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Abstract.

Constraint Simplification Rules (CSR) is a subset of the Constraint Handling Rules (CHR)
language. CHR is a powerful special-purpose declarative programming language for writing
constraint solvers. The CSR subset of CHR forms essentially a committed-choice language
consisting of guarded rules with multiple heads that replace constraints by simpler ones
until they are solved. This paper gives declarative and operational semantics as well as
soundness and completeness results for CSR programs.

In this paper, we introduce a notion of confluence for CSR programs. Confluence is an
essential syntactical property of any constraint solver. It ensures that the solver will always
compute the same result for a given set of constraints independent of which rules are
applied. It also means that it does not matter for the result in which order the constraints
arrive at the constraint solver.

We give a decidable, sufficient and necessary syntactic condition for confluence of termi-
nating CSR programs. Moreover, as shown in this paper, confluence of a program implies
consistency of its logical meaning (under a mild restriction).

Keywords: constraint reasoning, semantics of programming languages, committed-choice
languages, confluence, determinism, program analysis.

1. Introduction

Constraint-based programming languages, be it constraint logic program-
ming (CLP) [JL87, Mah87, vHI1, FHK 92, JM94] or committed-choice con-
current constraint logic (C*L) programming! [Mah87, Sha89, SRP91, Sar93,
JM94], enjoy both elegant theoretical properties and practical success. As
it Tuns, a constraint-based program successively generates pieces of partial
information called constraints. The constraint solver has the task to collect,
combine, and simplify the constraints, and detect their inconsistency. Intui-
tively, constraints represent elementary relationships between variables and
values, for example equality or some order relationships. Clearly, the abilities
and quality of the constraint solver play an essential role in constraint-based
programming.

! There is no consistent terminology in the literature for this class of programming
languages: You may drop “logic” and either “committed-choice” or “concurrent”.
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In the beginning, constraint solving was “hard-wired” in a built-in constraint
solver written in a low-level language, termed the “black-box” approach.
While efficient, this approach makes it hard to modify a solver or build a
solver over a new domain, let alone reason about and analyze it. As the
behavior of the solver can neither be inspected by the user nor explained
by the computer, debugging of constraint-based programs is hard. Also,
one lesson learned from practical applications is that constraints are often
heterogeneous and application specific.

Several proposals have been made to allow more flexibility and customizati-
on of constraint solvers, often termed “glass-box” approaches [CD93, vHI1].
The most far-reaching proposal is the “no-box” approach: Constraint Hand-
ling Rules (CHR) [Frii95] is a high-level language for writing constraint sol-
vers either from scratch or by modifying existing solvers. The CSR (Cons-
traint Simplification Rules) subset of CHR is essentially a C*L language
consisting of guarded rules with multiple heads that replace (conjunctions
of ) constraints by simpler ones until they are solved. With single-headed
CSR rules alone, unsatisfiability of constraints could not always be detected
(e.g. X<Y,Y<X).

In contrast to typical general-purpose C*L languages, CSR programs can be
given a declarative semantics since they are only concerned with defining
constraints (i.e. first-order predicates), not procedures in their generality.
We give soundness and completeness results for a class of CSR programs.
There are C*L languages that share their semantics with CSR. The Guarded
Rules [Smo91] correspond to single headed CSR. However, they are only
used as “shortcuts” (lemmata) for predicates, not as definitions for user-
written constraints. Interestingly, in [Smo91] the built-in constraint system
is defined as a terminating and determinate reduction system. Hence it could
be implemented by CSR.

Also [AKP94] relies on a kind of guarded rules, emphasizing their use as a
programming language on its own. [AKP94] shows that guarded rule pro-
grams can be given a logical meaning that is a consistent theory, provided
that the guards satisfy a logical condition called compatibility and a kind of
closed-world assumption. Since CSR allows multiple heads, it cannot have
such a closed-world assumption.

