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On Con
uence of Constraint Handling RulesSlim Abdennadher, Thom Fr�uhwirth, Holger MeussComputer Science Department, University of MunichOettingenstr. 67, 80538 Munich, GermanyfSlim.Abdennadher,Thom.Fruehwirth,Holger.Meussg@informatik.uni-muenchen.deAbstract. We introduce the notion of con
uence for Constraint HandlingRules (CHR), a powerful language for writing constraint solvers. With CHRone simpli�es and solves constraints by applying rules. Con
uence guaranteesthat a CHR program will always compute the same result for a given set ofconstraints independent of which rules are applied. We give a decidable,su�cient and necessary syntactic condition for con
uence.Con
uence turns out to be an essential syntactical property of CHR programsfor two reasons. First, con
uence implies correctness (as will be shown in thispaper). In a correct CHR program, application of CHR rules preserves logicalequivalence of the simpli�ed constraints. Secondly, even when the program isalready correct, con
uence is highly desirable. Otherwise, given some cons-traints, one computation may detect their inconsistency while another onemay just simplify them into a still complex constraint.As a side-e�ect, the paper also gives soundness and completeness results forCHR programs. Due to their special nature, and in particular correctness,these theorems are stronger than what holds for the related families of (con-current) constraint programming languages.Keywords: constraint reasoning, semantics of programming languages,committed-choice languages, con
uence and determinacy.1 IntroductionConstraint Handling Rules (CHR) [Fr�u95] have been designed as a special-purposelanguage for writing constraint solvers. A constraint solver stores and simpli�esincoming constraints. CHR is essentially a committed-choice language consisting ofguarded rules that rewrite constraints into simpler ones until they are solved.In contrast to the family of the general-purpose concurrent constraint languages(CC) [Sar93] and the ALPS1 [Mah87] framework, CHR allow \multiple heads", i.e.conjunctions of atoms in the head of a rule. Multiple heads are a feature that isessential in solving conjunctions of constraints. With single-headed CHR rules alone,unsatis�ability of constraints could not always be detected (e.g X<Y,Y<X) and globalconstraint satisfaction could not be achieved.Nondeterminacy in CHR arises when two or more rules can �re. It is obviouslydesirable that the result of a computation in a solver will always be the same, seman-tically and syntactically, no matter in which CHR rules are applied. This propertyof constraint solvers will be called con
uence and investigated in this paper.1 Saraswat showed in [Sar93], that ALPS can be recognized as a subset of cc(#;!)



We will introduce a decidable, su�cient and necessary syntactic condition forcon
uence. This condition adopts the notion of critical pairs as known from termrewrite systems [DOS88, KK91, Pla93]. Monotonicity of constraint store updates,an inherent property of constraint logic programming languages, plays a central rolein proving that joinability of critical pairs is su�cient for local con
uence.Con
uence turns out to be important with regard to both theoretical and practi-cal aspects: We show that con
uence implies correctness of a program.By correctnesswe mean that the declarative semantic of a CHR program is a consistent theory. Un-like CC programs, CHR programs can be given a declarative semantics since theyare only concerned with de�ning constraints (i.e. �rst order predicates), not proce-dures in their generality. Furthermore we show how to strengthen the declarativereading of a CHR program if it is con
uent. A practical application of our de�nitionof con
uence lies in program analysis, where we can identify non{con
uent parts ofCHR programs by examining the critical pairs. Programs with non{con
uent partsessentially represent an ill-de�ned constraint solving algorithm.Our work extends previous approaches to the notion of determinacy in the �eld ofCC languages: Maher investigates in [Mah87] a class of 
at committed choice logiclanguages (ALPS). He de�nes the class of deterministic ALPS programs as thoseprograms whose guards are mutually exclusive. The class of deterministic ALPSprograms is less expressive than con
uent CHR programs. Saraswat de�nes for theCC framework a similar notion of determinacy [Sar93], which is also more restrictivethan con
uence. We also give two reasons, why CHR cannot be made deterministicin general.Our approach is orthogonal to the work in program analysis in [MO95] and[FGMP95], where a di�erent, less rigid notion of con
uence is de�ned: A CC programis con
uent, if di�erent process schedulings (i.e. di�erent orderings of decisions atnondeterministic choice points) give rise to the same set of possible outcomes. Theidea of [MO95] is to introduce a non-standard semantics, which is con
uent for allCC programs.The paper is organized as follows. The next section introduces the syntax of cons-traint handling rules, their declarative and operational semantics. Then this sectioncontributes to the relationship between the declarative and operational semantics ofCHR programs by giving soundness and completeness results. Section 3 presents thenotion of con
uence for CHR. In section 4 we show that con
uence implies logicalcorrectness of a program. This leads to a stronger completeness and soundness resultfor �nite failed computation. Finally, we conclude with a summary and directionsfor future work.2 Syntax and Semantics of CHRWe assume some familiaritywith (concurrent) constraint programming (CCP) [JL87,JM94, SRP91, Sar93, Sha89]. There is a distinguished class of predicates, the cons-traints. We assume, that there is a built-in constraint solver that solves, checks andsimpli�es built-in (prede�ned) constraints. On the other hand, the user-de�ned cons-traints are those de�ned by a CHR program. This implies, that we have two disjointsets of constraint symbols for the built{in and the user{de�ned constraints.



