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Con
uent Simpli�cation RulesSlim Abdennadher1, Thom Fr�uhwirth2, Holger Meuss11Computer Science Department, University of MunichWagm�ullerstr. 23, 80538 Munich, GermanyfSlim.Abdennadher,Holger.Meussg@informatik.uni-muenchen.de2ECRC, Arabellastr. 17, Munich, GermanyThom.Fruehwirth@ecrc.deAbstractWe introduce the notion of con
uence for Constraint Handling Rules(CHR), a powerful language for writing constraint solvers. With CHR onesimpli�es and solves constraints by applying rules. Con
uence guaranteesthat a CHR program will always compute the same result for a given set ofconstraints independent of which rules are applied. We give a decidable,su�cient and necessary syntactic condition for con
uence.Con
uence turns out to be an essential syntactical property of CHRprograms for two reasons. First, con
uence implies correctness (as willbe shown in this paper). In a correct CHR program, application of CHRrules preserves logical equivalence of the simpli�ed constraints. Secondly,even when the program is already correct, con
uence is highly desirable.Otherwise, given some constraints, one computation may detect their in-consistency while another one may just simplify them into a still complexconstraint.As a side-e�ect, the paper also gives soundness and completeness re-sults for CHR programs. Due to their special nature, and in particularcorrectness, these theorems are stronger than what holds for the relatedfamilies of (concurrent) constraint programming languages.Keywords: constraint reasoning, semantics of programming languages,committed-choice languages, con
uence and determinacy.1 IntroductionConstraint Handling Rules (CHR) [Fr�u95] have been designed as a special-purpose language for writing constraint solvers. A constraint solver stores andsimpli�es incoming constraints. CHR is essentially a committed-choice languageconsisting of guarded rules that rewrite constraints into simpler ones until theyare solved.In contrast to the family of the general-purpose concurrent constraint languages1



(CC) [Sar93] and the ALPS1 [Mah87] framework, CHR allow \multiple heads",i.e. conjunctions of atoms in the head of a rule. Multiple heads are a feature thatis essential in solving conjunctions of constraints. With single-headed CHR rulesalone, unsatis�ability of constraints could not always be detected (e.g X<Y,Y<X)and global constraint satisfaction could not be achieved.Nondeterminacy in CHR arises when two or more rules can �re. It is obviouslydesirable that the result of a computation in a solver will always be the same,semantically and syntactically, no matter in which CHR rules are applied. Thisproperty of constraint solvers will be called con
uence and investigated in thispaper.We will introduce a decidable, su�cient and necessary syntactic condition forcon
uence. This condition adopts the notion of critical pairs as known fromterm rewrite systems [DOS88, KK91, Pla93]. Monotonicity of constraint storeupdates, an inherent property of constraint logic programming languages, playsa central role in proving that joinability of critical pairs is su�cient for localcon
uence.Con
uence turns out to be important with regard to both theoretical and prac-tical aspects: We show that con
uence implies correctness of a program. Bycorrectness we mean that the declarative semantic of a CHR program is a con-sistent theory. Unlike CC programs, CHR programs can be given a declarativesemantics since they are only concerned with de�ning constraints (i.e. �rst or-der predicates), not procedures in their generality. Furthermore we show how tostrengthen the declarative reading of a CHR program if it is con
uent. A prac-tical application of our de�nition of con
uence lies in program analysis, wherewe can identify non{con
uent parts of CHR programs by examining the criticalpairs. Programs with non{con
uent parts essentially represent an ill-de�nedconstraint solving algorithm.Our work extends previous approaches to the notion of determinacy in the �eldof CC languages: Maher investigates in [Mah87] a class of 
at committed choicelogic languages (ALPS). He de�nes the class of deterministic ALPS programsas those programs whose guards are mutually exclusive. The class of determin-istic ALPS programs is less expressive than con
uent CHR programs. Saraswatde�nes for the CC framework a similar notion of determinacy [Sar93], whichis also more restrictive than con
uence. We also give two reasons, why CHRcannot be made deterministic in general.Our approach is orthogonal to the work in program analysis in [MO95] and[FGMP95], where a di�erent, less rigid notion of con
uence is de�ned: A CCprogram is con
uent, if di�erent process schedulings (i.e. di�erent orderings ofdecisions at nondeterministic choice points) give rise to the same set of possibleoutcomes. The idea of [MO95] is to introduce a non-standard semantics, whichis con
uent for all CC programs.The paper is organized as follows. The next section introduces the syntax ofconstraint handling rules, their declarative and operational semantics. Thenthis section contributes to the relationship between the declarative and opera-tional semantics of CHR programs by giving soundness and completeness results.Section 3 presents the notion of con
uence for CHR. In section 4 we show that1Saraswat showed in [Sar93], that ALPS can be recognized as a subset of cc(#;!)2