Typically, more than one CSR rule is applicable to a conjunction of cons-
traints. It is obviously desirable that the result of a computation in a solver
will always be the same, semantically and syntactically, no matter which of
the applicable CSR rules is applied. This essential property of any constraint
solver will be called confluence. Without confluence, one computation may
detect inconsistency while another might just simplify the same constraints
into a more complex constraint. Confluence also implies that it does not
matter in which order the constraints arrive at the constraint solver.
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Confluence and Semantics of Constraint Simplification Rules 3

Consider the following rules from a constraint solver for interval domains as
an example. The intervals are associated with variables, written X::A..B,
which means A<X A X<B. The first rule ensures that the interval for X is
non-empty, the second rule intersects two intervals for the same variable:

<=>

= >B | false.
, X:

A
:C..D <=> true | maximum(4,C,E), minimum(B,D,F),
X::E..F.

X::A..B
X::A..B

The first CSR rule reads: If the guard A>B holds then replace the constraint
X::A..B by the constraint false exhibiting its inconsistency. The program
consisting of these two rules is confluent. Adding the seemingly harmless rule
that handles a variable whose value is uniquely determined by its interval,

X::A..A <=> true | X=A.

results in a program that is not confluent anymore: The constraints X::3..3,
X::5..7 can be simplified to X::5..3 by the second rule. This constraint in
turn simplifies to false with the first rule, so that the inconsistency of the
initial constraints is exhibited. On the other hand, applying the newly added
rule to the first constraint leads to X=3, X::5..7. No more simplification
is possible, the inconsistency is left implicit.

We will introduce a decidable, sufficient and necessary syntactic condition for
confluence of terminating CSR programs. This condition adopts the notion of
critical pairs as known from term rewriting systems [DOS88, KK91, Pla93].
A straightforward translation of the results in this field was not possible,
because the CSR formalism gives rise to phenomena not appearing in this
combination in research on confluence in term rewriting systems. These
include the way in which variables can occur in a rule and the existence
of global knowledge. CSR programs are more powerful than the classical
conditional rewriting, because they use an additional context which is the
built-in constraint store.

A practical application of our definition of confluence lies in program analy-
sis, where we can identify non-confluent parts of CSR programs by examining
the so-called critical pairs between rules. Programs with non-confluent parts
are likely to represent an ill-defined constraint solver. That a decidable con-
fluence test exists is a clear advantage of CSR over black-box approaches.
Since our test for confluence is decidable for terminating programs, it can
also be used to identify the parts of arbitrary terminating C*L programs
that have a declarative semantics in our sense.

On the theoretical side we also show that confluence implies consistency of
the logical meaning of a CSR program (under a mild restriction). Further-
more we can improve on completeness, if a CSR program is confluent (and
terminating).

paper.tex; 29/08/1997; 10:45; no v.; p.3



4 Slim Abdennadher et al.

Our approach is orthogonal to the work in program analysis for C*L langua-
ges as in [MO95, CFMW97, FGMP95], where a different, less rigid notion
of confluence is defined: A committed-choice program is confluent, if diffe-
rent process schedulings give rise to the same set of possible outcomes. The
idea of [M0O95, CFMW97] is to introduce a non-standard semantics, which
is confluent for all committed-choice programs.

This paper is organized as follows: The next section introduces the syntax
of Constraint Simplification Rules (CSR), their declarative and operational
semantics. Then we relate the declarative and operational semantics of CSR
programs by giving soundness and completeness results. Section 3 presents
our notion of confluence for CSR. In section 4 we show that confluence
implies consistency of the logical meaning of a program. In section 5 we
show how confluence leads to a strong completeness result for finite failure.
Finally, we conclude with a summary and directions for future work. The
appendix contains the main proofs, which are quite long. A preliminary short
version of this paper was presented at CP’96 [AFM96].

2. Syntax and Semantics

In this section we give syntax and semantics as well as soundness and
completeness results for Constraint Simplification Rules (CSR). We assume
some familiarity with C*L programming [JL87, JM94, SRP91, Sar93, Sha89].
Constraints are considered to be special first-order predicates. We will distin-
guish between two classes of constraints. Built-in constraints are those hand-
led by an already existing, predefined constraint solver. User-defined cons-
traints are those defined by a CSR program.

Definition 2.1. A CSR program is a finite set of constraint simplification
rules. A (constraint) simplification rule is of the form

Hy,...,Hi s Gy,....G; | By,....By (i>0,5>0,k>0),

where the head Hy, ..., H;is a non-empty conjunction? of user-defined cons-
traints, the guard® Gy, ..., G is a conjunction of built-in constraints and the
body By, ..., By is a conjunction of built-in and user-defined constraints.