As a special purpose language,CHR usually extend a host language such as Prologor Lisp with (more) constraint solving capabilities. This also means, that auxiliarycomputations in CHR programs can be performed in the host language. Without lossof generality, to keep this paper self-contained, we will not address host languageissues here. We also restrict ourselves to the main kind of CHR rule.De�nition1. A CHR program is a �nite set of simpli�cation rules2. A simpli�cationrule is of the form H1; : : : ;Hi , G1; : : : ; Gj j B1; : : : ; Bk:where the multi{head H1; : : : ;Hi is a conjunction3 of user-de�ned constraints andthe guard G1; : : : ; Gj is a conjunction of built-in constraints and the body B1; : : : ; Bkis a conjunction of built-in and user-de�ned constraints called goals.2.1 Declarative SemanticsUnlike CC programs, CHR programs can be a given a declarative semantics sincethey are only concerned with de�ning constraints (i.e. �rst order predicates), notprocedures in their generality.Declaratively, a simpli�cation ruleH1; : : : ;Hi , G1; : : : ; Gj j B1; : : : ; Bk:is a logical equivalence provided the guard is true in the current context8�x (9�y (G1 ^ : : :^Gj))! (H1 ^ : : :^Hn $ 9�z (B1 ^ : : :^Bk)),where �x4 are the variables occuring in H1; : : : ;Hn and �y; �z are the other variablesoccuring in G1; : : : ; Gj and B1; : : :Bk respectively.The declarative interpretation of a CHR program P is given by the set P of logicalequivalences and a consistent built{in theory CT which determines the meaning ofthe built{in constraints appearing in the program.The constraint theory CT speci�esamong other things the ACI properties of the logical conjunction ^ in the built-inconstraint store, the properties of the equality constraints _= (Clarks axiomatization)and the properties of the basic constraints true and false.De�nition2. A CHR program P is correct i� P [ CT is consistent.2.2 Operational Semantics of CHRWe de�ne the operational semantics as a transition system.2 There are two other kinds of rules [BFL+94], which are not treated here.3 For conjunctions in rules we use "," instead of "^".4 we use �x as an abbreviation for a sequence of variables



StatesDe�nition3. A state is a triple <CU ; CB;V>:CU is a conjunction of both user-de�ned and built-in constraints that remains to besolved. CB is a conjunction of built-in constraints accumulated up to this point ofexecution. V is an ordered set of variables.De�nition4. A variable X in a state <CU ; CB;V> is called global, if it appears inV. It is called local otherwise.De�nition5. The pair (C1; C2) (C1 and C2 are conjunctions of constraints) is calledenclosed by the ordered set V i� all variables shared by C1 and C2 are contained inV. We can attribute to each state <CU ; CB;V> the formula9Y1; : : : ; Ym CU ^ CBas a logical meaning, where Y1; : : : ; Ym are the local variables in CU and CB. Notethat the global variables remain unbound in the formula.Update We de�ne now the basic operation of the built{in constraint solver: Themain task of update is transforming a state into a logically equivalent state with anormalized built{in constraint store. update performs the following tasks:{ normalize the built{in constraint store according to CT{ propagate equality constraints through the state{ remove redundant equality constraints where one side is a local variable.De�nition6. update normalizes a state by performing the following operations insequence:1. update produces a unique representation of the built-in constraint store accor-ding to the theory CT .2. Equality constraints of the formX _=t receive a special treatment: occurrences ofX in all constraints (except the equality itself) in the built-in constraint storeand goal store are replaced by t.3. All equality constraints of the form X _=t or Y _=X are removed, if X is local.These equality constraints will be called local. This re
ects the validity of for-mulas (9X X _=a), which follows from the axioms in CT (see example 2.1).Example 2.1update(<p(Y ) ^ q(Z); Y _=f(X) ^ Z _=a; [Y ]>) = <p(f(X)) ^ q(a); Y _=f(X); [Y ]>Under an enclosement condition update is compatible with addition of cons-traints. This result is given by the following lemma, which is proven by contradic-tion.



