
INSTITUT F�UR INFORMATIKLehr- und Forschungseinheit f�urProgrammier- und ModellierungssprachenOettingenstra�e 67, D{80538 M�unchen
Con
uence and Semantics ofConstraint Simpli�cation RulesSlim Abdennadher, Thom Fr�uhwirth, Holger Meuss
To appear in Constraints Journal 1998http://www.pms.informatik.uni-muenchen.de/publikationenForschungsbericht/Research Report PMS-FB-1997-20, Mai 1997

Con
uence and Semantics of Constraint Simpli�cationRulesSlim Abdennadher, Thom Fr�uhwirth and Holger MeussComputer Science Department, Ludwig-Maximilians-UniversityOettingenstrasse 67, D-80538 Munich, GermanyfSlim.Abdennadher,Thom.Fruehwirthg@informatik.uni-muenchen.demeuss@cis.uni-muenchen.dehttp://www.pst.informatik.uni-muenchen.de/personen/fruehwir/cwg.html(Received ; Accepted in �nal form)Abstract.Constraint Simpli�cation Rules (CSR) is a subset of the Constraint Handling Rules (CHR)language. CHR is a powerful special-purpose declarative programming language for writingconstraint solvers. The CSR subset of CHR forms essentially a committed-choice languageconsisting of guarded rules with multiple heads that replace constraints by simpler onesuntil they are solved. This paper gives declarative and operational semantics as well assoundness and completeness results for CSR programs.In this paper, we introduce a notion of con
uence for CSR programs. Con
uence is anessential syntactical property of any constraint solver. It ensures that the solver will alwayscompute the same result for a given set of constraints independent of which rules areapplied. It also means that it does not matter for the result in which order the constraintsarrive at the constraint solver.We give a decidable, su�cient and necessary syntactic condition for con
uence of termi-nating CSR programs. Moreover, as shown in this paper, con
uence of a program impliesconsistency of its logical meaning (under a mild restriction).Keywords: constraint reasoning, semantics of programming languages, committed-choicelanguages, con
uence, determinism, program analysis.1. IntroductionConstraint-based programming languages, be it constraint logic program-ming (CLP) [JL87, Mah87, vH91, FHK+92, JM94] or committed-choice con-current constraint logic (C4L) programming1 [Mah87, Sha89, SRP91, Sar93,JM94], enjoy both elegant theoretical properties and practical success. Asit runs, a constraint-based program successively generates pieces of partialinformation called constraints. The constraint solver has the task to collect,combine, and simplify the constraints, and detect their inconsistency. Intui-tively, constraints represent elementary relationships between variables andvalues, for example equality or some order relationships. Clearly, the abilitiesand quality of the constraint solver play an essential role in constraint-basedprogramming.1 There is no consistent terminology in the literature for this class of programminglanguages: You may drop \logic" and either \committed-choice" or \concurrent".

2 Slim Abdennadher et al.In the beginning, constraint solving was \hard-wired" in a built-in constraintsolver written in a low-level language, termed the \black-box" approach.While e�cient, this approach makes it hard to modify a solver or build asolver over a new domain, let alone reason about and analyze it. As thebehavior of the solver can neither be inspected by the user nor explainedby the computer, debugging of constraint-based programs is hard. Also,one lesson learned from practical applications is that constraints are oftenheterogeneous and application speci�c.Several proposals have been made to allow more
exibility and customizati-on of constraint solvers, often termed \glass-box" approaches [CD93, vH91].The most far-reaching proposal is the \no-box" approach: Constraint Hand-ling Rules (CHR) [Fr�u95] is a high-level language for writing constraint sol-vers either from scratch or by modifying existing solvers. The CSR (Cons-traint Simpli�cation Rules) subset of CHR is essentially a C4L languageconsisting of guarded rules with multiple heads that replace (conjunctionsof) constraints by simpler ones until they are solved. With single-headedCSR rules alone, unsatis�ability of constraints could not always be detected(e.g. X<Y,Y<X).In contrast to typical general-purpose C4L languages, CSR programs can begiven a declarative semantics since they are only concerned with de�ningconstraints (i.e. �rst-order predicates), not procedures in their generality.We give soundness and completeness results for a class of CSR programs.There are C4L languages that share their semantics with CSR. The GuardedRules [Smo91] correspond to single headed CSR. However, they are onlyused as \shortcuts" (lemmata) for predicates, not as de�nitions for user-written constraints. Interestingly, in [Smo91] the built-in constraint systemis de�ned as a terminating and determinate reduction system. Hence it couldbe implemented by CSR.Also [AKP94] relies on a kind of guarded rules, emphasizing their use as aprogramming language on its own. [AKP94] shows that guarded rule pro-grams can be given a logical meaning that is a consistent theory, providedthat the guards satisfy a logical condition called compatibility and a kind ofclosed-world assumption. Since CSR allows multiple heads, it cannot havesuch a closed-world assumption.Typically, more than one CSR rule is applicable to a conjunction of cons-traints. It is obviously desirable that the result of a computation in a solverwill always be the same, semantically and syntactically, no matter which ofthe applicable CSR rules is applied. This essential property of any constraintsolver will be called con
uence. Without con
uence, one computation maydetect inconsistency while another might just simplify the same constraintsinto a more complex constraint. Con
uence also implies that it does notmatter in which order the constraints arrive at the constraint solver.paper.tex; 29/08/1997; 10:45; no v.; p.2

Con
uence and Semantics of Constraint Simpli�cation Rules 3Consider the following rules from a constraint solver for interval domains asan example. The intervals are associated with variables, written X::A..B,which means A�X ^ X�B. The �rst rule ensures that the interval for X isnon-empty, the second rule intersects two intervals for the same variable:X::A..B <=> A>B | false.X::A..B, X::C..D <=> true | maximum(A,C,E), minimum(B,D,F),X::E..F.The �rst CSR rule reads: If the guard A>B holds then replace the constraintX::A..B by the constraint false exhibiting its inconsistency. The programconsisting of these two rules is con
uent. Adding the seemingly harmless rulethat handles a variable whose value is uniquely determined by its interval,X::A..A <=> true | X :=A.results in a program that is not con
uent anymore: The constraints X::3..3,X::5..7 can be simpli�ed to X::5..3 by the second rule. This constraint inturn simpli�es to false with the �rst rule, so that the inconsistency of theinitial constraints is exhibited. On the other hand, applying the newly addedrule to the �rst constraint leads to X :=3, X::5..7. No more simpli�cationis possible, the inconsistency is left implicit.We will introduce a decidable, su�cient and necessary syntactic condition forcon
uence of terminating CSR programs. This condition adopts the notion ofcritical pairs as known from term rewriting systems [DOS88, KK91, Pla93].A straightforward translation of the results in this �eld was not possible,because the CSR formalism gives rise to phenomena not appearing in thiscombination in research on con
uence in term rewriting systems. Theseinclude the way in which variables can occur in a rule and the existenceof global knowledge. CSR programs are more powerful than the classicalconditional rewriting, because they use an additional context which is thebuilt-in constraint store.A practical application of our de�nition of con
uence lies in program analy-sis, where we can identify non-con
uent parts of CSR programs by examiningthe so-called critical pairs between rules. Programs with non-con
uent partsare likely to represent an ill-de�ned constraint solver. That a decidable con-
uence test exists is a clear advantage of CSR over black-box approaches.Since our test for con
uence is decidable for terminating programs, it canalso be used to identify the parts of arbitrary terminating C4L programsthat have a declarative semantics in our sense.On the theoretical side we also show that con
uence implies consistency ofthe logical meaning of a CSR program (under a mild restriction). Further-more we can improve on completeness, if a CSR program is con
uent (andterminating). paper.tex; 29/08/1997; 10:45; no v.; p.3

4 Slim Abdennadher et al.Our approach is orthogonal to the work in program analysis for C4L langua-ges as in [MO95, CFMW97, FGMP95], where a di�erent, less rigid notionof con
uence is de�ned: A committed-choice program is con
uent, if di�e-rent process schedulings give rise to the same set of possible outcomes. Theidea of [MO95, CFMW97] is to introduce a non-standard semantics, whichis con
uent for all committed-choice programs.This paper is organized as follows: The next section introduces the syntaxof Constraint Simpli�cation Rules (CSR), their declarative and operationalsemantics. Then we relate the declarative and operational semantics of CSRprograms by giving soundness and completeness results. Section 3 presentsour notion of con
uence for CSR. In section 4 we show that con
uenceimplies consistency of the logical meaning of a program. In section 5 weshow how con
uence leads to a strong completeness result for �nite failure.Finally, we conclude with a summary and directions for future work. Theappendix contains the main proofs, which are quite long. A preliminary shortversion of this paper was presented at CP'96 [AFM96].2. Syntax and SemanticsIn this section we give syntax and semantics as well as soundness andcompleteness results for Constraint Simpli�cation Rules (CSR). We assumesome familiarity with C4L programming [JL87, JM94, SRP91, Sar93, Sha89].Constraints are considered to be special �rst-order predicates. We will distin-guish between two classes of constraints. Built-in constraints are those hand-led by an already existing, prede�ned constraint solver. User-de�ned cons-traints are those de�ned by a CSR program.De�nition 2.1. A CSR program is a �nite set of constraint simpli�cationrules. A (constraint) simpli�cation rule is of the formH1; : : : ; Hi, G1; : : : ; Gj j B1; : : : ; Bk (i > 0; j � 0; k � 0);where the head H1; : : : ; Hi is a non-empty conjunction2 of user-de�ned cons-traints, the guard3 G1; : : : ; Gj is a conjunction of built-in constraints and thebody B1; : : : ; Bk is a conjunction of built-in and user-de�ned constraints.Conjunctions of built-in and user-de�ned constraints are called goals.Without loss of generality we assume the rules of the CSR program in que-stion to have disjoint sets of variables. In examples we may disregard thisagreement for ease of reading.2 For conjunction in rules we use the symbol \," instead of \^".3 The commit symbol \j" should not be confused as standing for disjunction as ingrammar formalisms and some Prolog dialects.paper.tex; 29/08/1997; 10:45; no v.; p.4