Conjunctions of built-in and user-defined constraints are called goals.

Without loss of generality we assume the rules of the CSR program in que-
stion to have disjoint sets of variables. In examples we may disregard this
agreement for ease of reading.

2 For conjunction in rules we use the symbol “” instead of “A”.

® The commit symbol “” should not be confused as standing for disjunction as in
grammar formalisms and some Prolog dialects.

paper.tex; 29/08/1997; 10:45; no v.; p.4
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2.1. DECLARATIVE SEMANTICS

In general, C*L programs do not have a declarative semantics [AKP94].
Typically, Clark’s completion is used to describe the logical meaning of a
program. For CSR, we chose a different declarative semantics, since Clark’s
completion cannot be used for CSR’s multiple heads. This semantics has
also been proposed for guarded rules [AKP94, Smo91].

The declarative semantics of a CSR program P is given by a conjuncti-
on of universally quantified logical formulae (one for each rule), P, and a
consistent built-in theory C'T" which determines the meaning of the built-in
constraints appearing in the program. The constraint theory CT is expec-
ted to include a constraint = for syntactic equality (e.g. by Clark’s equality
theory CET [Cla78]) and the constraints true and false.

Definition 2.2. The logical meaning of a simplification rule is a logical equi-
valence provided the guard holds

VaVy (GiAN...ANGy)— (HiN...NH, — 32 (By AL A By)),

where Z is the sequence of variables occuring in Hy,..., H, and y are the
other variables occuring in G,...,G; and z are the variables occuring in
Bi,..., By only.

Frample 2.1. Now let us extend a given constraint solver for the constraints
< and = with a constraint maximum(X,Y,Z) which holds, if Z is the maximum
of X and Y. The following rules could be part of the CSR program:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X,Y,Z) & ¥Y<X | Z=X.

The first rule states that maximum(X,Y,Z) can be replaced by Z=Y provided
it holds that X<Y.
Now assume there is a typo in the body of the second rule:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X,Y,Z) < ¥Y<X | Y=X.

The logical meaning of this CSR program is the theory

VXY,Z X <Y — (maximum(X,Y,Z) < Z = Y))
vV X,Y,Z (Y < X —- (maximum(X,Y,Z) <« Y = X))

together with an appropriate constraint theory describing < as an order
relation. The logical meaning P of this program is not a consistent theory.
This can be exemplified by the atomic formula maximum(1,1,0), which is
logically equivalent to 0=1 (and therefore false) using the first formula. Using
the second formula, however maximum(1, 1,0) is logically equivalent to 1=1
(and therefore true).

paper.tex; 29/08/1997; 10:45; no v.; p.5
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2.2. OPERATIONAL SEMANTICS

The operational semantics of CSR is a straightforward extension of the usual
one for C*L languages [JM94] to multiple head atoms. We define the ope-
rational semantics of a given CSR program P by a transition system that
models the operations of the constraint solver defined by P. To keep the
semantics simple, we require from now on that those guard constraints con-
taining variables which do appear in the body but not in the head have to
appear in the body again. This is no real restriction, since a general rule can
be translated into a restricted rule by simply repeating the guard constraints
in the body.

Frample 2.2. A CSR rule of the form p(X) & Y =3 | X = Y must be
translated top(X) & Y =3 | X =Y, Y = 3.

2.2.1. States
Definition 2.3. A state is a tuple

(Gs,Cu,Cg, V).

(s is a conjunction of user-defined and built-in constraints called goal store.
(7 is a conjunction of user-defined constraints, likewise C'g is a conjunction
of built-in constraints. Cyy and Cg are called user-defined and built-in (cons-
traint) stores, respectively. V is a sequence of variables. An empty goal or
user-defined store is represented by T. The built-in store cannot be empty.
In its most simple form it consists only of true or false.

Intuitively, G's contains the constraints that remain to be solved, C'p and CY;
are the built-in and the user-defined constraints, respectively, accumulated
and simplified so far.