Lemma7. If C is a conjunction of built{in constraints and (C;CB) is enclosed byV and update(<CU ; CB;V>) = <C0U ; C0B;V> thenupdate(<CU ; CB ^ C;V>) = update(<C0U ; C0B ^ C;V>):The enclosement condition in the lemma above re
ects the sensitivity of updatewith respect to local variables. It guarantees that equality constraints involvingvariables appearing in the added constraint C are not removed due to locality. If thecondition is violated, the claim is false:Example 2.2 update(<true; X _=2; []>) = <true; true; []>;adding the built-in constraint X _=1 on both sides results for the left side in:update(<true; X _=2 ^X _=1; []>) = <true; false; []>but for the right side in:update(<true; true ^X _=1; []>) = <true; true; []>De�nition8. Entailment (!o) tests whether a given conjunction of built{in cons-traints is implied by another conjunction of built{in constraints in the context of astate and is de�ned as follows:<CU1; CB1;V>!o <CU2; CB2;V> i�<C 0U1; C0B1;V> = update(<C0U2; C0B1 ^C 0B2;V>):where update(<CU1; CB1;V>) = <C0U1; C0B1;V> and update(<CU2; CB2;V>) =<C0U2; C0B2;V>.Computation Steps Given a CHR program P we de�ne the transition relation7!P by introducing two kinds of computation steps:Solve <C ^ CU ; CB;V> 7!P update(<CU ; C ^ CB;V>)if C is a built-in constraint.The built{in constraint solver updates the state after adding the built{in constraintC to the built{in store CB.Simplify <H 0 ^CU ; CB;V> 7!P update(<CU ^B;H _=H0 ^ CB;V>)if (H , G j B) is a variant with fresh variables of a rule in P and<H 0; CB;V>!o<H 0;H0 _=H ^G;V>.To simplify user-de�ned atoms means to apply a simpli�cation rule on these atoms.This can be done if the atoms match with the head atoms of the rule and the guardis entailed by the built-in constraint store. The atoms occuring in the body of therule are added to the goal constraint store.Notation. By c(t1; : : : ; tn) _=c(s1; : : : ; sn) we mean t1 _=s1 ^ : : :^ tn _=sn, if c is auser-de�ned constraint. By p1^ : : :^ pn _=q1^ : : :^ qn we mean p1 _=q1 ^ : : :^ pn _=qn.



De�nition9. S 7!�P S0 holds i�S = S0 or S = update(S0) or S 7!P S1 7!P : : : 7!P Sn 7!P S0 (n � 0):We will write 7! instead of 7!P and 7!� instead of 7!�P , if the program P is �xed.Lemma10. Update has no in
uence on application of rules, i.e.S 7! S0 implies update(S) 7! S0:The initial state consists of a goal G, an empty built-in constraint store and thelist V of the variables occuring in G,<G; true;V>.A computation state is a �nal state if{ its built-in constraint store is false, then it is called failed;{ no computation step can be applied and its built-in constraint store is not false.Then it is called successful.De�nition11. A computation of a goal G is a sequence S0; S1; : : : of states withSi 7! Si+1 beginning with the the initial state S0 = <G; true;V> and ending ina �nal state or diverging. A �nite computation is successful if the �nal state issuccessful. It is failed otherwise.De�nition12. A computable constraint C of G is the conjunction 9�x CU ^ CB ,where CU and CB occur in a state <CU ; CB;V>, which appears in a computationof G. �x are the local variables.A �nal constraint C is the conjunction 9�x CU ^ CB, where CU and CB occur in a�nal state <CU ; CB;V>.Equivalence and Monotonicity The following de�nition re
ects the AC1 pro-perties of the goal store and the fact that all states with an inconsistent built{inconstraint store are identi�ed.De�nition13. We identify states according to the equivalence relation �=:<CU ; CB;V> �= <C0U ; CB;V> i� CU can be transformed to C0U using the AC1properties of the conjunction ^, or CB is false.We have to ensure that the equivalence �= is well-de�ned, i.e. that it is compatiblewith the operations we perform on states. We have six di�erent operations workingon states, 1-3 are explicitly used for computation steps, whereas 4-6 occur only inthe proof for the theorem on local con
uence:1. Solve2. Simplify3. update4. add a constraint to the goal store or built-in constraint store5. form a variant6. replace the global variable store by another ordered set of variables