con
uence implies logical correctness of a program. This leads to a strongercompleteness and soundness result for �nite failed computation. Finally, weconclude with a summary and directions for future work.2 Syntax and Semantics of CHRWe assume some familiarity with (concurrent) constraint programming (CCP)[JL87, JM94, SRP91, Sar93, Sha89]. There is a distinguished class of predicates,the constraints. We assume, that there is a built-in constraint solver that solves,checks and simpli�es built-in (prede�ned) constraints. On the other hand, theuser-de�ned constraints are those de�ned by a CHR program. This implies,that we have two disjoint sets of constraint symbols for the built{in and theuser{de�ned constraints.As a special purpose language, CHR usually extend a host language such asProlog or Lisp with (more) constraint solving capabilities. This also means,that auxiliary computations in CHR programs can be performed in the hostlanguage. Without loss of generality, to keep this paper self-contained, we willnot address host language issues here. We also restrict ourselves to the mainkind of CHR rule.De�nition 2.1 A CHR program is a �nite set of simpli�cation rules2. A sim-pli�cation rule is of the formH1; : : : ;Hi, G1; : : : ; Gj j B1; : : : ; Bk:where the multi{head H1; : : : ;Hi is a conjunction3 of user-de�ned constraintsand the guard G1; : : : ; Gj is a conjunction of built-in constraints and the bodyB1; : : : ; Bk is a conjunction of built-in and user-de�ned constraints called goals.2.1 Declarative SemanticsUnlike CC programs, CHR programs can be a given a declarative semantics sincethey are only concerned with de�ning constraints (i.e. �rst order predicates),not procedures in their generality.Declaratively, a simpli�cation ruleH1; : : : ;Hi, G1; : : : ; Gj j B1; : : : ; Bk:is a logical equivalence provided the guard is true in the current context8�x (9�y (G1 ^ : : :^Gj))! (H1 ^ : : :^Hn $ 9�z (B1 ^ : : :^Bk)),where �x4 are the variables occuring inH1; : : : ;Hn and �y; �z are the other variablesoccuring in G1; : : : ; Gj and B1; : : :Bk respectively.2There are two other kinds of rules [BFL+94], which are not treated here.3For conjunctions in rules we use "," instead of "^".4we use �x as an abbreviation for a sequence of variables3



The declarative interpretation of a CHR program P is given by the set P oflogical equivalences and a consistent built{in theory CT which determines themeaning of the built{in constraints appearing in the program. The constrainttheory CT speci�es among other things the ACI properties of the logical con-junction ^ in the built-in constraint store, the properties of the equality con-straints _= (Clarks axiomatization) and the properties of the basic constraintstrue and false.De�nition 2.2 A CHR program P is correct i� P [ CT is consistent.2.2 Operational Semantics of CHRWe de�ne the operational semantics as a transition system.2.2.1 StatesDe�nition 2.3 A state is a triple<CU ; CB;V>:CU is a conjunction of both user-de�ned and built-in constraints that remainsto be solved. CB is a conjunction of built-in constraints accumulated up to thispoint of execution. V is an ordered set of variables.De�nition 2.4 A variable X in a state <CU ; CB;V> is called global, if it ap-pears in V. It is called local otherwise.De�nition 2.5 The pair (C1; C2) (C1 and C2 are conjunctions of constraints)is called enclosed by the ordered set V i� all variables shared by C1 and C2 arecontained in V.We can attribute to each state <CU ; CB;V> the formula9Y1; : : : ; Ym CU ^ CBas a logical meaning, where Y1; : : : ; Ym are the local variables in CU and CB .Note that the global variables remain unbound in the formula.2.2.2 UpdateWe de�ne now the basic operation of the built{in constraint solver: The maintask of update is transforming a state into a logically equivalent state with anormalized built{in constraint store. update performs the following tasks:� normalize the built{in constraint store according to CT� propagate equality constraints through the state� remove redundant equality constraints where one side is a local variable.4



De�nition 2.6 update normalizes a state by performing the following opera-tions in sequence:1. update produces a unique representation of the built-in constraint storeaccording to the theory CT .2. Equality constraints of the form X _=t receive a special treatment: occur-rences of X in all constraints (except the equality itself) in the built-inconstraint store and goal store are replaced by t.3. All equality constraints of the form X _=t or Y _=X are removed, if X islocal. These equality constraints will be called local. This re
ects thevalidity of formulas (9X X _=a), which follows from the axioms in CT (seeexample 2.1).Example 2.1update(<p(Y ) ^ q(Z); Y _=f(X) ^ Z _=a; [Y ]>) = <p(f(X)) ^ q(a); Y _=f(X); [Y ]>Under an enclosement condition update is compatible with addition of con-straints. This result is given by the following lemma, which is proven by con-tradiction.Lemma 2.1 If C is a conjunction of built{in constraints and (C;CB) is enclosedby V and update(<CU ; CB;V>) = <C 0U ; C0B;V> thenupdate(<CU ; CB ^ C;V>) = update(<C0U ; C0B ^C;V>):The enclosement condition in the lemma above re
ects the sensitivity of updatewith respect to local variables. It guarantees that equality constraints involvingvariables appearing in the added constraint C are not removed due to locality.If the condition is violated, the claim is false:Example 2.2 update(<true; X _=2; []>) = <true; true; []>;adding the built-in constraint X _=1 on both sides results for the left side in:update(<true; X _=2 ^X _=1; []>) = <true; false; []>but for the right side in:update(<true; true ^X _=1; []>) = <true; true; []>De�nition 2.7 Entailment (!o) tests whether a given conjunction of built{in constraints is implied by another conjunction of built{in constraints in thecontext of a state and is de�ned as follows:<CU1; CB1;V> !o <CU2; CB2;V> i�<C0U1; C0B1;V> = update(<C0U2; C0B1 ^ C0B2;V>):where update(<CU1; CB1;V>) = <C 0U1; C0B1;V> and update(<CU2; CB2;V>) =<C0U2; C0B2;V>. 5