Con
uence and Semantics of Constraint Simpli�cation Rules 52.1. Declarative SemanticsIn general, C4L programs do not have a declarative semantics [AKP94].Typically, Clark's completion is used to describe the logical meaning of aprogram. For CSR, we chose a di�erent declarative semantics, since Clark'scompletion cannot be used for CSR's multiple heads. This semantics hasalso been proposed for guarded rules [AKP94, Smo91].The declarative semantics of a CSR program P is given by a conjuncti-on of universally quanti�ed logical formulae (one for each rule), P , and aconsistent built-in theory CT which determines the meaning of the built-inconstraints appearing in the program. The constraint theory CT is expec-ted to include a constraint := for syntactic equality (e.g. by Clark's equalitytheory CET [Cla78]) and the constraints true and false.De�nition 2.2. The logical meaning of a simpli�cation rule is a logical equi-valence provided the guard holds8�x 8�y ((G1 ^ : : :^ Gj))! (H1 ^ : : :^Hn $ 9�z (B1 ^ : : :^Bk)),where �x is the sequence of variables occuring in H1; : : : ; Hn and �y are theother variables occuring in G1; : : : ; Gj and �z are the variables occuring inB1; : : : ; Bk only.Example 2.1. Now let us extend a given constraint solver for the constraints� and := with a constraint maximum(X,Y,Z)which holds, if Z is the maximumof X and Y. The following rules could be part of the CSR program:maximum(X,Y,Z), X�Y | Z :=Y.maximum(X,Y,Z), Y�X | Z :=X.The �rst rule states that maximum(X,Y,Z) can be replaced by Z :=Y providedit holds that X�Y.Now assume there is a typo in the body of the second rule:maximum(X,Y,Z), X�Y | Z :=Y.maximum(X,Y,Z), Y�X | Y :=X.The logical meaning of this CSR program is the theory8 X,Y,Z (X � Y ! (maximum(X,Y,Z) $ Z := Y))8 X,Y,Z (Y � X ! (maximum(X,Y,Z) $ Y := X))together with an appropriate constraint theory describing � as an orderrelation. The logical meaning P of this program is not a consistent theory.This can be exempli�ed by the atomic formula maximum(1; 1; 0), which islogically equivalent to 0 :=1 (and therefore false) using the �rst formula. Usingthe second formula, however maximum(1; 1; 0) is logically equivalent to 1 :=1(and therefore true). paper.tex; 29/08/1997; 10:45; no v.; p.5

6 Slim Abdennadher et al.2.2. Operational SemanticsThe operational semantics of CSR is a straightforward extension of the usualone for C4L languages [JM94] to multiple head atoms. We de�ne the ope-rational semantics of a given CSR program P by a transition system thatmodels the operations of the constraint solver de�ned by P . To keep thesemantics simple, we require from now on that those guard constraints con-taining variables which do appear in the body but not in the head have toappear in the body again. This is no real restriction, since a general rule canbe translated into a restricted rule by simply repeating the guard constraintsin the body.Example 2.2. A CSR rule of the form p(X) , Y = 3 | X = Y must betranslated to p(X) , Y = 3 | X = Y, Y = 3.2.2.1. StatesDe�nition 2.3. A state is a tuplehGs;CU ; CB;Vi:Gs is a conjunction of user-de�ned and built-in constraints called goal store.CU is a conjunction of user-de�ned constraints, likewise CB is a conjunctionof built-in constraints. CU and CB are called user-de�ned and built-in (cons-traint) stores, respectively. V is a sequence of variables. An empty goal oruser-de�ned store is represented by >. The built-in store cannot be empty.In its most simple form it consists only of true or false.Intuitively, Gs contains the constraints that remain to be solved, CB and CUare the built-in and the user-de�ned constraints, respectively, accumulatedand simpli�ed so far.De�nition 2.4. A variable X appearing in a state hGs;CU ; CB;Vi is called� global, if X appears in V ,� local, if X does not appear in V ,� strictly local, if X appears in CB only.De�nition 2.5. The logical meaning of a state hGs;CU ; CB;Vi is the formula9�y Gs ^ CU ^ CB;where �y are the local variables of the state. Note that the global variablesremain free in the formula. paper.tex; 29/08/1997; 10:45; no v.; p.6

Con
uence and Semantics of Constraint Simpli�cation Rules 72.2.2. A Normalized Form for StatesWe will assume that states are in a normalized form that abstracts awaythe speci�cs of the built-in constraint solver: The normalized form considersthose states equivalent that impose the same built-in constraints on the goaland on the user-de�ned constraints store. We model the normalization witha function that maps equivalent states into a syntactically unique represen-tative state. The normalization function normalizes the built-in constraintstore, projects out strictly local variables, and propagates implied equationsall over the state. Most built-in constraint solvers naturally support thisfunctionality since they work with normalized forms anyway. For the follo-wing theorems and proofs it is important to make the requirements on thenormalization function more precise.De�nition 2.6. A function N : S ! S, where S is the set of all states, is anormalization function, if it ful�lls the following conditions. LetN (hGs;CU ; CB;Vi) = hGs0; C 0U ; C 0B;Vi. We assume that there is a �xedorder on variables appearing in a state such that global variables are orde-red as in V and precede all local variables.� Equality propagation: Gs0 and C0U derive from Gs and CU by replacingall variables X , that are uniquely determined in CB [JM94], i.e. for whichCT j= 8 (CB ! X :=t)4 holds, by the corresponding term t, except if tis a variable that comes after X in the variable order.� Projection: The following must hold:CT j= 8 ((9�xCB)$ C 0B);where �x are the strictly local variables of hGs0; C 0U ; CB;Vi.� Uniqueness: IfN (hGs1; CU1; CB1;Vi) = hGs01; C 0U1; C 0B1;Vi andN (hGs2; CU2; CB2;Vi) = hGs02; C 0U2; C 0B2;Vi andCT j= (9�xCB1) $ (9�yCB2);holds, where �x and �y, respectively, are the strictly local variables of thetwo states, then: C0B1 = C 0B2:The syntactical form of the result of normalization does not matter, as longas the three conditions, above all uniqueness, hold. An important propertyof N is that it preserves the logical meaning of states.4 8F is the universal closure of a formula F , likewise is 9F the existential closure of F .paper.tex; 29/08/1997; 10:45; no v.; p.7

8 Slim Abdennadher et al.Lemma 2.1. Let beN (hGs;CU ; CB;Vi) = hGs0; C0U ; C 0B;Vi:Then the following equivalence holdsCT j= 8 (9�x(Gs ^ CU ^ CB)$ 9�x0(Gs0 ^ C0U ^ C0B));where �x and �x0 are the local variables in S and S 0, respectively.Proof. The claim follows from the following three assertions:�x0 � �x (1)CT j= 8 (CB ! ((Gs^ CU)$ (Gs0 ^ C0U))) (2)CT j= 8 (9�yCB$C 0B) and �y � �x; (3)where �y are the strictly local variables in hGs0; C0U ; CB;Vi. Assertion (1)holds because the normalization function N does not introduce new varia-bles due to the projection property. (2) holds, because CT contains equalityand Gs0 ^ C0U derive from Gs ^ CU by substitutions prescribed by CB. (3)follows from the uniqueness property of N . (�y are the strictly local variablesin hGs0; C 0U ; CB;Vi.) The claim then directly follows from the assertions (1),(2) and (3). 2The uniqueness property of N guarantees that there is exactly one represen-tation for each set of equivalent built-in constraint stores. Therefore we canassume that an inconsistent built-in store is represented by the constraintfalse and likewise a valid built-in store by true.A property of N is that it will eliminate all strictly local variables:Example 2.3. LetN (hp(Z);>; X :=Z; [X]i) = hp(X);>; CB; [X]i:Because CT j= 8 (9Z(X :=Z)$true), the uniqueness condition implies thefollowing: N (hp(X);>; true; [X]i) = hp(X);>; CB; [X]i;Therefore we know that CB must be true, because N cannot introduce newvariables.De�nition 2.7. The pair (C1; C2) (C1 and C2 are conjunctions of constraints)is called connected in the sequence V i� all variables that appear in C1 andC2 also appear in V . paper.tex; 29/08/1997; 10:45; no v.; p.8

Con
uence and Semantics of Constraint Simpli�cation Rules 9The following lemma shows that N is to a certain degree compatible withadding constraints to the built-in store:Lemma 2.2. If C is a conjunction of built-in constraints and (C;CB) isconnected in V and N (hGs;CU ; CB;Vi) = hGs0; C0U ; C 0B;Vi thenN (hGs;CU ; CB ^ C;Vi) = N (hGs0; C 0U ; C 0B ^ C;Vi):This claim is proven by analyzing the strictly local variables of the states.The connectedness requirement in the lemma above re
ects the sensitivity ofN to strictly local variables. It guarantees that equality constraints involvingvariables appearing in the added constraint C are not removed by N due tolocality.2.2.3. Computation StepsThe aim of the computation is to incrementally reduce arbitrary states tostates that contain no more goals in the goal store and a maximally simpli�eduser-de�ned constraint store (with regard to a given program P). Given aCSR program P we de�ne the transition relation 7!P 5 by introducing threekinds of computation steps (Figure 1).TransitionsSolve C is a built-in constrainthC ^Gs;CU ; CB;Vi 7! N (hGs;CU ; C ^ CB;Vi)IntroduceC is a user-de�ned constrainthC ^Gs;CU ; CB;Vi 7! N (hGs;C ^ CU ; CB;Vi)Simplify(H , G j B) is a fresh variant of a rule in P with the variables �xCT j= 8 (CB ! 9�x(H :=H 0 ^G))hGs;H 0 ^ CU ; CB;Vi 7! N (hGs ^B;CU ; H :=H 0 ^ CB;Vi)Figure 1. Computation StepsNotation: Capital letters denote conjunctions of constraints. By equatingtwo constraints (c(t1; : : : ; tn) :=c(s1; : : : ; sn)), we mean t1 :=s1^: : :^tn :=sn. By5 In the rest of the paper, we will drop P for simplicity.paper.tex; 29/08/1997; 10:45; no v.; p.9