It is easy to see that all these operations are congruent with the relation �=, i.e. thefollowing holds for each instance o of an operation:S1 �= S2 implies o(S1) �= o(S2)Therefore we can reason about states modulo �=.The next de�nition de�nes the notion of monotonicity, which guarantees thataddition of new built-in constraints does not inhibit entailment (and hence the ap-plication of Simplify):De�nition14. A built{in constraint solver is said to be monotonic i� the followingholds:<CU1; CB;V>!o<CU2; G;V> implies <CU1; CB ^ C;V>!o<CU2; G;V>:Lemma15. Every built-in constraint solver (where update ful�lls the stated requi-rements) is monotonic.2.3 Relation between the declarative and the operational semanticsWe present results relating the operational and declarative semantics of CHR. Theseresults are based on work of Ja�ar and Lassez [JL87], Maher [Mah87] and vanHentenryck [vH91].Lemma16. Let P be a CHR program, G be a goal. If C is a computable constraintof G, then P; CT j= 8 (C $ G):5Proof. By induction over the number of computation steps.Theorem17 Soundness of successful computations. Let P be a CHR programand G be a goal. If G has a successful computation with �nal constraint C thenP; CT j= 8 (C $ G):Proof. Immediately from lemma 16.The following theorem is stronger than the completeness result presented in[Mah87], in the way that we can reduce the disjunction in the strong completenesstheorem to a single disjunct. This is possible, since the computation steps preservelogical equivalence (lemma 16).Theorem18 Completeness of successful computations. Let P be a CHR pro-gram and G be a goal. If P; CT j= 8 (C $ G) and C is satis�able, then G has asuccessful computation with �nal constraint C0 such thatP; CT j= 8 (C $ C 0):5 8F is the universal closure of a formula F .



The next theorem gives a soundness and completeness result for correct CHRprograms.Theorem19 Soundness and Completeness of failed computations.Let P be a correct CHR program and G be a Goal. The following are equivalent:a) P; CT j= :9Gb) G has a �nitely failed computation.3 Con
uence of CHR programsWe extend the notion of determinacy as used by Maher in [Mah87] and Saraswat in[Sar93] to CHR by introducing the notion of con
uence. The notion of deterministicprograms is less expressive and too strict for the CHR formalism, because it is notalways possible to transform a CHR program into a deterministic one. This has tworeasons, of which the �rst also holds for the CC formalism:The constraint system must be closed under negation so that a single-headedCHR program can be transformed into one with non-overlapping guards.Example 1. We want to extend the built-in solver, which contains the built-in cons-traints � and _=, with a user-de�ned constraint maximum(X,Y,Z) which holds if Zis the maximum of X and Y. The following could be part of a de�nition for theconstraint maximum:maximum(X,Y,Z), X�Y | Z _=Y.maximum(X1,Y1,Z1), Y1�X1 | Z1 _=X1.This program cannot be transformed into an equivalent one without overlappingguards.The second reason is that CHR rules have multiple heads. We can get into asituation, where two rules can be applied to di�erent but overlapping conjunctionsof constraints. In general it is not possible to avoid commitment of one of the rules(and thus making the program deterministic6) by adding constraints to the guards.Example 2. Consider the following part of a CHR program de�ning interactions bet-ween the boolean operations not, imp and or.not(X,Y), imp(X,Y), true | X _=0, Y _=1.not(X1,Y1), or(X1,Z1,Y1), true | X1 _=0, Y1 _=1, Z1 _=1.Note that both rules can be applied to the goal not(A,B)^imp(A,B)^or(A,C,B).When we want that only the �st rule can be applied, we have to add a constraintto the guard of the �rst rule, that or(A,C,B) doesn't exist. Such a condition ismeta{logical and syntactically not allowed.6 We extend the notion of deterministic programs to our formalism in the natural way thatonly one rule can commit by any given goal.