2.2.3 Computation StepsGiven a CHR program P we de�ne the transition relation 7!P by introducingtwo kinds of computation steps:Solve <C ^ CU ; CB;V> 7!P update(<CU ; C ^ CB;V>)if C is a built-in constraint.The built{in constraint solver updates the state after adding the built{in con-straint C to the built{in store CB.Simplify <H 0 ^ CU ; CB;V> 7!P update(<CU ^B;H _=H0 ^ CB ;V>)if (H , G j B) is a variant with fresh variables of a rule in P and<H0; CB;V>!o<H 0;H0 _=H ^G;V>.To simplify user-de�ned atoms means to apply a simpli�cation rule on theseatoms. This can be done if the atoms match with the head atoms of the ruleand the guard is entailed by the built-in constraint store. The atoms occuringin the body of the rule are added to the goal constraint store.Notation. By c(t1; : : : ; tn) _=c(s1; : : : ; sn) we mean t1 _=s1 ^ : : :^ tn _=sn, if c is auser-de�ned constraint. By p1^: : :^pn _=q1^: : :^qn we mean p1 _=q1^: : :^pn _=qn.De�nition 2.8 S 7!�P S0 holds i�S = S0 or S = update(S0) or S 7!P S1 7!P : : : 7!P Sn 7!P S0 (n � 0):We will write 7! instead of 7!P and 7!� instead of 7!�P , if the program P is�xed.Lemma 2.2 Update has no in
uence on application of rules, i.e.S 7! S0 implies update(S) 7! S0:The initial state consists of a goal G, an empty built-in constraint store and thelist V of the variables occuring in G,<G; true;V>.A computation state is a �nal state if� its built-in constraint store is false, then it is called failed;� no computation step can be applied and its built-in constraint store is notfalse. Then it is called successful.De�nition 2.9 A computation of a goal G is a sequence S0; S1; : : : of stateswith Si 7! Si+1 beginning with the the initial state S0 = <G; true;V> andending in a �nal state or diverging. A �nite computation is successful if the�nal state is successful. It is failed otherwise.6



De�nition 2.10 A computable constraint C ofG is the conjunction 9�x CU^CB,where CU and CB occur in a state <CU ; CB;V>, which appears in a computa-tion of G. �x are the local variables.A �nal constraint C is the conjunction 9�x CU ^CB, where CU and CB occur ina �nal state <CU ; CB;V>.2.2.4 Equivalence and MonotonicityThe following de�nition re
ects the AC1 properties of the goal store and thefact that all states with an inconsistent built{in constraint store are identi�ed.De�nition 2.11 We identify states according to the equivalence relation �=:<CU ; CB;V> �= <C 0U ; CB;V> i� CU can be transformed to C0U using the AC1properties of the conjunction ^, or CB is false.We have to ensure that the equivalence �= is well-de�ned, i.e. that it is compat-ible with the operations we perform on states. We have six di�erent operationsworking on states, 1-3 are explicitly used for computation steps, whereas 4-6occur only in the proof for the theorem on local con
uence:1. Solve2. Simplify3. update4. add a constraint to the goal store or built-in constraint store5. form a variant6. replace the global variable store by another ordered set of variablesIt is easy to see that all these operations are congruent with the relation �=, i.e.the following holds for each instance o of an operation:S1 �= S2 implies o(S1) �= o(S2)Therefore we can reason about states modulo �=.The next de�nition de�nes the notion of monotonicity, which guarantees thataddition of new built-in constraints does not inhibit entailment (and hence theapplication of Simplify):De�nition 2.12 A built{in constraint solver is said to be monotonic i� thefollowing holds:<CU1; CB;V>!o<CU2; G;V> implies <CU1; CB ^ C;V>!o<CU2; G;V>:Lemma 2.3 Every built-in constraint solver (where update ful�lls the statedrequirements) is monotonic. 7



2.3 Relation between the declarative and the operationalsemanticsWe present results relating the operational and declarative semantics of CHR.These results are based on work of Ja�ar and Lassez [JL87], Maher [Mah87]and van Hentenryck [vH91].Lemma 2.4 Let P be a CHR program, G be a goal. If C is a computableconstraint of G, then P; CT j= 8 (C $ G):5Proof. By induction over the number of computation steps.Theorem 2.1 (Soundness of successful computations) Let P be a CHRprogram and G be a goal. IfG has a successful computation with �nal constraintC then P; CT j= 8 (C $ G):Proof. Immediately from lemma 2.4.The following theorem is stronger than the completeness result presented in[Mah87], in the way that we can reduce the disjunction in the strong complete-ness theorem to a single disjunct. This is possible, since the computation stepspreserve logical equivalence (lemma 2.4).Theorem 2.2 (Completeness of successful computations) Let P be a CHRprogram and G be a goal. If P; CT j= 8 (C $ G) and C is satis�able, then Ghas a successful computation with �nal constraint C0 such thatP; CT j= 8 (C $ C0):The next theorem gives a soundness and completeness result for correct CHRprograms.Theorem 2.3 (Soundness and Completeness of failed computations)Let P be a correct CHR program and G be a Goal. The following are equivalent:a) P; CT j= :9Gb) G has a �nitely failed computation.3 Con
uence of CHR programsWe extend the notion of determinacy as used by Maher in [Mah87] and Saraswatin [Sar93] to CHR by introducing the notion of con
uence. The notion of de-terministic programs is less expressive and too strict for the CHR formalism,58F is the universal closure of a formula F .8