10 Slim Abdennadher et al.(p1^: : :^pn) :=(q1^: : :^qn) we mean p1 :=q1^: : :^pn :=qn. Note that conjunctscan be permuted since conjunction is associative and commutative, and thatwe will identify all states containing the built-in store false.In the Solve transition, the built-in solver simpli�es the built-in store afteradding a new constraint C that was found in the goal store. Introducetransports a user-de�ned constraint C from the goal store into the user-de�ned constraint store. To Simplify user-de�ned constraints H 0 meansto replace them by the body B of a fresh variant6 of a simpli�cation rule(H , G j B) from the program, provided H 0 matches7 the head H and theresulting guard G is implied by the built-in constraint store, and �nally tonormalize the resulting state.De�nition 2.8. An initial state for a goal G is of the form:hG;>; true;Vi,where V is the sequence of the variables occuring in G.A �nal state is either of the formhG;CU ; false;Vi,(such a state is called failed), or of the formh>; CU ; CB;Viwith no computation step possible anymore and CB not false (such a stateis called successful).De�nition 2.9. A computation of a goal G is a sequence S0; S1; : : : of stateswith Si 7! Si+1 beginning with the initial state for G and ending in a �nalstate or diverging. A computation is �nitely failed, if it is �nite and its �nalstate is failed.Example 2.4. Remember the correct rules for maximum:maximum(X,Y,Z), X�Y | Z :=Y.maximum(X,Y,Z), Y�X | Z :=X.A computation of the goal maximum(1,1,Z) proceeds as follows (using the�rst rule):6 Two expressions are variants, if they can be obtained from each other by a variablerenaming. A fresh variant contains only new variables.7 Matching rather than uni�cation is the e�ect of the existential quanti�cation over thehead equalities. paper.tex; 29/08/1997; 10:45; no v.; p.10

Con
uence and Semantics of Constraint Simpli�cation Rules 11hmaximum(1; 1; M);>; true; [M]i7! (Introduce) N (h>; maximum(1; 1;M); true; [M]i) =h>; maximum(1; 1; M); true; [M]i7! (Simplify) N (hZ :=Y;>; X :=1 ^ Y :=1 ^ Z :=M; [M]i) =hM :=1;>; true; [M]i =7! (Solve) N (h>;>; M :=1; [M]i) =h>;>; M :=1; [M]iLemma 2.3. Normalization has no in
uence on application of rules, i.e.S 7! S 0 holds i� N (S) 7! S0:This claim is shown by analyzing each kind of computation step.De�nition 2.10. S 7!� S0 holds i�S 0 = S or S 0 = N (S) or S 7! S1 7! : : : 7! Sn 7! S 0 (n � 0):2.3. Soundness and CompletenessWe present results relating the operational and declarative semantics ofCSR. These results are based on work of Ja�ar and Lassez [JL87], Maher[Mah87] and van Hentenryck [vH91].De�nition 2.11. A computable constraint of G is the logical meaning of astate which appears in a computation of G. The logical meaning of a �nalstate is called answer constraint.The results in this section are relatively straightforward because a compu-tation step produces only logically equivalent states.The following lemma and theorem are direct consequences of Lemma A.1(to be found in the appendix).Lemma 2.4. Let P be a CSR program and G be a goal. Then for all com-putable constraints C1 and C2 of G the following holds:P;CT j= C1$C2:Theorem 2.1 (Soundness). Let P be a CSR program and G be a goal. If Ghas a computation with answer constraint C thenP ; CT j= 8 (C $ G):paper.tex; 29/08/1997; 10:45; no v.; p.11

12 Slim Abdennadher et al.The following theorem is stronger than the completeness result for constraintlogic programming languages (CLP) as presented in [Mah87]. We can redu-ce the disjunction in the strong completeness theorem presented there to asingle disjunct in our theorem. This is possible, since our declarative seman-tics is stronger and consequently, according to Lemma 2.4, all computableconstraints of a given goal are equivalent (Figure 2).(A) S~~�|||||||| ���@@@@@@@@ (B) S~~�}}}}}}}} ���@@@@@@@@S1 6$ S2 S1 $ S2Figure 2. Logical Relationship of Computable Answers in CLP (A) and CSR (B)Theorem 2.2 (Completeness). Let P be a CSR program and G be a goalwith at least one �nite computation. If P ; CT j= 8 (C $ G), then G has acomputation with answer constraint C 0 such thatP ; CT j= 8 (C $ C 0):Proof. G has at least one �nite computation. Let C0 be the answer constraintof G resulting from this computation.By the soundness Theorem 2.1 the following holds:P ; CT j= 8(C 0 $ G)From P ; CT j= 8(C $ G) follows P ; CT j= 8(C $ C 0). 2The completeness theorem does not hold, if G has no �nite computations.Example 2.5. Let P be the following CSR program:p, p.Let G be p. It holds that P ; CT j= p$ p. However, G has only one in�nitecomputation. paper.tex; 29/08/1997; 10:45; no v.; p.12

Con
uence and Semantics of Constraint Simpli�cation Rules 13Corollary 2.1. Let P be a CSR program and G be a goal.If G has a �nitely failed computation, then P ; CT j= :9G.Proof. If G has a �nitely failed computation, then G has a computation withanswer constraint equivalent to false. By Theorem 2.1 we have that P ; CT j=8 (false$ G), hence P ; CT j= 8:G, which is equivalent to P ; CT j= :9G. 2The converse of Corollary 2.1 does not hold in general:Example 2.6. Let P be the following CSR programp , q.p , false.P ; CT j= :q, but q has no �nitely failed computation. We will see thatcon
uence will improve on this situation.3. Con
uenceWe have already shown in the previous section that in every CSR program,the result of a computation of a given goal will always have the same mea-ning. However it is not guaranteed that the result is syntactically the same.In particular, a solver may be complete with one order of rule applicationsbut incomplete with another one. Di�erent results may also arise, if com-bined solvers share constraint symbols, depending on which solver comes�rst.In the following we will adopt and extend the terminology and techniquesof conditional term rewriting systems (CTRS) [DOS88, KK91]. A straight-forward translation of results in the �eld of CTRS was not possible, becausethe CSR formalism gives rise to phenomena which do not appear in CTRSor make problems when treating con
uence. These include the existence ofglobal knowledge: CSR programs are more powerful than the classical con-ditional rewriting, because they use an additional context, the built-in cons-traint store. Information about this store must be available for applicationof computation steps. Other phenomena are: generalized, logical conditionsfor rule applicability (guards), multiple occurrences of variables on the left-hand side of a rule, local variables (variables that occur on the right-handside of a rule only).Con
uence, as illustrated in Figure 3(A), guarantees that any computationstarting from an arbitrary given initial state results in the same �nal state.We �rst de�ne what it means that two computations have the same result.De�nition 3.1. Two states S1 and S2 are called joinable, if there exist statesS 01; S 02 such that S1 7!� S01 and S2 7!� S02 and S01 and S02 are variants.paper.tex; 29/08/1997; 10:45; no v.; p.13

14 Slim Abdennadher et al.De�nition 3.2. A CSR program is called con
uent, if the following holds forall states S; S1; S2:If S 7!� S1; S 7!� S2 then S1 and S2 are joinable.Example 3.1. Remember the following CSR program:p , q.p , false.This program is obviously not con
uent since p can either be replaced by qor false which di�er. However the following program is con
uent:p , q.p , false.q , false.Con
uence is undecidable in general. Luckily, Newman's lemma [New42]for term rewriting systems is applicable to CSR as well: If a program isterminating, it su�ces to consider local con
uence to guarantee (global)con
uence. We will show that local con
uence is decidable for CSR (whiletermination, of course, is very likely to be undecidable).De�nition 3.3. A CSR program is called locally con
uent, if the followingholds for all states S; S1; S2:If S 7! S1; S 7! S2 then S1 and S2 are joinable.(A) S~~�}}}}}}}} ���@@@@@@@@ (B) S~~}}}}}}}} ��@@@@@@@@S1 !!�BBBBBBBB S2~~�}}}}}}} S1 !!�BBBBBBBB S2~~�}}}}}}}S0 S0Figure 3. Con
uence (A) and Local Con
uence (B)To analyze con
uence of a given CSR program we have to check joinabilityof all pairs of states, which have a common ancestor state. There are in�-nitely many of those pairs, if there is at least one rule in the program. Inthe following we will present a decidable, necessary and su�cient conditionpaper.tex; 29/08/1997; 10:45; no v.; p.14

Con
uence and Semantics of Constraint Simpli�cation Rules 15for terminating CSR programs to be con
uent. The idea of this criterion, asillustrated in Figure 4, is to test joinability of �nitely many minimal pairs ofstates. These so-called critical pairs can be derived from rules overlappingheads. We then have to show that joinability of these minimal pairs is neces-sary and su�cient for joinability of arbitrary pairs of states, i.e. that criticalpairs can be extended to any context in which two rules can be applied withdi�erent results.hB1;>; G;Vi ((�QQQQQQQQQQQQQQ hB2;>; G;Vivv�mmmmmmmmmmmmmmShB1 ^ Gs;CU ; G^ CB;Vi ((�QQQQQQQQQQQQQQ hB2 ^Gs;CU ; G^ CB;Vivv �mmmmmmmmmmmmmmS0Figure 4. Joinability of Critical Pair (Top) and Extended States (Bottom)De�nition 3.4. If one or more head constraints Hi1 ; : : : ; Hik of a rule(H1; : : : ; Hn , G j B) can be equated with one or more head constraintsH 0j1 ; : : : ; H 0jk of a rule (H 01; : : : ; H 0m , G0 j B0)8, then we call the tuple(�G;B ^H 0jk+1 ^ : : :^H 0jm =#= B0 ^Hik+1 ^ : : :^Hin ;V)a critical pair of these rules. Here is �G = G^G0 ^Hi1 :=H 0j1 ^ : : :^Hik :=H 0jk ,while fi1; : : : ; ing and fj1; : : : ; jmg are permutations of f1; : : : ; ng andf1; : : : ; mg, respectively, and 1 � k � min(m;n). V is the sequence of varia-bles in H1; : : : ; Hn; H 01; : : : ; H 0m.Example 3.2. Consider the program for maximum of Example 2.4:maximum(X,Y,Z), X�Y | Z :=Y.maximum(X,Y,Z), Y�X | Z :=X.There are two trivial9 and the following nontrivial critical pair10:8 It can be a fresh variant of the �rst rule.9 We call critical pairs of the form (G ; B =#= B ; V) trivial.10 With variables from di�erent rules already identi�ed for readability.paper.tex; 29/08/1997; 10:45; no v.; p.15