In the following we will adopt and extend the terminology and techniques ofconditional term rewriting systems (CTRS) [DOS88]. A straightforward translationof results in the �eld of CTRS was not possible, because the CHR formalism givesrise to phenomena not appearing in CTRS. These include the existence of globalknowledge (the built{in constraint store) and local variables.De�nition20. A CHR program is called terminating, if there are no in�nite com-putation sequences.De�nition21. Two states S1 and S2 are called joinable if there exist states S01; S02such that S1 7!� S01 and S2 7!� S02 and S01 is a variant of S02 (S01 � S02).De�nition22. A CHR program is called con
uent if the following holds for all statesS; S1; S2: If S 7!� S1; S 7!� S2 then S1 and S2 are joinable.De�nition23. A CHR program is called locally con
uent if the following holds forall states S; S1; S2:If S 7! S1; S 7! S2 then S1 and S2 are joinable.For the following reasoning we require, that rules of a CHR program containdisjoint sets of variables. This requirement means no loss of generality, because everyCHR program can be easily transformed into one with disjoint sets of variables.In order to give a characterization for local con
uence we have to introduce thenotion of critical pairs:De�nition24. If one or more atoms Hi1 ; : : : ;Hik of the head of a CHR ruleH1; : : : ;Hn , G j B unify with one or more atoms atom H0j1 ; : : : ;H0jk of the headof another or the same CHR rule H01; : : : ;H0m , G0 j B0 then the triple(G^G0^Hi1 _=H0j1^: : :^Hik _=H0jk j B^H0jk+1^: : :̂ H0jm =#= B0^Hik+1^: : :̂ Hin j V)is called a critical pair of the two CHR rules. fi1; : : : ; ing and fj1; : : : ; jmg are permu-tations of f1; : : : ; ng and f1; : : : ;mg respectively, V is the set of variables appearingin H1; : : : ;Hn;H01; : : : ;H0m.Example 3. Consider example 1. There are two trivial7 and the following nontrivialcritical pair:(X�Y ^ Y1�X1 ^ X _=X1 ^ Y _=Y1 ^ Z _=Z1 |Z _=Y =#= Z1 _=X1 | [X,Y,Z,X1,Y1,Z1])The rules of example 2 have the nontrivial critical pair (We omit the globalvariable store for reasons of clarity):(X _=X1 ^ Y _=Y1 |imp(X,Y) ^ X1 _=0 ^ Y1 _=1 ^ Z1 _=1 =#= or(X1,Z1,Y1) ^ X _=0 ^ Y _=1 | [..])7 We call critical pairs of the form (G j B =#= B j V) trivial.



Trivial critical pairs in example 1 are stemming from unifying the heads of eitherthe �rst or second rule with themselves. Note that not every critical pair stemmingfrom one rule only is trivial. If the head of a rule contains a constraint symbol morethan once, the resulting critical pair may be nontrivial.De�nition25. A critical pair (G j B1 =#= B2 j V) is called joinable if <B1; G;V>and <B2; G;V> are joinable.Example 4. The �rst critical pair in example 3 is joinable, if the built{in constraintsolver simpli�es X�Y ^ Y�X to the constraint X _=Y.The following lemmas are necessary to prove theorem 33. The proofs for theselemmas can be found in [AFM96]. The �rst lemma states that the global variablesare not touched when testing the variance of two states. Crucial for this lemma isthe fact that V is an ordered set.Lemma26. If <CU1; CB1;V> � <CU2; CB2;V>then the variables in V are not modi�ed by variable renaming.The following lemma shows that enclosement guarantees that addition of built{inconstraints is compatible with update:Lemma27. If (C;CU ^CB) is enclosed by V and<CU ; CB;V> 7!� <C 0U ; C0B;V> then<CU ; CB ^ C;V> 7!� update(<C0U ; C0B ^ C;V>):We apply lemma 27 to prove lemma 28, stating the enclosement conditions underwhich joinability of states is compatible with addition of built{in constraints.Lemma28. If <CU1; CB1;V> 7!� <C0U1; C0B1;V>;<CU2; CB2;V> 7!� <C0U2; C0B2;V>;<C0U1; C0B1;V> � <C 0U2; C0B2;V>;and (C;CU1 ^ CB1) and (C;CU2 ^ CB2) are enclosed by V, thena) <CU1; CB1 ^ C;V> 7!� update(<C0U1; C0B1 ^ C;V>);<CU2; CB2 ^ C;V> 7!� update(<C0U2; C0B2 ^ C;V>);update(<C0U1; C0B1 ^ C;V>) � update(<C0U2; C0B2 ^ C;V>);b) <CU1 ^ C;CB1;V> 7!� update(<C0U1 ^ C;C0B1;V>);<CU2 ^ C;CB2;V> 7!� update(<C0U2 ^ C;C0B2;V>);update(<C0U1 ^ C;C0B1;V>) � update(<C0U2 ^ C;C0B2;V>):



