

and <B'HG,Cp /\QCSiH/\G’iH’,V>.

We can replace HZ(_I_1 A ANHL DY Gogr Ao A Grgni—; and likewise Hiqpq A
. .ANHy by Gig1 A .AG, and get (joinable) update-equivalent states, because
the equality-constraints are contained in the constraint store:
<BAGgrgst,CB A G=H A G/I'H/, V>
and <B//\G/REST,CB /\G:H/\G/:H/,V>
We know that the following two states are update-equivalent with the upper two

states (only local equality constraints have been removed) and therefore must
be joinable (lemma 3.4), too.

<BAGgrgst,ChB /\GI'H,V>
and <B' AGypsr,Cp ANG'=H' V>

If we apply lemma 3.4 we finally know that S and S are joinable.

21