because it is not always possible to transform a CHR program into a deter-ministic one. This has two reasons, of which the �rst also holds for the CCformalism:The constraint system must be closed under negation so that a single-headedCHR program can be transformed into one with non-overlapping guards.Example 3.1 We want to extend the built-in solver, which contains the built-in constraints � and _=, with a user-de�ned constraint maximum(X,Y,Z) whichholds if Z is the maximumof X and Y. The following could be part of a de�nitionfor the constraint maximum:maximum(X,Y,Z), X�Y | Z _=Y.maximum(X1,Y1,Z1), Y1�X1 | Z1 _=X1.This program cannot be transformed into an equivalent one without overlappingguards.The second reason is that CHR rules have multiple heads. We can get into asituation, where two rules can be applied to di�erent but overlapping conjunc-tions of constraints. In general it is not possible to avoid commitment of one ofthe rules (and thus making the program deterministic6) by adding constraintsto the guards.Example 3.2 Consider the following part of a CHR program de�ning interac-tions between the boolean operations not, imp and or.not(X,Y), imp(X,Y), true | X _=0, Y _=1.not(X1,Y1), or(X1,Z1,Y1), true | X1 _=0, Y1 _=1, Z1 _=1.Note that both rules can be applied to the goal not(A,B)^imp(A,B)^or(A,C,B).When we want that only the �st rule can be applied, we have to add a constraintto the guard of the �rst rule, that or(A,C,B) doesn't exist. Such a condition ismeta{logical and syntactically not allowed.In the following we will adopt and extend the terminology and techniques of con-ditional term rewriting systems (CTRS) [DOS88]. A straightforward translationof results in the �eld of CTRS was not possible, because the CHR formalismgivesrise to phenomena not appearing in CTRS. These include the existence of globalknowledge (the built{in constraint store) and local variables.De�nition 3.1 A CHR program is called terminating, if there are no in�nitecomputation sequences.De�nition 3.2 Two states S1 and S2 are called joinable if there exist statesS01; S02 such that S1 7!� S01 and S2 7!� S02 and S01 is a variant of S02 (S01 � S02).6We extend the notion of deterministic programs to our formalism in the natural way thatonly one rule can commit by any given goal. 9



De�nition 3.3 A CHR program is called con
uent if the following holds for allstates S; S1; S2:If S 7!� S1; S 7!� S2 then S1 and S2 are joinable.De�nition 3.4 A CHR program is called locally con
uent if the following holdsfor all states S; S1; S2:If S 7! S1; S 7! S2 then S1 and S2 are joinable.For the following reasoning we require, that rules of a CHR program containdisjoint sets of variables. This requirement means no loss of generality, becauseevery CHR program can be easily transformed into one with disjoint sets ofvariables.In order to give a characterization for local con
uence we have to introduce thenotion of critical pairs:De�nition 3.5 If one or more atoms Hi1 ; : : : ;Hik of the head of a CHR ruleH1; : : : ;Hn , G j B unify with one or more atoms atom H0j1; : : : ;H0jk of thehead of another or the same CHR rule H01; : : : ;H0m , G0 j B0 then the triple(G^G0^Hi1 _=H0j1^: : :̂ Hik _=H0jk j B^H 0jk+1^: : :̂ H0jm =#= B0^Hik+1^: : :^Hin j V)is called a critical pair of the two CHR rules. fi1; : : : ; ing and fj1; : : : ; jmg arepermutations of f1; : : : ; ng and f1; : : : ;mg respectively, V is the set of variablesappearing in H1; : : : ;Hn;H01; : : : ;H0m.Example 3.3 Consider example 3.1. There are two trivial7 and the followingnontrivial critical pair:(X�Y ^ Y1�X1 ^ X _=X1 ^ Y _=Y1 ^ Z _=Z1 |Z _=Y =#= Z1 _=X1 | [X,Y,Z,X1,Y1,Z1])The rules of example 3.2 have the nontrivial critical pair (We omit the globalvariable store for reasons of clarity):(X _=X1 ^ Y _=Y1 |imp(X,Y) ^ X1 _=0 ^ Y1 _=1 ^ Z1 _=1 =#= or(X1,Z1,Y1) ^ X _=0 ^ Y _=1 | [..])Trivial critical pairs in example 3.1 are stemming from unifying the heads ofeither the �rst or second rule with themselves. Note that not every critical pairstemming from one rule only is trivial. If the head of a rule contains a constraintsymbol more than once, the resulting critical pair may be nontrivial.De�nition 3.6 A critical pair (G j B1 =#= B2 j V) is called joinable if<B1; G;V> and <B2; G;V> are joinable.7We call critical pairs of the form (G j B =#= B j V) trivial.10



Example 3.4 The �rst critical pair in example 3.3 is joinable, if the built{inconstraint solver simpli�es X�Y ^ Y�X to the constraint X _=Y.The following lemmas are necessary to prove theorem 3.2. The proofs for theselemmas can be found in the appendix. The �rst lemma states that the globalvariables are not touched when testing the variance of two states. Crucial forthis lemma is the fact that V is an ordered set.Lemma 3.1 If <CU1; CB1;V> � <CU2; CB2;V>then the variables in V are not modi�ed by variable renaming.The following lemma shows that enclosement guarantees that addition of built{in constraints is compatible with update:Lemma 3.2 If (C;CU ^ CB) is enclosed by V and<CU ; CB;V> 7!� <C0U ; C0B;V> then<CU ; CB ^ C;V> 7!� update(<C0U ; C0B ^ C;V>):We apply lemma 3.2 to prove lemma 3.3, stating the enclosement conditionsunder which joinability of states is compatible with addition of built{in con-straints.Lemma 3.3 If <CU1; CB1;V> 7!� <C0U1; C0B1;V>;<CU2; CB2;V> 7!� <C0U2; C0B2;V>;<C 0U1; C0B1;V> � <C0U2; C0B2;V>;and (C;CU1 ^ CB1) and (C;CU2 ^ CB2) are enclosed by V, thena) <CU1; CB1 ^ C;V> 7!� update(<C0U1; C0B1 ^ C;V>);<CU2; CB2 ^ C;V> 7!� update(<C0U2; C0B2 ^ C;V>);update(<C0U1; C0B1 ^ C;V>) � update(<C0U2; C0B2 ^ C;V>);b) <CU1 ^ C;CB1;V> 7!� update(<C0U1 ^ C;C0B1;V>);<CU2 ^ C;CB2;V> 7!� update(<C0U2 ^ C;C0B2;V>);update(<C0U1 ^ C;C0B1;V>) � update(<C0U2 ^ C;C0B2;V>):11