16 Slim Abdennadher et al.(X�Y ^ Y�X, Z :=Y =#= Z :=X, [X,Y,Z])Example 3.3. Consider the following part of a CSR program de�ning inter-actions between the boolean operations not, imp and or.not(X,Y), imp(X,Y) , true | X :=0, Y :=1.not(X,Y), or(X,Z,Y), true | X :=0, Y :=1, Z :=1.These two rules have the nontrivial critical pair:(true,imp(X,Y) ^ X :=0 ^ Y :=1 ^ Z :=1 =#= or(X,Z,Y) ^ X :=0 ^ Y :=1,[X,Y,Z])De�nition 3.5. A critical pair (G ; B1 =#= B2 ; V) is called joinable ifhB1;>; G;Vi and hB2;>; G;Vi are joinable.Example 3.4. The critical pair in Example 3.2 is joinable, if the built-in cons-traint solver normalizes X�Y ^ Y�X into X :=Y. The critical pair in example3.3 is also joinable, provided there are the following (or similar) rules in theCSR program:imp(0,1) , true | true.or(X,1,Z), true | Z :=1.With the notion of critical pairs we are in a position to give a su�cient andnecessary condition for local con
uence. The proof for the following theoremcan be found in appendix B.Theorem 3.1. A CSR program is locally con
uent i� all its critical pairs arejoinable.De�nition 3.6. A CSR program is called terminating, if there are no in�nitecomputations.The following corollary is a simple consequence of Theorem 3.1 and New-man's lemma [New42]:Corollary 3.1. A terminating CSR program is con
uent i� it is locally con-
uent.The Corollary 3.1 gives a decidable characterization of con
uent termina-ting CSR programs: Joinability of a given critical pair is decidable for aterminating CSR program and there are only �nitely many critical pairs.As in term rewriting systems, termination is crucial to go from local con
u-ence to (global) con
uence. It may be the case that the class of terminatingpaper.tex; 29/08/1997; 10:45; no v.; p.16

Con
uence and Semantics of Constraint Simpli�cation Rules 17CSR programs is too restrictive to cover all programs that are useful inpractice. But in the present we do not see a possibility to do without termi-nation.3.1. Confluence and DeterminismOne may wonder why we need to bother with con
uence instead of adoptingthe notion of determinism from ALPS [Mah87] to CSR. In a deterministicprogram, no two rules for the same predicate have overlapping guards. Thismeans that in a computation, at most one rule can be chosen for a goal.Hence any possible order of rule applications results in the same �nal state.It may seem that any con
uent program can be translated into an equiva-lent deterministic one. However, this is not the case, because the resultingdeterministic programs may be operationally weaker than their con
uentcounterparts. The notion of deterministic programs is too strict for our pur-poses. The weakness of the notion of determinism applied to CSR has threereasons, of which the �rst two also hold for C4L languages:First, the constraint system must be closed under negation so that a C4Lprogram can be transformed into one without overlapping guards.Example 3.5. Remember the (con
uent) rules for maximum:maximum(X,Y,Z), X�Y | Z :=Y.maximum(X,Y,Z), Y�X | Z :=X.This program cannot be transformed into an equivalent one without over-lapping guards, if := and � are the only built-in constraints.Secondly, con
uent programs can commit to a rule earlier than determini-stic ones because their guards can be less rigid since they may overlap.Example 3.6. A deterministic version of maximum:maximum(X,Y,Z), X<Y | Z :=Y.maximum(X,Y,Z), Y�X | Z :=X.For the goal maximum(A,B,C) ^ A�B the answer is the goal itself, becauseno rule is applicable. In the con
uent version (Example 3.5) the �rst rulecommits and computes the answer A�B ^ C :=B.Third, in contrast to most C4L languages including ALPS, CSR allow \mul-tiple heads", i.e. conjunctions in the head of a rule. We can get into a situati-on, where two rules can be applied to di�erent but overlapping conjunctionsof constraints. In general it is not possible to avoid commitment to one of therules (and thus making the program deterministic11) by adding constraintsto the guards.11 We conservatively extend the notion of deterministic ALPS programs to CSR: Atmost one rule is applicable to any given goal.paper.tex; 29/08/1997; 10:45; no v.; p.17

18 Slim Abdennadher et al.Example 3.7. Consider the two rules of Example 3.3:not(X,Y), imp(X,Y) , true | X :=0, Y :=1.not(X,Y), or(X,Z,Y), true | X :=0, Y :=1, Z :=1.Given a goal not(A,B)^imp(A,B)^or(A,C,B), both rules can be applied.To ensure that only the �st rule can be applied, we would have to add acondition to the guard of the �rst rule that or(A,C,B) does not exist in thecurrent state. Such a condition cannot be expressed by a constraint since itis meta-logical as it can become dis-implied in the future.4. Consistency and Con
uenceWe now show that con
uence implies consistency of the logical meaning of arange-restricted program. For this we have to require the constraint theoryto be ground complete12. Since our test for con
uence is decidable, it thuscan also be used to identify the parts of range-restricted terminating C4Lprograms that have a consistent declarative semantics in our sense.For the proof to go through, every rule has to satisfy a range-restrictioncondition: Every variable in the body appears also in the head. We believethat the result holds for general CSR programs, but to show this, it seemsthat a di�erent proof technique has to be found.De�nition 4.1. A constraint theory CT is called ground complete, if for everyground atomic constraint c either CT j= c or CT j= :c holds.Theorem 4.1. Let P be a range-restricted CSR program and CT a groundcomplete theory. If P is con
uent, then P [CT is consistent.The theorem follows directly from the following two lemmas. In order toformulate them, we �rst have to de�ne the notion of computational equiva-lence:De�nition 4.2. Given a CSR program, we de�ne the computational equiva-lence $�: S1 $ S2 i� S1 7! S2 or S1 S2. S $� S0 i� there is a sequenceS1; : : : ; Sn such that S1 is S, Sn is S 0 and Si $ Si+1 for all i.We can easily see that for every computational equivalence S $� S0 thereis a sequence S1; T1; S2; T2; : : : ; Tn�1; Sn of the following form:S � S1 7!� T1 � S2 7!� : : : 7!� Tn�1 � Sn 7!� S 0:This sequence is more intuitively illustrated in Figure 5.12 Note that this restriction is very weak, since the property holds for almost all usefulclasses of constraint theories. paper.tex; 29/08/1997; 10:45; no v.; p.18

Con
uence and Semantics of Constraint Simpli�cation Rules 19S1 �AAAAA��� ����� S2~~� }}}}} �AAAAA : : : Sn||� xxxxx �AAAAAS T1 T2 : : : Tn�1 S0Figure 5. Computational Equivalence of S and S0Lemma 4.1. If P is con
uent, then h>;>; true;Vi $� h>;>; false;Vi doesnot hold.Proof. Let be ST = h>;>; true;Vi and SF = h>;>; false;Vi. We show byinduction on the length of the computational equivalence n that there areno states S1; T1; : : : ; Tn�1; Sn such thatST � S1 7!� T1 � : : : 7!� Tn�1 � Sn 7!� SFBase case: ST � S1 7!� SF cannot exist, because ST and SF are di�erent�nal states and P is con
uent.Induction step: We assume that the induction hypothesis holds for n, i.e.ST � S1 7!� T1 � : : : 7!� Tn�1 � Sn 7!� SF does not exist. We provethe assertion for n+ 1 by contradiction:We assume that a sequence of the formST � S1 7!� T1 � : : : � Sn 7!� Tn � Sn+1 7!� SF exists. We will leadthis assumption to a contradiction.P is con
uent, hence SF and Tn are joinable. Since SF is a �nal state,there is a computation of Tn that results in SF (i.e. Tn 7!� SF), and henceSn 7!� SF . Therefore there is a sequence of the formST � S1 7!� T1 � : : : � Sn�1 7!� Tn�1 � Sn 7!� SF ;which is a contradiction to the induction hypothesis. 2Some notations and de�nitions are necessary before we go further. We usethe notation \�" for assignments, or valuations, to a set of variables. Foran interpretation I and a variable valuation � we denote the fact that theformula or set of formulas F is satis�ed by I and � as \I; � j= F". Thefact that a closed formula is satis�ed by an interpretation I is denoted as\I j= F".An interpretation of P[CT is a structure that expands the Herbrand modelof CT to include an interpretation of the set of the user-de�ned constraintsappearing in the CSR program P . A model of a (set of) rule(s) is an inter-pretation modeling the rule (the set).paper.tex; 29/08/1997; 10:45; no v.; p.19