Definition 2.4. A variable X appearing in a state (G's, Cyr,C'g, V) is called
— global, if X appears in V,
— local, if X does not appear in V,
— strictly local, if X appears in C'g only.
Definition 2.5. The logical meaning of a state (G's, Crr,Cg, V) is the formula
dy Gs ACy A Cp,

where y are the local variables of the state. Note that the global variables
remain free in the formula.

paper.tex; 29/08/1997; 10:45; no v.; p.6
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2.2.2. A Normalized Form for States

We will assume that states are in a normalized form that abstracts away
the specifics of the built-in constraint solver: The normalized form considers
those states equivalent that impose the same built-in constraints on the goal
and on the user-defined constraints store. We model the normalization with
a function that maps equivalent states into a syntactically unique represen-
tative state. The normalization function normalizes the built-in constraint
store, projects out strictly local variables, and propagates implied equations
all over the state. Most built-in constraint solvers naturally support this
functionality since they work with normalized forms anyway. For the follo-
wing theorems and proofs it is important to make the requirements on the
normalization function more precise.

Definition 2.6. A function N': § — &, where § is the set of all states, is a
normalization  function, if it fulfills the following conditions. Let
N({(Gs,Cy,CR,V)) = (G, Cf;,Cy, V). We assume that there is a fixed
order on variables appearing in a state such that global variables are orde-
red as in V and precede all local variables.

— Fquality propagation: G's' and Cf; derive from G's and Cy by replacing
all variables X', that are uniquely determined in C'g [JM94], i.e. for which
CT |V (Cpg — X=t)* holds, by the corresponding term ¢, except if ¢
is a variable that comes after X in the variable order.

— Projection: The following must hold:
CT =V ((32C5) — Ch),
where T are the strictly local variables of (Gs',Cy;,Cp, V).

— Uniqueness: If

N(<G5170U170B17V>) = <G5/170£J170/B17V> and
N(<G827CU270B27V>) = <G8/270{]27C/B27v> and
CT |= (3zCpy) < (F§Cp2),

holds, where z and y, respectively, are the strictly local variables of the
two states, then:

r
Cp1 = Cpy.

The syntactical form of the result of normalization does not matter, as long
as the three conditions, above all uniqueness, hold. An important property
of NV is that it preserves the logical meaning of states.

* VF is the universal closure of a formula F, likewise is 3F the existential closure of F.

paper.tex; 29/08/1997; 10:45; no v.; p.7
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Lemma 2.1. Let be
N({(Gs,Cy,Cp,V)) = (G, C;, O, V).
Then the following equivalence holds
CTEY (3z(GsACy ACg) « FT'(Gs'ANC[ ACE)),
where T and 7’ are the local variables in 5 and 57, respectively.

Proof. The claim follows from the following three assertions:

i Cx (1)
CTEVY(Cp — ((GsACu) — (Gs' A Cpp))) (2)
CT VY (F3yCp—Cy) and y C 7, (3)

where y are the strictly local variables in (Gs',C{;,Cp,V). Assertion (1)
holds because the normalization function N does not introduce new varia-
bles due to the projection property. (2) holds, because C'T' contains equality
and G's' A CY; derive from Gs A Cyr by substitutions prescribed by Cg. (3)
follows from the uniqueness property of A'. (g are the strictly local variables
in (Gs',Cf;,Cg,V).) The claim then directly follows from the assertions (1),
(2) and (3). ]

The uniqueness property of A guarantees that there is exactly one represen-
tation for each set of equivalent built-in constraint stores. Therefore we can
assume that an inconsistent built-in store is represented by the constraint
false and likewise a valid built-in store by true.

A property of A is that it will eliminate all strictly local variables:

FErample 2.3. Let
N({p(2), T, X=Z,[X])) = (p(X), T, Cp, [X]).

Because CT |= V (3Z(X=Z)<true), the uniqueness condition implies the
following:

N((p(X), T, true, [X])) = (p(X), T, Cp, [X]),

Therefore we know that C'g must be ¢rue, because N cannot introduce new
variables.

Definition 2.7. The pair (Cy,C3) (Cq and Cy are conjunctions of constraints)
is called connected in the sequence V iff all variables that appear in Cy and
(5 also appear in V.

paper.tex; 29/08/1997; 10:45; no v.; p.8
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The following lemma shows that A is to a certain degree compatible with
adding constraints to the built-in store:

Lemma 2.2. If C' is a conjunction of built-in constraints and (C,Cp) is

connected in V and N ((G's,Cy,Cp,V)) = (Gs',Cf;, Cg, V) then
N((Gs, Cur, O A C,V)) = N((Gs', Clh, Cly A CLV)).