De�nition29. We call two states <CU1; CB1;V> and <CU2; CB2;V> update equi-valent i� update(<CU1; CB1;V>) = update(<CU2; CB2;V>)Lemma30. If <CU ; CB;V> and <C 0U ; C0B;V> are update equivalent and<CU ; CB;V> 7!� S0, then <C 0U ; C0B;V> 7!� S0.Proof. The lemma follows directly from lemma 10.The next lemma gives a condition when joinability is compatible with changingthe global variable store:Lemma31. Let <CU1; CB1;V> and <CU2; CB2;V> be joinable. Then the follo-wing holds:a) <CU1; CB1;V0> and <CU2; CB2;V0> are joinable,if V 0 consists only of variables contained in V.b) <CU1; CB1;V � V0> and <CU2; CB2;V � V0> are joinable,if V 0 contains only fresh variables (� denotes concatenation).The following theorem is an analogy to Newman's Lemma for term rewritingsystems [Pla93] and is proven analogously:Theorem32 con
uence of CHR programs. If a CHR program is locally con
u-ent and terminating, it is con
uent.Theorem 33 gives a characterization for locally con
uent CHR programs. Theproof is given in [AFM96] and relies on lemmas 26 to 31.Theorem33 local con
uence of CHR programs. A terminating CHR programis locally con
uent if and only if all its critical pairs are joinable.The theorem also means that we can decide whether a program (which we do notknow is terminating or not) will be con
uent in case it is terminating.Example 5. This example illustrates the case that an unjoinable critical pair is de-tected. The following CHR program is an implementation of merge/3, i.e. mergingtwo lists into one list as the elements of the input lists arrive. Thus the order ofelements in the �nal list can di�er from computation to computation.merge([],L2,L3), true | L2 _=L3.merge(M1,[],M3), true | M1 _=M3.merge([X|N1],N2,N3), true | N3 _=[X|N], merge(N1,N2,N).merge(O1,[Y|O2],O3), true | O3 _=[Y|O], merge(O1,O2,O).There are 8 critical pairs, 4 of them stemming from di�erent rules.If merge/3 meets the speci�cation, there is space for nondeterminism that causesnon-con
uence. Indeed, a look at the critical pairs reveals one critical pair stemmingfrom the third and fourth rule that is not joinable:



([X|N1] _=O1 ^ N2 _=[Y|O2] ^ N3 _=O3 |N3 _=[X|N] ^ merge(N1,N2,N) =#= O3 _=[Y|O] ^ merge(O1,O2,O) | [..])It can be seen from the unjoinable critical pair above that a state like<merge([a],[b],L),true,[L]> can either result in putting a before b in the out-put list L or vice versa, since a Simplify{step can result in di�ering unjoinablestates, depending on which rule is applied. Hence - not surprisingly - merge/3 is notcon
uent.4 Correctness and Con
uence of CHR ProgramsDe�nition34. Given a CHR program P , we de�ne the computation equivalence$�P : S1 $P S2 i� S1 7! S2 or S1 S2. S $�P S0 i� there is a sequence S1; : : :Snsuch that S1 is S, Sn is S0 and Si $P Si+1 for all i. We will write $ instead of$Pand $� instead of $�P , if the program P is �xed.For the sake of simplicity and clarity we prove the following two lemmas onlyfor the special case that all rules are ground{instantiated, without guards and thattrue and false are the only built{in constraints used. One can extend the proof tofull CHR by transforming each rule of a CHR program into (possibly in�nitely many)ground{instantiated rules. This includes evaluating the built{in constraints in theguards and bodies.Lemma35. If P is con
uent, then <true; true;V> $�P <true; false;V> does nothold.Proof. We show by induction on n that there are no states S1; T1; S2; : : : ; Tn�1; Snsuch that<true; true;V> � S1 7!� T1 � S2 7!� : : : 7!� Tn�1 � Sn 7!� <true; false;V>Base case: <true; true;V> � S1 7!� <true; false;V> cannot exist, because<true; true;V> and <true; false;V> are di�erent (no variants) �nal states and Pis con
uent.Induction step: We assume that the induction hypothesis holds for n, i.e.<true; true;V> � S1 7!� T1 � S2 7!� : : : 7!� Tn�1 � Sn 7!� <true; false;V>doesn't exist. We prove the assertion for n+ 1 by contradiction:We assume that a sequence of the form <true; true;V> � S1 7!� T1 � S2 7!�T2 � : : : � Sn 7!� Tn � Sn+1 7!� <true; false;V> exists. We will lead this as-sumption to a contradiction.Since P is con
uent, <true; false;V> and Tn are joinable. Since <true; false;V>is a �nal state, there is a computation of Tn that results in <true; false;V> (Tn 7!�<true; false;V>), and hence Sn 7!� <true; false;V>. Therefore there is a sequenceof the form<true; true;V> � S1 7!� T1 � S2 7!� T2 � : : : � Sn�1 7!� Tn�1 � Sn 7!�<true; false;V>;which is a contradiction to the induction hypothesis.