20 Slim Abdennadher et al.Lemma 4.2. Let P be a range-restricted CSR program and CT a groundcomplete theory. If h>;>; true;Vi $� h>;>; false;Vi does not hold, thenP [CT is consistent.Proof. We show consistency by de�ning an interpretation which is a modelof P [CT.We de�neI0 := ffC1�; : : : ; Cn�g j h(C1 ^ : : :^ Cn)�;>; true;Vi $� h>;>; true;Vig:Let be I := (S I0).13Because of the consistence and the ground completeness CT has a singleHerbrand model CM := fc j CT j= c and c is groundgLet I be I [CM. We know that false =2 I , because hfalse;>; true;Vi$� h>;>; true;Vi does not hold. Therefore I is a Herbrand interpretati-on of P [CT. We show I j= P .Let (H1^ : : :^Hn , G1^ : : :^Gj j B1^ : : :^Bk) be a CSR rule from P . Weshow I j= 8 ((G1 ^ : : :^Gj)! (H1 ^ : : :^Hn $ 9 (B1 ^ : : :^Bk))). Sincethe rules are range-restricted, we have to show I j= 8 ((G1 ^ : : : ^ Gj) !(H1 ^ : : :^Hn $ B1 ^ : : :^Bk))To show that I j= 8 (G1^ : : :^Gj)! (H1^ : : :^Hn $ B1^ : : :^Bk) (whichis equivalent to I j= 8 ((H1^ : : :^Hn^G1^ : : :^Gj)$ (B1^ : : :^Bk^G1^: : : ^ Gj))), we have to show that I; � j= (H1 ^ : : :^Hn ^ G1 ^ : : :^ Gj $B1 ^ : : :^Bk ^G1 ^ : : :^ Gj) for any variable valuation �.For all formulas (H1^ : : :^Hn^G1^ : : :^Gj $ B1^ : : :^Bk ^G1^ : : :^Gj)and for any variable valuation � the following equivalences hold:I; � j= H1 ^ : : :^Hn ^G1 ^ : : :^ Gji� fH1�; : : : ; Hn�; G1�; : : : ; Gj�g � Ii� h(H1 ^ : : :^Hn ^ G1 ^ : : :^Gj)�;>; true;Vi $� h>;>; true;Vii� h(B1 ^ : : :^ Bm ^G1 ^ : : :^ Gj)�;>; true;Vi $� h>;>; true;Vii� fB1�; : : : ; Bm�; G1�; : : : ; Gj�g � Ii� I; � j= B1 ^ : : : ^Bm ^G1 ^ : : :^ Gj :Therefore I; � j= H1^ : : :^Hn^G1^ : : :^Gj $ B1^ : : :^Bm^G1^ : : :^Gjfor any variable valuation � and for all formulas in P .Then I j= 8 ((G1 ^ : : : ^ Gj) ! (H1 ^ : : : ^ Hn $ B1 ^ : : : ^ Bk)) for allformulas from P . 213 This operator denotes the union of all members of I0.paper.tex; 29/08/1997; 10:45; no v.; p.20

Con
uence and Semantics of Constraint Simpli�cation Rules 215. Con
uence and Declarative SemanticsThe following theorem states that we can improve on completeness, if a CSRprogram is con
uent and terminating.Theorem 5.1. Let P be a terminating and con
uent CSR program and G bea goal. Then the following are equivalent:a) P ; CT j= 8 (C$G).b) G has a computation with answer constraint C 0 such that P ; CT j=8 (C$C 0).c) Every computation of G has an answer constraint C0 such that P ; CT j=8 (C$C 0).Proof. \a)) b)" holds according to completeness of CSR computations,Theorem 2.2.\b)) c)" is implied directly by con
uence and termination.\c)) a)" holds according to soundness of CSR computations, Theorem2.1. 2The following theorem gives a condition for existence of �nitely failed com-putations, provided the goals have the following property.De�nition 5.1. A goal is data-su�cient, if it has a computation with a �nalstate containing an empty user-de�ned store.This property guarantees that there is a computation of the goal with an ans-wer constraint containing only built-in constraints. The property is exactlythe same as the one used in [Mah87], but we use a more explicit de�nition14 .Theorem 5.2. Let P be a range-restricted and con
uent CSR program, CTa ground complete theory, and G a data-su�cient goal. If P ; CT j= :9Gthen G has a �nitely failed computation.Proof. G has a computation with answer constraint C containing only built-in constraints, because G is data-su�cient.By Theorem 2.1 the following does hold:P ; CT j= 8 (C $ G):P ; CT j= :9G implies P ; CT j= 8 (false$ G). ThereforeP ; CT j= 8 (C $ false):14 Personal communication with M. Maher, Email, January 1997.paper.tex; 29/08/1997; 10:45; no v.; p.21

22 Slim Abdennadher et al.Since P is con
uent, P is consistent15 (by Theorem 4.1). Furthermore, Pdoes not de�ne built-in constraints and C consists of built-in constraintsonly. Hence the following also holds:CT j= 8 (C $ false):Since C consists of built-in constraints only, C must be false. 2The following corollary is a soundness and completeness result for �nitefailure. It is a consequence of Theorems 5.1, 4.1 and 5.2.Corollary 5.1. (Soundness and Completeness of Finite Failure) Let P bea range-restricted, terminating and con
uent CSR program, CT a groundcomplete theory, and G a data-su�cient goal.The following are equivalent:a) P ; CT j= :9Gb) G has a �nitely failed computation.c) Every computation of G is �nitely failed.These results are similar to those for ALPS [Mah87], even though ALPShas a di�erent declarative semantics (based on Clark's completion) and adi�erent operational semantics (rules can commit more often).As a conclusion of this section we present a comparison of the various com-pleteness and soundness results for successful computations (SC) and �nitefailure (FF) for C4L languages16 as presented in [JM94] and CSR in Figure6. C4L CSR Determ. C4L Con
. CSRSoundness (SC) yes yes yes yesCompleteness (SC) no yes yes yesSoundness (FF) yes yes yes yesCompleteness (FF) no no yes yesFigure 6. Soundness and Completeness Results for C4L and CSR15 Thus, the proof also goes through for consistent programs.16 Note that the declarative semantics of these languages is di�erent from CSR's (basedon Clark's completion). paper.tex; 29/08/1997; 10:45; no v.; p.22

Con
uence and Semantics of Constraint Simpli�cation Rules 236. Conclusions and Future WorkWe introduced the notion of con
uence for Constraint Simpli�cation Rules(CSR). Con
uence guarantees that a CSR program consisting only of sim-pli�cation rules will always compute the same result for a given set of user-de�ned constraints independent of which rules are applied.Based on classical notions in term rewriting systems, we have given a cha-racterization of con
uence for terminating CSR programs through joinabi-lity of critical pairs, yielding a decidable, su�cient and necessary conditionand syntactically based test for con
uence. We have shown that con
uenceimplies consistency of the logical meaning of CSR programs.We also gave various soundness and completeness results for CSR programs.Our theorems are stronger than what holds for the related families of C4Lprogramming languages. Our approach complements recent work in pro-gram analysis as in [MO95, CFMW97], where a di�erent, less rigid notionof con
uence is de�ned: A committed-choice program is con
uent, if di�e-rent process schedulings give rise to the same set of possible outcomes. Theidea of [MO95, CFMW97] is to introduce a non-standard semantics, whichis con
uent for all committed-choice programs.We have developed a tool [Mar96] in ECLiPSe (ECRC Constraint Logic Pro-gramming System [ACD+94]) which tests con
uence of CSR programs. Ourtests show that most existing constraint solvers written in CSR are indeedcon
uent. A solver performing Gaussian elimination was not con
uent. Itcan easily be made con
uent by adding a condition to the guard (in thiscase, at the expense of e�ciency). Current work [Abd97] integrates the twoother kinds of CHR rules, the propagation and the simpagation rules, intoour condition for con
uence. The idea is to extend states by a componentthat keeps track of which propagation rules have already been applied andin this way avoids trivial nontermination.As in term rewriting systems, termination is crucial to go from local con
u-ence to (global) con
uence. Thus investigations into termination are neces-sary.We also want to investigate further the relationship of CSR to general-purpose C4L languages. We plan to study completion methods to make anon-con
uent CSR program con
uent. Like in term rewriting systems, theidea is to turn critical pairs into rules.Finally, we would like to thank the anonymous referees, who have pointedout some errors and omissions in preliminary versions of this paper.paper.tex; 29/08/1997; 10:45; no v.; p.23

24 Slim Abdennadher et al.ReferencesAbd97. S. Abdennadher. Operational semantics and con
uence of constraint propa-gation rules. In Third International Conference on Principles and Practiceof Constraint Programming, CP'97, LNCS. Springer, November 1997.ACD+94. A. Aggoun, D. Chan, P. Dufrense, E. Falvey, H. Grant, A. Herold, G. Macart-ney, M. Maier, D. Miller, B. Perez, E. van Rossum, J. Schimpf, P. Tsahageas,and D. de Villeneuve. ECLiPSe3.4 User Manual. ECRC Munich Germany,July 1994.AFM96. S. Abdennadher, T. Fr�uhwirth, and H. Meuss. On con
uence of constrainthandling rules. In E. Freuder, editor, Proceedings of the Second InternationalConference on Principles and Practice of Constraint Programming, CP'96,LNCS 1118. Springer, August 1996.AKP94. Hassan A��t-Kaci and Andreas Podelski. Functions as passive constraintsin LIFE. ACM Transactions on Programming Languages and Systems,16(4):1279{1318, July 1994.CD93. Philippe Codognet and Daniel Diaz. Boolean constraint solving usingclp(FD). In Dale Miller, editor, Logic Programming - Proceedings of the1993 International Symposium, pages 525{539, Vancouver, Canada, 1993.The MIT Press.CFMW97. M. Codish, M. Falaschi, K. Marriott, and W. Winsborough. A con
uentsemantic basis for the analysis of concurrent constraint logic programs. Jour-nal of Logic Programming, 30(1):53{81, 1997.Cla78. K. Clark. Logic and Databases, chapter Negation as Failure, pages 293{322.Plenum Press, New York, 1978.DOS88. N. Dershowitz, N. Okada, and G. Sivakumar. Con
uence of conditional rewri-te systems. In J.-P. Jouannaud and S. Kaplan, editors, Proceedings of the 1stInternational Workshop on Conditional Term Rewriting Systems, LNCS 308,pages 31{44, 1988.FGMP95. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Con
uence inconcurrent constraint programming. In V.S. Alagar and M.Nivat, editors,Proceedings of AMAST '95, LNCS 936. Springer, 1995.FHK+92. T. Fr�uhwirth, A. Herold, V. K�uchenho�, T. Le Provost, P. Lim, E. Monfroy,and M. Wallace. Constraint logic programming: An informal introduction.In G. Comyn, N.E. Fuchs, and M.J. Ratcli�e, editors, Logic Programming inAction, LNCS 636, pages 3{35. Springer, 1992.Fr�u95. T. Fr�uhwirth. Constraint handling rules. In A. Podelski, editor, ConstraintProgramming: Basics and Trends, LNCS 910. Springer, 1995.JL87. J. Ja�ar and J.-L. Lassez. Constraint logic programming. In ConferenceRecord of the Fourteenth Annual ACM Symposium on Principles of Program-ming Languages, pages 111{119, 1987.JM94. J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. Journalof Logic Programming, 20:503{581, 1994.KK91. C. Kirchner and H. Kirchner. Rewriting: Theory and Applications. North-Holland, 1991.Mah87. M. J. Maher. Logic semantics for a class of committed-choice programs. InJ.-L. Lassez, editor, Proceedings of the Fourth International Conference onLogic Programming, pages 858{876. The MIT Press, May 1987.Mar96. M. Marte. Implementation eines Kon
uenz-Tests f�ur CSR-Programme.Advanced practical thesis, Institute of Computer Science, Ludwig-Maximilians-University Munich, 1996.Meu96. H. Meuss. Kon
uenz von Constraint-Handling-Rules-Programmen. Master'sthesis, Institut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen,1996. paper.tex; 29/08/1997; 10:45; no v.; p.24