This claim is proven by analyzing the strictly local variables of the states.
The connectedness requirement in the lemma above reflects the sensitivity of
N to strictly local variables. It guarantees that equality constraints involving
variables appearing in the added constraint €' are not removed by A/ due to
locality.

2.2.3. Computation Steps

The aim of the computation is to incrementally reduce arbitrary states to
states that contain no more goals in the goal store and a maximally simplified
user-defined constraint store (with regard to a given program P). Given a
CSR program P we define the transition relation — p® by introducing three
kinds of computation steps (Figure 1).

Transitions
Solve

(' is a built-in constraint

<C A GS,CU,CB,V> — N(<G8,CU,C A CB,V>)

Introduce

(' is a user-defined constraint

<C ANGs, Cy,Cpg, V> — N(<G8, CACy,Cp, V>)

Simplify
(H & G| B) is a fresh variant of a rule in P with the variables z
CTEVY (Cp— Jz(H=H'NG))
<G8,H’/\CU,CB,V> l—>N(<G8/\B,CU,HiH//\CB,V>)

Figure 1. Computation Steps

Notation: Capital letters denote conjunctions of constraints. By equating
two constraints (¢(t1,...,t,)=c(s1,...,8,)), we mean t;=s1A...At,=s,. By

® In the rest of the paper, we will drop P for simplicity.

paper.tex; 29/08/1997; 10:45; no v.; p.9
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(PLA. . App)=(q1A. . . ANq,) we mean pr=q A. . .Ap,=¢,. Note that conjuncts
can be permuted since conjunction is associative and commutative, and that
we will identify all states containing the built-in store false.

In the Solve transition, the built-in solver simplifies the built-in store after
adding a new constraint €' that was found in the goal store. Introduce
transports a user-defined constraint C' from the goal store into the user-
defined constraint store. To Simplify user-defined constraints H’ means
to replace them by the body B of a fresh variant® of a simplification rule
(H < G| B) from the program, provided H' matches” the head H and the
resulting guard G is implied by the built-in constraint store, and finally to
normalize the resulting state.

Definition 2.8. An initial state for a goal G is of the form:
(G, T, true, V),

where V is the sequence of the variables occuring in G.
A final state is either of the form

(G, Cy, false, V),
(such a state is called failed), or of the form
<T7 CU7 CB7 V>

with no computation step possible anymore and C'p not false (such a state
is called successful).

Definition 2.9. A computation of a goal G is a sequence S, 51, ... of states
with S; — S;41 beginning with the initial state for G' and ending in a final
state or diverging. A computation is finitely failed, if it is finite and its final
state is failed.

Frample 2.4. Remember the correct rules for maximum:

maximum(X,Y,Z) < X<Y | Z=Y.

maximum(X,Y,Z) & ¥Y<X | Z=X.

A computation of the goal maximum(1,1,Z) proceeds as follows (using the
first rule):

6 Two expressions are variants, if they can be obtained from each other by a variable
renaming. A fresh variant contains only new variables.

T Matching rather than unification is the effect of the existential quantification over the
head equalities.

paper.tex; 29/08/1997; 10:45; no v.; p.10
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(maximum(1,1,M), T, true, [M])

— (Introduce) N ((T,maximum(1,1,M),true,[M])) =
(T,maximum(1, 1, M), true, [M])

— (Simplify)  N((Z=Y, T,X=1 A Y=1 A Z=M, M) =
(M=1, T,true, [M]) =

— (Solve) N{T, T,M=1,[M])) =
<T, T,M=1, [M]>

Lemma 2.3. Normalization has no influence on application of rules, i.e.
S+ 5" holds iff N'(5) — 5.

This claim is shown by analyzing each kind of computation step.

Definition 2.10. S —* 5" holds iff

§'=Sor§"=N(S)or §— 51— ...~ 8, —~5 (n>0).

2.3. SOUNDNESS AND COMPLETENESS

We present results relating the operational and declarative semantics of
CSR. These results are based on work of Jaffar and Lassez [JL87], Maher
[Mah87] and van Hentenryck [vH91].

Definition 2.11. A computable constraint of GG is the logical meaning of a
state which appears in a computation of GG. The logical meaning of a final
state is called answer constraint.