De�nition 3.7 We call two states <CU1; CB1;V> and <CU2; CB2;V> updateequivalent i� update(<CU1; CB1;V>) = update(<CU2; CB2;V>)Lemma 3.4 If <CU ; CB;V> and <C0U ; C0B;V> are update equivalent and<CU ; CB;V> 7!� S0, then <C 0U ; C0B;V> 7!� S0.Proof. The lemma follows directly from lemma 2.2.The next lemma gives a condition when joinability is compatible with changingthe global variable store:Lemma 3.5 Let <CU1; CB1;V> and <CU2; CB2;V> be joinable. Then thefollowing holds:a) <CU1; CB1;V0> and <CU2; CB2;V0> are joinable,if V 0 consists only of variables contained in V.b) <CU1; CB1;V � V0> and <CU2; CB2;V � V0> are joinable,if V 0 contains only fresh variables (� denotes concatenation).The following theorem is an analogy to Newman's Lemma for term rewritingsystems [Pla93] and is proven analogously:Theorem 3.1 (con
uence of CHR programs) If a CHR program is locallycon
uent and terminating, it is con
uent.Theorem 3.2 gives a characterization for locally con
uent CHR programs. Theproof is given in the appendix and relies on lemmas 3.1 to 3.5.Theorem 3.2 (local con
uence of CHR programs) A terminatingCHR pro-gram is locally con
uent if and only if all its critical pairs are joinable.The theorem also means that we can decide whether a program (which we donot know is terminating or not) will be con
uent in case it is terminating.Example 3.5 This example illustrates the case that an unjoinable critical pairis detected. The following CHR program is an implementation of merge/3, i.e.merging two lists into one list as the elements of the input lists arrive. Thus theorder of elements in the �nal list can di�er from computation to computation.merge([],L2,L3), true | L2 _=L3.merge(M1,[],M3), true | M1 _=M3.merge([X|N1],N2,N3), true | N3 _=[X|N], merge(N1,N2,N).merge(O1,[Y|O2],O3), true | O3 _=[Y|O], merge(O1,O2,O).There are 8 critical pairs, 4 of them stemming from di�erent rules.If merge/3meets the speci�cation, there is space for nondeterminism that causesnon-con
uence. Indeed, a look at the critical pairs reveals one critical pairstemming from the third and fourth rule that is not joinable:12



([X|N1] _=O1 ^ N2 _=[Y|O2] ^ N3 _=O3 |N3 _=[X|N] ^ merge(N1,N2,N) =#= O3 _=[Y|O] ^ merge(O1,O2,O) | [..])It can be seen from the unjoinable critical pair above that a state like<merge([a],[b],L),true,[L]> can either result in putting a before b in theoutput list L or vice versa, since a Simplify{step can result in di�ering un-joinable states, depending on which rule is applied. Hence - not surprisingly -merge/3 is not con
uent.4 Correctness and Con
uence of CHR ProgramsDe�nition 4.1 Given a CHR program P , we de�ne the computation equiva-lence $�P : S1 $P S2 i� S1 7! S2 or S1 S2. S $�P S0 i� there is a sequenceS1; : : :Sn such that S1 is S, Sn is S0 and Si $P Si+1 for all i. We will write $instead of $P and $� instead of $�P , if the program P is �xed.For the sake of simplicity and clarity we prove the following two lemmas onlyfor the special case that all rules are ground{instantiated, without guards andthat true and false are the only built{in constraints used. One can extend theproof to full CHR by transforming each rule of a CHR program into (possiblyin�nitely many) ground{instantiated rules. This includes evaluating the built{inconstraints in the guards and bodies.Lemma 4.1 If P is con
uent, then <true; true;V> $�P <true; false;V> doesnot hold.Proof. We show by induction on n that there are no states S1; T1; S2; : : : ; Tn�1; Snsuch that<true; true;V> � S1 7!� T1 � S2 7!� : : : 7!� Tn�1 � Sn 7!� <true; false;V>Base case: <true; true;V> � S1 7!� <true; false;V> cannot exist, because<true; true;V> and <true; false;V> are di�erent (no variants) �nal states andP is con
uent.Induction step: We assume that the induction hypothesis holds for n, i.e.<true; true;V> � S1 7!� T1 � S2 7!� : : : 7!� Tn�1 � Sn 7!� <true; false;V>doesn't exist. We prove the assertion for n+ 1 by contradiction:We assume that a sequence of the form <true; true;V> � S1 7!� T1 � S2 7!�T2 � : : : � Sn 7!� Tn � Sn+1 7!� <true; false;V> exists. We will lead thisassumption to a contradiction.Since P is con
uent, <true; false;V> and Tn are joinable. Since <true; false;V>is a �nal state, there is a computation of Tn that results in <true; false;V>(Tn 7!� <true; false;V>), and hence Sn 7!� <true; false;V>. Therefore there isa sequence of the form<true; true;V> � S1 7!� T1 � S2 7!� T2 � : : : � Sn�1 7!� Tn�1 � Sn 7!�<true; false;V>;which is a contradiction to the induction hypothesis.13