Con
uence and Semantics of Constraint Simpli�cation Rules 25MO95. K. Marriott and M. Odersky. A con
uent calculus for concurrent constraintprogramming with guarded choice. In 1st International Conference on Prin-ciples and Practice of Constraint Programming, CP'95, pages 310{327. Sprin-ger, September 1995.New42. M. H. A. Newman. On theories with a combinatorial de�nition of equivalence.In Annals of Math, volume 43, pages 223{243, 1942.Pla93. D. A. Plaisted. Equational reasoning and term rewriting systems. In D. Gab-bay, C. Hogger, J. A. Robinson, and J. Siekmann, editors, Handbook of Logicin Arti�cial Intelligence and Logic Programming, volume 1, chapter 5, pages273{364. Oxford University Press, Oxford, 1993.Sar93. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,1993.Sha89. E. Shapiro. The family of concurrent logic programming languages. ACMComputing Surveys, 21(3):413{510, September 1989.Smo91. G. Smolka. Residuation and guarded rules for constraint logic programming.In Digital Equipment Paris Research Laboratory Research Report, France,June 1991.SRP91. V.A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations ofconcurrent constraint programming. In Conference Record of the 18th AnnualACM Symposium on Principles of Programming Languages, pages 333{352.ACM Press, January 1991.vH91. P. van Hentenryck. Constraint logic programming. The Knowledge Enginee-ring Review, 6:151{194, 1991.AppendixA. Proofs for Section 2.3Lemma A.1. Let P be a CSR program, G be a goal. If C is a computableconstraint of G, then P ; CT j= 8 (C $ G):Proof. We prove the claim by structural induction over the computations:Base case: No transition is applied to the initial state hG;>; true;Vi, i.e.C = G, and the state is possibly normalized by N . Then the following holds:P ; CT j= 8 (C $ G):Induction step: We have the following computationhG;>; true;Vi 7!� hGs0; C0U ; C 0B;Vi 7! hGs00; C 00U ; C 00B;Vi:In order to prove that the last computation step preserves logical equiva-lence, we prove that each transition of the operational semantics preserveslogical equivalence:(1) Solve: Then Gs0 is of the form C ^Gs, where C is a built-in constraint.The transition applied to the state hC ^Gs;C 0U ; C 0B;Vi leads to the newstate hGs00; C 00U ; C 00B;Vi = N (hGs;C 0U ; C0B ^ C;Vi).paper.tex; 29/08/1997; 10:45; no v.; p.25

26 Slim Abdennadher et al.Let �x1 be the local variables of hC ^Gs;C 0U ; C 0B;Vi. By the induction hypo-thesis the following holds:P ; CT j= 8 (9�x1 (C ^ Gs ^ C0U ^ C 0B)$ G):The following holds by Lemma 2.1:P ; CT j= 8 (9�x1 (C ^ Gs ^ C 0U ^ C 0B)$ 9�x2(Gs00 ^ C00U ^ C 00B));where �x2 are the local variables of hGs00; C 00U ; C 00B;Vi.Therefore P ; CT j= 8 (9�x2 (Gs00 ^ C 00U ^ C00B)$ G):(2) Introduce: Then Gs0 is of the form C ^ Gs, where C is a user-de�nedconstraint. Introduce applied to the state hC ^Gs;C 0U ; C 0B;Vi leads to thenew state hGs00; C00U ; C 00B;Vi = N (hGs;C ^ C0U ; C0B;Vi).Let �x1 be the local variables of hC ^Gs;C 0U ; C 0B;Vi. By the induction hypo-thesis the following holds:P ; CT j= 8 (9�x1 (C ^ Gs ^ C0U ^ C 0B)$ G):�x1 are also the local variables of the state hGs;C ^ C 0U ; C 0B;Vi. The followingequivalence holds:P ; CT j= 8 (9�x1 (Gs ^ C ^ C0U ^ C 0B)$ G):Since N does not change the state hGs;C ^ C 0U ; C 0B;Vi, x2 are also the localvariables of the state hGs00; C00U ; C 00B;Vi:P ; CT j= 8 (9�x2 (Gs00 ^ C 00U ^ C00B)$ G):(3) Simplify: Then C 0U is of the form H 0 ^ CU , where (H , C j B) is afresh CSR rule from P and CT j= 8 (C 0B ! 9�y (H _=H 0 ^ C)).The transition applied to the state hGs0; H 0 ^ CU ; C0B;Vi leads to the newstate hGs00; C 00U ; C 00B;Vi = N (hGs0 ^B;CU ; H _=H 0 ^ C 0B;Vi).Let �x1 be the local variables of hGs0; H 0 ^ CU ; C 0B;Vi. By the inductionhypothesis the following holds:P ;CT j= 8 (9x1 (Gs0 ^H 0 ^ CU ^ C0B)$ G): (4)The entailment condition says that the context C0B is equivalent to its con-junction with the instantiated guard.CT j= 8 (C 0B $ C 0B ^ 9�y (H _=H 0 ^ C))paper.tex; 29/08/1997; 10:45; no v.; p.26

Con
uence and Semantics of Constraint Simpli�cation Rules 27CT j= 8 (C 0B $ 9�y (C 0B ^H _=H 0 ^ C))By replacing C 0B by 9�y (C0B ^H _=H 0 ^ C) in equation (4) we obtain:P ;CT j= 8 (9x1 (Gs0 ^H 0 ^ CU ^ 9�y (C 0B ^H _=H 0 ^ C))$ G):The variables �y are the variables occurring only in H , then the followingholds:P ;CT j= 8 (9x1 9�y (Gs0 ^H 0 ^ CU ^ C0B ^H _=H 0 ^ C)$ G): (5)According to the fact that CT j= H _=H 0 ! (H $ H 0) we obtain:P ;CT j= 8 (9x1 9�y (Gs0 ^ CU ^ C0B ^H _=H 0 ^H ^ C)$ G): (6)From P ;CT j= 8 ((C ! (H $ 9�y2 B))) we deduce:P ;CT j= 8 ((H ^ C)$ 9�y2 (B ^ C))By replacing H ^ C by 9�y2 (B ^ C) in equation (6) we obtain:P ;CT j= 8 (9x1 9�y (Gs0 ^ CU ^ C0B ^H _=H 0 ^ 9�y2 (B ^ C))$ G): (7)The variables �y2 are the variables occurring only in B, then the followingholds:P ;CT j= 8 (9x1 9�y 9�y2 (Gs0 ^ CU ^ C 0B ^H _=H 0 ^ B ^ C)$ G):The entailment condition says that C is entailed by the context C0B, thenthe following holds:P ;CT j= 8 (9x1 9�y 9�y2 (Gs0 ^ CU ^ C0B ^H _=H 0 ^ B)$ G):The variables �y2 (resp. �y) are the variables occurring only in B (resp.H _=H 0), then �x2 = �x1 [�y2 [�y are the local variables of the statehGs0 ^ B;CU ; H _=H 0 ^ C0B;Vi:P ;CT j= 8 (9�x2 (Gs0 ^B ^ CU ^H _=H 0 ^ C 0B)$ G):paper.tex; 29/08/1997; 10:45; no v.; p.27

28 Slim Abdennadher et al.Let �x3 be the local variables of hGs00; C00U ; C 00B;Vi, then by Lemma 2.1:P ;CT j= 8 (9�x2 (Gs0 ^B ^ CU ^H _=H 0 ^ C0B)$ 9�x3 (Gs00 ^ C 00U ^ C00B)):Therefore P ;CT j= 8 (9�x3 (Gs00 ^ C00U ^ C00B)$ G)holds. 2B. Proofs for Section 3We �rst give the lemmas which are used in the proof of Theorem 3.1. Com-plete proofs for the lemmas are omitted for space reasons, they can be foundin [Meu96].The �rst lemma states when joinability is compatible with changing theglobal variable stores:Lemma B.1. Let hGs1; CU1; CB1;Vi and hGs2; CU2; CB2;Vi be joinable.Then the following holds:a) If V 0 � V , then hGs1; CU1; CB1;V 0i and hGs2; CU2; CB2;V 0i are joinable.b) If V 0 contains only fresh variables, then hGs1; CU1; CB1;V � V 0i andhGs2; CU2; CB2;V � V 0i are joinable (� denotes concatenation).Proof sketch. a) If we reduce the number of global variables, there may beone e�ect on the computation steps: Variables that have been global befo-re, are strictly local now. These variables will be eliminated by N . Built-inconstraints containing these variables will be changed to a representationwithout these variables. But the loss of information about these variablesdoes not a�ect computation steps, because strictly local variables by de�ni-tion do not appear anywhere else in the state. This is shown by inductionover the number of computation steps.b) This is shown by straightforward structural induction over computations.The next lemma states that addition of constraints to the stores does notchange joinability of the states. It is a consequence of monotonicity of logicalconsequence and of Lemma 2.2.Lemma B.2. If (C1 ^ C2 ^ C3; Gs ^ CU ^ CB) is connected in V andhGs;CU ; CB;Vi 7!� hGs0; C0U ; C 0B;Vi;paper.tex; 29/08/1997; 10:45; no v.; p.28