Lemma36. If <true; true;V> $� <true; false;V> does not hold, then P [ CT isconsistent.Proof. We show consistency by de�ning an interpretation which is a model of P,and therefore of P [ CT .We de�ne I0 := ffC1; : : : ; Cngj<C1 ^ : : :^ Cn; true;V> $� <true; true;V>g.Let be I := (S I0)nftrueg (SM is the union of all members of M ). false =2 I, be-cause <false; true;V>$� <true; true;V> does not hold. Therefore I is a Herbrandinterpretation.We show that I j= P:For all formulas H1^ : : :^Hn$ B1 ^ : : :^Bm 2 P the following equivalences hold:I j= H1 ^ : : :^Hni� fH1; : : : ;Hng � Ii� <H1 ^ : : :^Hn; true;V>$� <true; true;V>i� <B1 ^ : : :^Bm; true;V> $� <true; true;V>i� fB1; : : : ; Bmg � Ii� I j= B1 ^ : : :^Bm:Therefore I j= H1 ^ : : : ^Hn $ B1 ^ : : : ^ Bm for all formulas H1 ^ : : : ^ Hn $B1 ^ : : :^Bm in P.Theorem37. If P is con
uent, then P [ CT is consistent.Proof. The theorem follows directly from the lemmas 35 and 36.Maher proves the following result for deterministic programs: if any computationsequence terminates in failure, then every (fair) computation sequence terminates infailure. We extend this result on con
uent programs and give, compared to theorem19, a closer relation between the operational and declarative semantics.De�nition38. A computation is fair i� the following holds:If a rule can be applied in�nitely often to a goal, then it is applied at least once.Lemma39. Let P be a con
uent CHR program and G be a goal which has a �nitelyfailed derivation. Then every fair derivation of G is �nitely failed.The following theorem is a consequence of the above lemma and theorem 19.Theorem40. Let P be a con
uent program and G be a Goal.The following are equivalent:a) P; CT j= :9Gb) G has a �nitely failed computation.c) every fair computation of G is �nitely failed.



5 Conclusion and Future WorkWe introduced the notion of con
uence for Constraint Handling Rules (CHR). Con-
uence guarantees that a CHR program will always compute the same result for agiven set of user-de�ned constraints independent of which rules are applied.We have given a characterization of con
uent CHR programs through joinabilityof critical pairs, yielding a decidable, syntactically based test for con
uence. Wehave shown that con
uence is a su�cient condition for logical correctness of CHRprograms. Correctness is an essential property of constraint solvers.We also gave various soundness and completeness results for CHR programs.Some of these theorems are stronger than what holds for the related families of(concurrent) constraint programming languages due to correctness.Our approach complements recent work [MO95] that gives con
uent, non-standardsemantics for CC languages to make them amenable to abstract interpretation andanalysis in general, since our con
uence test can �nd out parts of CC programswhich are con
uent already under the standard semantics.Current work integrates the two other kinds of CHR rules, the propagation andthe simpagation rules, into our condition for con
uence. We are also developinga tool in ECLiPSe(ECRC Constraint Logic Programming System [Ecl94]) whichtests con
uence of CHR programs. Preliminary tests show that most existing cons-traint solvers written in CHR are indeed con
uent, but that there are inherentlynon-con
uent solvers (e.g. performing Gaussian elimination), too. We also plan toinvestigate completion methods to make a non-con
uent CHR program con
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