Lemma 4.2 If <true; true;V> $� <true; false;V> does not hold, then P[CTis consistent.Proof. We show consistency by de�ning an interpretation which is a model ofP, and therefore of P [CT .We de�ne I0 := ffC1; : : : ; Cngj<C1 ^ : : :^ Cn; true;V> $� <true; true;V>g.Let be I := (S I0)nftrueg (SM is the union of all members of M ). false =2 I,because <false; true;V> $� <true; true;V> does not hold. Therefore I is aHerbrand interpretation.We show that I j= P:For all formulas H1 ^ : : :^Hn $ B1 ^ : : :^Bm 2 P the following equivalenceshold: I j= H1 ^ : : :^Hni� fH1; : : : ;Hng � Ii� <H1 ^ : : :^Hn; true;V>$� <true; true;V>i� <B1 ^ : : :^Bm; true;V>$� <true; true;V>i� fB1; : : : ; Bmg � Ii� I j= B1 ^ : : :^Bm:Therefore I j= H1 ^ : : :^Hn $ B1 ^ : : :^Bm for all formulas H1 ^ : : :^Hn $B1 ^ : : :^Bm in P.Theorem 4.1 If P is con
uent, then P [ CT is consistent.Proof. The theorem follows directly from the lemmas 4.1 and 4.2.Maher proves the following result for deterministic programs: if any compu-tation sequence terminates in failure, then every (fair) computation sequenceterminates in failure. We extend this result on con
uent programs and give,compared to theorem 2.3, a closer relation between the operational and declar-ative semantics.De�nition 4.2 A computation is fair i� the following holds:If a rule can be applied in�nitely often to a goal, then it is applied at least once.Lemma 4.3 Let P be a con
uent CHR program and G be a goal which has a�nitely failed derivation. Then every fair derivation of G is �nitely failed.The following theorem is a consequence of the above lemma and theorem 2.3.Theorem 4.2 Let P be a con
uent program and G be a Goal.The following are equivalent:a) P; CT j= :9Gb) G has a �nitely failed computation.c) every fair computation of G is �nitely failed.14



5 Conclusion and Future WorkWe introduced the notion of con
uence for Constraint Handling Rules (CHR).Con
uence guarantees that a CHR program will always compute the same resultfor a given set of user-de�ned constraints independent of which rules are applied.We have given a characterization of con
uent CHR programs through joinabilityof critical pairs, yielding a decidable, syntactically based test for con
uence. Wehave shown that con
uence is a su�cient condition for logical correctness of CHRprograms. Correctness is an essential property of constraint solvers.We also gave various soundness and completeness results for CHR programs.Some of these theorems are stronger than what holds for the related families of(concurrent) constraint programming languages due to correctness.Our approach complements recent work [MO95] that gives con
uent, non-standardsemantics for CC languages to make them amenable to abstract interpretationand analysis in general, since our con
uence test can �nd out parts of CC pro-grams which are con
uent already under the standard semantics.Current work integrates the two other kinds of CHR rules, the propagation andthe simpagation rules, into our condition for con
uence. We are also develop-ing a tool in ECLiPSe(ECRC Constraint Logic Programming System [Ecl94])which tests con
uence of CHR programs. Preliminary tests show that most ex-isting constraint solvers written in CHR are indeed con
uent, but that there areinherently non-con
uent solvers (e.g. performing Gaussian elimination), too.We also plan to investigate completion methods to make a non-con
uent CHRprogram con
uent.AcknowledgementsWe would like to thank Heribert Sch�utz and Norbert Eisinger for useful com-ments on a preliminary version of this paper and Michael Marte for his imple-mentation of a con
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Proof of lemma 3.1. Let <CU1; CB1;V>� = <CU2; CB2;V> and<CU1; CB1;V> = <CU2; CB2;V>� , where � and � are substitutions. ThenV� = V and V = V� and therefore for all variables X in the ordered set V,X� = X� = X holds.Proof of lemma 3.2. Let S = <CU ; CB;V>; S0 = <C0U ; C0B;V>. We provethe claim by induction over the number n of computation steps applied:n = 0: Then update(S) = S0 or S = S0 and therefore update(<CU ; CB ^ C;V>) =update(<C0U ; C0B ^C;V>), because of lemma 2.1 and (C;CB) being enclosed inV.n + 1: Let S 7! <CU1; CB1;V> 7!� S0. Then the �rst computation step isalso applicable to <CU ; CB ^ C;V>, because the constraint solver is monotonic(and therefore all rules applicable to S are also applicable to <CU ; CB ^ C;V>).Assume that <CU ; CB ^ C;V> 67! update(<CU1; CB1 ^ C;V>). Then there areconstraints in CB interfering with C, that have been deleted by update due tolocality of equality constraints. If the constraints interfere, they must share vari-ables which we know to be contained in V. Therefore the equality constraintscould not be local and we have a contradiction.The induction hypothesis gives that <CU1; CB1 ^ C;V> 7!�update(<C0U ; C0B ^C;V>). Because update has no in
uence on application ofrules (lemma 2.2) we conclude:<CU ; CB ^ C;V> 7! update(<CU1; CB1 ^ C;V>) 7!� update(<C0U ; C0B ^ C;V>):Proof of lemma 3.3. a) Because of lemma 3.2 we only have to show thatupdate(<C0U1; C0B1 ^ C;V>) � update(<C0U2; C0B2 ^C;V>): Let<C0U1; C0B1;V>� = <C0U2; C0B2;V> and <C 0U1; C0B1;V> = <C0U2; C0B2;V>�:� and � don't touch variables in C (lemma 3.1) therefore we have C� = C andC� = C. Hence we can conclude that<C0U1; C0B1 ^ C;V>� = <C0U2; C0B2 ^ C;V>and <C0U1; C0B1 ^C;V> = <C 0U2; C0B2 ^C;V>� , i.e. <C 0U1; C0B1 ^ C;V> and<C0U2; C0B2 ^ C;V> are variants, and thereforeupdate(<C 0U1; C0B1 ^ C;V>) � update(<C0U2; C0B2 ^ C;V>):b) It is easy to see that <CU1 ^ C;CB1;V> 7!� update(<C0U1 ^ C;C0B1;V>)and <CU2 ^ C;CB2;V> 7!� update(<C0U2 ^ C;C0B2;V>) holds. The same ar-gumentation as above holds here to prove the variance of update(<C0U1 ^ C;C0B1;V>)and update(<C0U2 ^ C;C0B2;V>).Proof of lemma 3.5. Let<CU1; CB1;V> 7!� <C0U1; C0B1;V>;<CU2; CB2;V> 7!� <C0U2; C0B2;V>;<C 0U1; C0B1;V> � <C0U2; C0B2;V>:a) We know that the following holds:<CU1; CB1;V0> 7!� <C 0U1; C00B1;V0>;<CU2; CB2;V0> 7!� <C0U2; C00B2;V0>where C00B1 is C0B1 with local equality constraints removed by update (due toshrinking V to V0 variables may change their status from global to local). The17