Con
uence and Semantics of Constraint Simpli�cation Rules 29then hGs ^ C1; CU ^ C2; CB ^ C3;Vi 7!�N (hGs0 ^ C1; C 0U ^ C2; C 0B ^ C3;Vi):The next lemma states that atoms can be moved from the goal store to theuser-de�ned store without losing joinability.Lemma B.3. IfhGs1 ^G1;>; CB1;Vi and hGs2 ^ G2;>; CB2;Viare joinable, and G1 and G2 are user-de�ned constraints, thenhGs1; G1; CB1;Vi and hGs2; G2; CB2;Viare also joinable.Proof. We divide Gs1^G1 into the built-in constraints GC1, the user-de�nedconstraints GSTAT1, which are not touched during the join, i.e. which remainin the goal store, and the user-de�ned constraints GMOVE1, which are tou-ched in the process of joining. Analogously, we divide Gs2 ^ G2 into GC2,GSTAT2 and GMOVE2.In a �rst step, we show that, provided the requirement is met,hGC1; GMOVE1 ^GSTAT1; CB1;Vi and hGC2; GMOVE2 ^ GSTAT2; CB2;Viare also joinable:The only operation accessing the goal store with user-de�ned constraints isIntroduce. Hence, all constraints GMOVE1 and GMOVE2, respectively, aremoved to the user-de�ned stores with Introduce steps during the processof joining. We can apply these Introduce steps in the beginning of therespective computation and append the remaining steps thereafter withoutchanging the outcomes. Therefore hGC1 ^ GSTAT1; GMOVE1; CB1;Vi andhGC2 ^GSTAT2; GMOVE2; CB2;Vi are also joinable, i.e. there are compu-tation sequences for both states resulting in hG ^GSTAT1; CU ; CB;Vi andhG0 ^GSTAT2; C0U ; C 0B;Vi, respectively, with these two states being variants.The same sequence of computation steps can be applied to the stateshGC1; GMOVE1 ^GSTAT1; CB1;Vi and hGC2; GMOVE2 ^GSTAT2; CB2;Vi,resulting in the states hG;CU ^ GSTAT1; CB;Vi andhG0; C 0U ^ GSTAT2; C 0B;Vi which are variants. This means thathGC1; GMOVE1 ^GSTAT1; CB1;Vi and hGC2; GMOVE2 ^GSTAT2; CB2;Viare joinable. paper.tex; 29/08/1997; 10:45; no v.; p.29

30 Slim Abdennadher et al.In the second step, we show the assertion of the lemma:GMOVE1 ^ GSTAT1 represents the user-de�ned portion of Gs1 ^ G1, andanalogously GMOVE2^GSTAT2 represents the user-de�ned portion of Gs2^G2. Because G1 and G2 consist only of user-de�ned constraints, they arecontained in GMOVE1^GSTAT1 and GMOVE2^GSTAT2, respectively. Hence,we can de�ne GDIFF1 as the conjunction of user-de�ned constraints, so thatG1 ^ GDIFF1 = GMOVE1 ^ GSTAT1. (Remember that the conjunction isassociative and commutative.) Analogously, we can de�ne GDIFF2.We can deduce that hGC1 ^GDIFF1; G1; CB1;Vi andhGC1 ^GDIFF2; G2; CB2;Vi are joinable: If we a apply a series of Intro-duce steps to these states, we result in hGC1; GMOVE1 ^GSTAT1; CB1;Viand hGC2; GMOVE2 ^GSTAT2; CB2;Vi, respectively, which are joinable.Because GC1^GDIFF1 = Gs1, and GC2^GDIFF2 = Gs2, we �nally conclude,that hGs1; G1; CB1;Vi and hGs2; G2; CB2;Viare joinable. 2We are now in a position to prove the main theorem:Proof of Theorem 3.1: \=)" direction: Let P be a locally con
uent CSR pro-gram. We prove by contradiction that all critical pairs are joinable: Assumethat (G1^G2; B1^H2 =#= B2^H1;V) is a critical pair that is not joinable.We will construct a common ancestor state and then use the local con
uenceto contradict the assumption. With reordering the head constraints we canassume that this pair derives from the two rulesR1 : H1; H3 , G1 j B1R2 : H2; H4 , G2 j B2;where H3 and H4 can be equated17. ThenhB1 ^H2;>; G1 ^G2;Vi andhB2 ^H1;>; G1 ^G2;Viare not joinable and thereforehB1; H2; G1 ^G2;Vi andhB2; H1; G1 ^G2;Viare not joinable.Let h>; H 01 ^H 02 ^H 03; G01 ^ G02;V 0i be a fresh variant ofh>; H1 ^H2 ^H3; G1 ^ G2;Vi.17 Remember that throughout the whole paper, the Hi denote conjunctions of atoms.paper.tex; 29/08/1997; 10:45; no v.; p.30

Con
uence and Semantics of Constraint Simpli�cation Rules 31Now we can apply both R1 and R2 onto the stateh>; H 01 ^H 02 ^H 03; G01 ^ G02;V 0i with the resultsN (hB001 ; H 02; G01 ^G02 ^H 001 :=H 01 ^H 003 :=H 03;V 0i) andN (hB002 ; H 01; G01 ^G02 ^H 002 :=H 02 ^H 004 :=H 03;V 0i):The fresh variants of the rules were H 001 ; H 003 , G001 j B001 andH 002 ; H 004 , G002 j B002 . Because of the local con
uence these states are joinable.We know that N propagates the equalities H 001 :=H 01^H 003 :=H 03 and H 002 :=H 02^H 004 :=H 03 into the respective goal store. This implies that we can substitutethe variables in question, i.e. replace B001 and B002 by B01 and B02, respectively,without changing the outcome of N .If there are variables in B001 or B002 which do not occur in H 001 ^H 003 orH 002 ^H 004 ,respectively, i.e. variables whose values are not governed by the equalitiesH 001 :=H 01^H 003 :=H 03 and H 002 :=H 02^H 004 :=H 03, we do replace them by new varia-bles, which does not in
uence the outcome of joinability.Therefore N (hB01; H 02; G01 ^ G02 ^H 001 :=H 01 ^H 003 :=H 03;V 0i) andN (hB02; H 01; G01 ^ G02 ^H 002 :=H 02 ^H 004 :=H 03;V 0i)are joinable, too.The following two states have the same normalized form as the upper states,and are as a simple consequence of Lemma 2.3 also joinable:hB01; H 02; G01 ^ G02;V 0i andhB02; H 01; G01 ^ G02;V 0i;This is a contradiction to the claim that the variant stateshB1; H2; G1 ^G2;Vi andhB2; H1; G1 ^G2;Viare not joinable.\(=" direction: Let P be a CSR programwhere all critical pairs are joinable.We will show that P is locally con
uent. Assume that we are in state S18where there are at least two di�erent possibilities of computation:S 7! S1 and S 7! S2:We have to show that S1 and S2 are joinable. We investigate all pairs S 7!S1 and S 7! S2 and show that S1 and S2 are joinable. The joinability ofcritical pairs will play a central role in the case Simplify vs. Simplify only.18 Because of Lemma 2.3 we can assume that S is normalized.paper.tex; 29/08/1997; 10:45; no v.; p.31

32 Slim Abdennadher et al.Solve vs. Solve: Then S is of the form hC1 ^ C2 ^ Gs;CU ; CB;Vi. We canmove two di�erent built-in constraints from the goal store to the built-instore: hC1 ^ C2 ^Gs;CU ; CB;Vi 7! N (hC2 ^ Gs;CU ; CB ^ C1;Vi)= hC 02 ^Gs1; CU1; CB1;Vi andhC1 ^ C2 ^Gs;CU ; CB;Vi 7! N (hC1 ^ Gs;CU ; CB ^ C2;Vi)= hC 01 ^Gs2; CU2; CB2;Vi:It is easy to see that we can apply the other Solve step onto each resultingstate. It is obvious that the resulting states will be identical:N (hGs1; CU1; CB1 ^ C02;Vi) = N (hGs2; CU2; CB2 ^ C 01;Vi):Solve vs. Simplify: S is of the form hC ^Gs;H 0 ^ CU ; CB;Vi, where Cis a built-in constraint, and H 0 is a conjunction of user-de�ned constraintsmatching with the head of a rule (H , G j B) and the guard G of the ruleis implied by CB.Application of Simplify results in SSIMP = hB0 ^ C 0 ^Gs0; C0U ; C 0B;Vi =N (hB ^ C ^ Gs;CU ; CB ^H :=H 0;Vi), whereas application of Solve leads toSSOLVE = hGs00; H 00^ C 00U ; C 00B;Vi = N (hGs;H 0 ^ CU ; C ^ CB;Vi).Of course, Solve is applicable on SSIMP , resulting in SEND =N (hB0 ^Gs0; C 0U ; C 0 ^ C0B;Vi).Application of Simplify on SSOLVE is possible, because CT j=C 00B$8 9�x(C ^ CB) (�x strictly local in hGs00; H 00 ^ C 00U ; C ^ CB;Vi) andCT j= 8(CB ! 9�y(G ^ H :=H 0)) (�y are the variables in (H , G j B)),therefore CT j= 8(C00B ! 9�y(G ^ H :=H 00)) holds. This results in S 0END =N (hB ^Gs00; C 00U ; C 00B ^H :=H 00;Vi), which is in fact identical to SEND:CT j= (9�z1 C0 ^ C 0B)$(9�z2 C 00B ^ H :=H 00), where �z1 and�z2 are the strictly local variables in hB0 ^Gs0; C 0U ; C 0 ^ C0B;Vi andhB ^ Gs00; C 00U ; C 00B ^H :=H 00;Vi, respectively, must hold, because of the fol-lowing two equivalences which are guaranteed by the projection property ofN : CT j= 8(C 0B$9�x1 CB ^H :=H 0)CT j= 8(C 00B$9�x CB ^ C):(Analysis of the strictly local variables of the respective states leads to CT j=(9�z1 C0 ^ C0B)$(9�z2 C00B ^H :=H 00).)Because of the uniqueness of N , the built-in states of SEND and S0END areidentical. According to equality propagation of N , SEND and S0END haveidentical goal and user-de�ned stores.Introduce vs. Introduce: We know that S must be of the formhC1 ^ C2 ^Gs;CU ; CB;Vi where C1 and C2 are user-de�ned constraints.paper.tex; 29/08/1997; 10:45; no v.; p.32