same holds for C 00B2 and C 0B2. Therefore C 00B1 and C00B2 must be variants, becauseC0B1 and C0B2 were variants, and C00B1 and C00B2 derive from C 0B1 and C0B2 bydeletion of the same local equality constraints.b) We can apply the same computation steps to <CU1; CB1;V � V0> as to<CU1; CB1;V> and therefore have <CU1; CB1;V> 7!� <C0U1; C0B1;V � V0>.With exactly the same argumentation we have that <CU2; CB2;V> 7!�<C0U2; C0B2;V � V0>. <C0U1; C0B1;V � V0> and <C0U2; C0B2;V � V0> are variants.Proof of theorem 3.2. For the only if direction we assume that we have alocally con
uent CHR program with a critical pair, that is not joinable. We willlead this assumption to a contradiction:Let (G j C1 =#= C2 j V)be a non joinable critical pair, i.e. the computations of<G;C1;V> and<G;C2;V>result in two �nal states, not being variants. Because <G;C1;V> and<G;C2;V>derive from a common state S by one application of Solve and Simplify, thiscontradicts the local con
uence of the program.In order to prove the if direction we prove the following hypothesis by struc-tural induction over the states. The wellfounded ordering used for induction isinduced by the (terminating) application of Solve and Simplify.Induction hypothesis: for all states <CU ; CB;V>the following implication holds for all CU1; CU2; CB1; CB2 :<CU ; CB;V> 7! <CU1; CB1;V> and <CU ; CB;V> 7! <CU2; CB2;V>implies <CU1; CB1;V> and <CU2; CB2;V> are joinable.The base case of the induction is trivial: we are in a situation where there are norules applicable to <CU ; CB;V>. The antecedent of our induction hypothesisturns out to be false in this situation, therefore the implication is true.Now assume that we are in state <CU ; CB;V> where there are two or morepossibilities of computation. We investigate all pairs of two possibilities andshow that they are joinable.There are three cases:Case. Solve+Solve: We required the constraint theory CT to preserve com-mutativity of the conjunction ^ in the built{in store, therefore the two compu-tations will result in identical states.Case. Solve+Simplify: We are in a situation <C ^H0 ^ CU ; CB;V> whereC is a built{in constraint, and H0 is a conjunction of user{de�ned constraintsmatching with the head of a rule (H , G j B) and the guard is entailed, i.e.<H 0; CB;V>!o<H0;H0 _=H ^G;V>:If the Simplify step is done �rst, the Solve step is applicable hereafter. If weshow, that Simplify is applicable after application of Solve, we are �nished.Application of Solve results in a state update(<C ^H0 ^ CU ; C ^ CB;V>).Simplify is applicable if <H 0; C ^ CB;V>!o<H0;H0 _=H ^G;V>. This holdsbecause the built{in constraint solver is monotonic.18



Case. Simplify+Simplify: Rules to be applied (we assume that they containdisjoint sets of variables):R � H1; : : : ;Hn , G j BR0 � H01; : : : ;H0n0 , G0 j B0It is explicitly allowed, that R and R0 are in fact variants of the same CHR rule.We have to show that application of R or R0 results in joinable states. We knowthat CB is satis�able, otherwise no rule could be applied. We can distinguishtwo di�erent subcases:Subcase. Disjoint peak: No head atom of the �rst rule R uni�es with a headatom of the other rule R0.Application order R;R0 (�rst R then R0) will lead to the same result as appli-cation order R0;R. Because of the associativity and commutativity of the goalstore both orderings are indeed applicable.Subcase. Critical peak. We can assume that the �rst atoms of the rulesunify (H1 _=H01 ^ : : : ^ Hi _=H0i). (Included in this case is the overlay case:n = n0 ^H1 _=H01 ^ : : :^Hn _=H0n.)Let <G1 ^G2 ^ : : :^Gm; CB;V> be the actual state, on which the rules R andR0 are applicable. For the sake of simplicity we can assume that<G1 ^G2 ^ : : :^Gm; CB;V>!o<G1 ^G2 ^ : : :^Gm; C;V>;where C is the following conjunction of equality constraints:C � G1 _=H1 ^ : : :^ Gi _=Hi ^ G1 _=H01 ^ : : :^ Gi _=H0i ^Gi+1 _=Hi+1 ^ : : :^ Gn _=Hn ^ Gn+1 _=H0i+1 ^ : : :^ Gn+n0�i _=H0n0 :(This situation can be achieved by changing the order of goal atoms and atomsin the heads of R and R0.)We use abbreviations to represent the atoms in question:�G = G1 ^ : : :^Gn;�G0 = G1 ^ : : :^Gi ^Gn+1 ^ : : :^Gn+n0�i;�H = H1 ^ : : :^Hn;�H0 = H01 ^ : : :^H0n0;H\ = H1 ^ : : :^Hi;H0\ = H01 ^ : : :^H0i;GREST = Gn+1 ^ : : :^Gn+n0�i+1 ^ : : :^Gm;G0REST = Gi+1 ^ : : :^Gn ^Gn+n0�i+1 ^ : : :^Gm:and write (P1; : : : ; Pp) _=(P 01; : : : ; P 0p) for P1 _=P 01 ^ : : :^Pp _=P 0p.Application of R and R0 on the actual state will result in the following twostates: S = update(<GREST ^B;CB ^ �G _= �H;V>)and S0 = update(<G0REST ^B0; CB ^ �G0 _= �H0;V>):19



We will show in the following that S and S0 are joinable:We can see that the rules R and R0 have the critical pair(G ^G0 ^H\ _=H0\ j B ^H0i+1 ^ : : :^H0n0 =#= B0 ^Hi+1 ^ : : :^Hn j V0);which we know to be joinable. So there is a sequence of computation stepsresulting in two �nal states di�ering only by variable renaming for the twoinitial states <B ^H0i+1 ^ : : :^H0n0 ; G^G0 ^H\ _=H0\;V0>and <B0 ^Hi+1 ^ : : :^Hn; G^G0 ^H\ _=H0\;V0>:We can apply lemma3.5b) here and add V to the global variables stores, becauseV shares no variables with the two states:<B ^H0i+1 ^ : : :^H0n0 ; G^G0 ^H\ _=H0\;V0 � V>and <B0 ^Hi+1 ^ : : :^Hn; G^G0 ^H\ _=H0\;V0 � V>:are joinable.According to lemma 3.3 a) and b) we can add the built-in constraints CB ^�G _= �H^ �G0 _= �H0 and the user-de�ned constraints Gn+1^: : :^Gm to the constraintstores of each state without losing joinability. The requirements of the lemmaare met because the variables in �H and �H0 are contained in V0 and CB; �G; �G0and Gn+1 ^ : : :^Gm share no variables with the previous states.<BH0G;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H0;V0 � V>and <B0HG;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H0;V0 � V>are joinable. Here BH0G stands for B ^H 0i+1^ : : :^H0n0 ^Gn+1^ : : :^Gm andB0HG stands for B0 ^Hi+1 ^ : : :^Hn ^Gn+1 ^ : : :^Gm.Now we can remove the global variables V 0 from the variable stores by applyinglemma 3.5a) and keep joinability of<BH0G;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H0;V>and <B0HG;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H 0;V>:We know that<G1 ^ : : :^Gm; CB ^ �G _= �H ^ �G0 _= �H 0;V>!o<G1 ^ : : :^Gm;H\ _=H0\ ^G ^G0;V>;henceupdate(<BH0G;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H0;V>) =update(<BH0G;CB ^ �G _= �H ^ �G0 _= �H0;V>):With the analogous reasoning for<B0HG;G^G0 ^H\ _=H0\ ^ CB ^ �G _= �H ^ �G0 _= �H 0;V>and applying lemma 3.4 we can remove G^G0^H\ _=H0\ in both states, whilstkeeping joinability of <BH 0G;CB ^ �G _= �H ^ �G0 _= �H0;V>and <B0HG;CB ^ �G _= �H ^ �G0 _= �H 0;V>:20



We can replace H0i+1 ^ : : :^H0n0 by Gn+1 ^ : : : ^Gn+n0�i and likewise Hi+1 ^: : :^Hn by Gi+1^ : : :^Gn and get (joinable) update-equivalent states, becausethe equality-constraints are contained in the constraint store:<B ^GREST ; CB ^ �G _= �H ^ �G0 _= �H 0;V>and <B0 ^G0REST ; CB ^ �G _= �H ^ �G0 _= �H0;V>We know that the following two states are update-equivalent with the upper twostates (only local equality constraints have been removed) and therefore mustbe joinable (lemma 3.4), too.<B ^GREST ; CB ^ �G _= �H;V>and <B0 ^G0REST ; CB ^ �G0 _= �H0;V>If we apply lemma 3.4 we �nally know that S and S0 are joinable.
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