Con
uence and Semantics of Constraint Simpli�cation Rules 33Obviously the results of two computations are identical, since conjuncts canbe permuted.Introduce vs. Simplify: S is of the form hC ^Gs;H ^ CU ; CB;Vi, whereC is a user-de�ned constraint, and H a conjunction of constraints matchingwith the head of a rule (H1 , GjB). The two successor states areIntroduce : S1 = N (hGs;C ^H ^ CU ; CB;Vi)= hGs;C ^H ^ CU ; CB;Vi andSimplify : S2 = N (hC ^ Gs ^B;CU ; CB ^H = H1;Vi)= hC 0 ^ Gs0 ^ B0; C0U ; C 0B;Vi:The second of the four equations holds, because we assumed that S was nor-malized. We can apply the other computation step onto S1 and S2 resultingin: S01 = N (hGs ^B;C ^ CU ; CB ^H = H1;Vi)= hGs0 ^B0; C 0 ^ C0U ; C 0B;Vi andS02 = N (hGs0 ^ B0; C 0 ^ C 0U ; C 0B;Vi)= hGs0 ^B0; C 0 ^ C0U ; C 0B;Vi:The second equation follows from the fourth equation in the equations abo-ve. The fourth equation holds, because S2 was normalized.This means that S01 = S02, i.e. S1 and S2 are joinable.Introduce vs. Solve: This situation is analogous to the case Introducevs. Simplify.Simplify vs. Simplify: Let beR � H1; : : : ; Hn , G j BR0 � H 01; : : : ; H 0n0 , G0 j B0the rules19 being applied to the state S. We have to show that applicationof R or R0 onto the state S results in joinable states. We know that thebuilt-in store CB of S is satis�able, otherwise no rule could be applied. Wecan distinguish two di�erent subcases:Disjoint Peak: No constraint Hi of the head of the rule R can be equatedwith a constraint Hj of the head of the other rule R0. Obviously the tworules can be applied in any order, since they replace di�erent conjuncts.Critical Peak: In order to show joinability of S1 and S2, we will use the19 R and R0 can be fresh variants of the same rule.paper.tex; 29/08/1997; 10:45; no v.; p.33

34 Slim Abdennadher et al.assumption that all critical pairs are joinable, �nd a critical pair that corre-sponds to S1 and S2 and modify the two involved states step by step, whilstkeeping joinability, until we know in the end that S1 and S2 are joinable.Without loss of generality we can change the order of the head atoms in Rand R0. We can assume that the variables in the CSR program are disjointfrom the variables in the actual state S. Now we are in a situation where the�rst atoms of the rules can be equated (i.e. CT j= 9(H1 :=H 01 ^ : : :^Hi :=H 0i)where 1 � i � n and i � n0).Let S = hGs;G1 ^ : : :^Gm; CB;Vi be the actual state, on which the rulesR and R0 are applicable. In order to be applied, the conditions of Simplifymust be ful�lled, i.e. CT j= 8 (CB ! 9�xC1) and CT j= 8 (CB ! 9�yC2),where C1 and C2 are the conjunctions of the respective guard with theequality constraints derived from the matching, i.e. the following conjunctionof constraints:C1 = G ^G1 :=H1 ^ : : :^Gi :=Hi ^ Gi+1 :=Hi+1 ^ : : :^Gn :=Hn;C2 = G0 ^ G1 :=H 01 ^ : : : ^Gi :=H 0i ^ Gn+1 :=H 0i+1 ^ : : :^Gn+n0�i :=H 0n:We use abbreviations to represent the atoms in question:�H � H1 ^ : : :^Hn;�H 0 � H 01 ^ : : :^H 0n0 ;�G � G1 ^ : : :^Gn;�G0 � G1 ^ : : :^Gi ^ Gn+1 ^ : : :^ Gn+n0�i;�H\ � H1 ^ : : :^Hi;�H 0\ � H 01 ^ : : :^H 0i;�GR � Gn+1 ^ : : : ^Gn+n0�i+1 ^ : : :^ Gm;�G0R � Gi+1 ^ : : :^ Gn ^Gn+n0�i+1 ^ : : :^Gm:�H and �H 0 are the heads of R and R0, �G (resp. �G0) are the matching cons-traints of the user-de�ned store in S with H (resp. H 0), �H\ and �H 0\ arethe common parts of �H and �H 0 (i.e. the overlapping constraints of the ruleheads), and �GR and �G0R represent the contents of the user-de�ned store afterremoving the matching constraints �G and �G0, respectively.The application of R and R0, respectively, on the actual state will result inthe following two states:S1 � N (hGs ^B; �GR; CB ^ �G := �H;Vi)S2 � N (hGs ^B0; �G0R; CB ^ �G0 := �H 0;Vi)We will show in the following that S1 and S2 are joinable.We can see that the rules R and R0 have the critical pair(G^ G0 ^ �H\ := �H 0\; B ^H 0i+1 ^ : : :^H 0n0 =#= B0 ^Hi+1 ^ : : :^Hn;V 0):paper.tex; 29/08/1997; 10:45; no v.; p.34

Con
uence and Semantics of Constraint Simpli�cation Rules 35We will use CJOIN as an abbreviation for the joined guard, G^G0^ �H\ := �H 0\.We know that this critical pair is joinable. So there is a computation resultingin two �nal states S01 and S 02 where S 01 and S 02 are variants:N (hB ^H 0i+1 ^ : : :^H 0n0 ;>; CJOIN ;V 0i) 7!� S01;N (hB0 ^Hi+1 ^ : : :^Hn;>; CJOIN ;V 0i) 7!� S02:We can apply Lemma B.1 b) here and add V to the global variables stores,because by our assumption V shares no variables with the two states:N (hB ^H 0i+1 ^ : : : ^H 0n0 ;>; CJOIN ;V 0 � Vi) andN (hB0 ^Hi+1 ^ : : :^Hn;>; CJOIN ;V 0 � Vi)are joinable.By Lemma B.2 we can add the built-in constraints CB ^ �G := �H ^ �G0 := �H 0 andthe user-de�ned constraints Gn+n0�i+1 ^ : : : ^ Gm to the constraint storesof each state without losing joinability. The requirements of the lemma aremet because the variables in �H and �H 0 are contained in V 0 and CB; �G; �G0and, by assumption, Gn+n0�i+1 ^ : : :^Gm share no variables with the goal,user-de�ned and built-in stores of the previous states.N (hGs ^B ^H 0G;>; CJOIN ^ CB ^ �G := �H ^ �G0 := �H 0;V 0 � Vi) andN (hGs ^B0 ^HG;>; CJOIN ^ CB ^ �G := �H ^ �G0 := �H 0;V 0 � Vi)are joinable. Here H 0G stands for H 0i+1 ^ : : : ^H 0n0 ^ Gn+n0�i+1 ^ : : : ^ Gmand HG stands for Hi+1 ^ : : :^Hn ^ Gn+n0�i+1 ^ : : :^ Gm.Now we can remove the global variables V 0 from the variable stores by app-lying Lemma B.1 a) and keep joinability ofN (hGs ^ B ^H 0G;>; CJOIN ^ CB ^ �G := �H ^ �G0 := �H 0;Vi) and (8)N (hGs ^ B0 ^HG;>; CJOIN ^ CB ^ �G := �H ^ �G0 := �H 0;Vi): (9)Because both R and R0 are applicable to the state S, we know that:CT j= 8 (CB ! 9�x9�y(G^G0 ^ �H\ := �H 0\))implying thatCT j= 8 (CB ^ 9�x9�y(�G := �H ^ �G0 := �H 0)$ CB ^ 9�x9�y(G ^G0 ^ �H\ := �H 0\ ^ �G := �H ^ �G0 := �H 0))The uniqueness property of N implies thatN (hGs ^ B ^H 0G;>; CB ^ �G := �H ^ �G0 := �H 0;Vi) andN (hGs ^ B0 ^HG;>; CB ^ �G := �H ^ �G0 := �H 0;Vi)paper.tex; 29/08/1997; 10:45; no v.; p.35

36 Slim Abdennadher et al.are identical to the states (8) and (9) and therefore joinable.We propagate the equalities �G0 := �H 0 in the built-in stores to the rest of thestates. This results in states with the same normalized form. Therefore wecan replaceH 0i+1^: : :^H 0n0 byGn+1^: : :^Gn+n0�i and likewise Hi+1^: : :^Hnby Gi+1 ^ : : : ^Gn and get joinable states again:N (hGs ^B ^ �GR;>; CB ^ �G := �H ^ �G0 := �H 0;Vi) andN (hGs ^B0 ^ �G0R;>; CB ^ �G := �H ^ �G0 := �H 0;Vi):Let �x be the variables of �H 0. By our assumption the variables �x inhGs ^B ^ �GR;>; CB ^ �G := �H ^ �G0 := �H 0;Vi are strictly local, and the follo-wing holds (because the constraint �G0 := �H 0 means that �G0 is an instance of�H 0): CT j= 8 (9�x(CB ^ �G := �H ^ �G0 := �H 0)$(CB ^ �G := �H)):The uniqueness property of N and a likewise reasoning for the variables of�H then lead to: N (hGs ^B ^ �GR;>; CB ^ �G := �H ^ �G0 := �H 0;Vi)= N (hGs ^B ^ �GR;>; CB ^ �G := �H;Vi)and N (hGs ^B0 ^ �G0R;>; CB ^ �G := �H ^ �G0 := �H 0;Vi)= N (hGs ^B0 ^ �G0R;>; CB ^ �G0 := �H 0;Vi):This implies that the statesN (hGs ^B ^ �GR;>; CB ^ �G := �H;Vi) andN (hGs ^B0 ^ �G0R;>; CB ^ �G0 := �H 0;Vi)are joinable. By applying Lemma B.3 we �nally know thatN (hGs ^B; �GR; CB ^ �G := �H;Vi) andN (hGs ^B0; �G0R; CB ^ �G0 := �H 0;Vi)are joinable. 2
paper.tex; 29/08/1997; 10:45; no v.; p.36