The results in this section are relatively straightforward because a compu-
tation step produces only logically equivalent states.

The following lemma and theorem are direct consequences of Lemma A.1
(to be found in the appendix).

Lemma 2.4. Let P be a CSR program and G be a goal. Then for all com-
putable constraints €7 and Cy of G the following holds:

P, cT |I ClHCQ.

Theorem 2.1 (Soundness). Let P be a CSR program and G be a goal. If ¢

has a computation with answer constraint C' then

P.CT =V (C = G).

paper.tex; 29/08/1997; 10:45; no v.; p.11



12 Slim Abdennadher et al.

The following theorem is stronger than the completeness result for constraint
logic programming languages (CLP) as presented in [Mah87]. We can redu-
ce the disjunction in the strong completeness theorem presented there to a
single disjunct in our theorem. This is possible, since our declarative seman-
tics is stronger and consequently, according to Lemma 2.4, all computable
constraints of a given goal are equivalent (Figure 2).

Figure 2. Logical Relationship of Computable Answers in CLP (A) and CSR (B)

Theorem 2.2 (Completeness). Let P be a CSR program and G be a goal
with at least one finite computation. If P,CT |V (C < ), then G has a
computation with answer constraint C’ such that

P.CT =V (C = ().

Proof. G has at least one finite computation. Let C’ be the answer constraint
of ¢ resulting from this computation.
By the soundness Theorem 2.1 the following holds:

P,CT EV(C = G)
From P,CT = Y(C < @) follows P,CT | V(C < C'). o
The completeness theorem does not hold, if G has no finite computations.
Frample 2.5. Let P be the following CSR program:
pep.

Let G be p. It holds that P,CT |= p < p. However, G has only one infinite
computation.

paper.tex; 29/08/1997; 10:45; no v.; p.12



Confluence and Semantics of Constraint Simplification Rules 13

Corollary 2.1. Let P be a CSR program and G be a goal.

If G has a finitely failed computation, then P,CT |= -3G.

Proof. If G has a finitely failed computation, then G has a computation with
answer constraint equivalent to false. By Theorem 2.1 we have that P, CT |=

V (false < ('), hence P,CT |= V-G, which is equivalent to P,CT = -3G. O
The converse of Corollary 2.1 does not hold in general:

Frample 2.6. Let P be the following CSR program

P < q.
p & false.

P.CT |= —q, but ¢ has no finitely failed computation. We will see that
confluence will improve on this situation.

3. Confluence

We have already shown in the previous section that in every CSR program,
the result of a computation of a given goal will always have the same mea-
ning. However it is not guaranteed that the result is syntactically the same.
In particular, a solver may be complete with one order of rule applications
but incomplete with another one. Different results may also arise, if com-
bined solvers share constraint symbols, depending on which solver comes
first.

In the following we will adopt and extend the terminology and techniques
of conditional term rewriting systems (CTRS) [DOS88, KK91]. A straight-
forward translation of results in the field of CTRS was not possible, because
the CSR formalism gives rise to phenomena which do not appear in CTRS
or make problems when treating confluence. These include the existence of
global knowledge: CSR programs are more powerful than the classical con-
ditional rewriting, because they use an additional context, the built-in cons-
traint store. Information about this store must be available for application
of computation steps. Other phenomena are: generalized, logical conditions
for rule applicability (guards), multiple occurrences of variables on the left-
hand side of a rule, local variables (variables that occur on the right-hand
side of a rule only).

Confluence, as illustrated in Figure 3(A), guarantees that any computation
starting from an arbitrary given initial state results in the same final state.
We first define what it means that two computations have the same result.

Definition 3.1. Two states 57 and 59 are called joinable, if there exist states
1,54 such that S7 —* 57 and S —* 54 and 57 and 5} are variants.

paper.tex; 29/08/1997; 10:45; no v.; p.13



14 Slim Abdennadher et al.

Definition 3.2. A CSR program is called confluent, if the following holds for
all states 5,51, 99:

If §—~*5,85+—"95,then §; and S5 are joinable.

Exrample 3.1. Remember the following CSR program:

P < q.
p & false.

This program is obviously not confluent since p can either be replaced by q
or false which differ. However the following program is confluent:

P < q.
p & false.
g & false.

Confluence is undecidable in general. Luckily, Newman’s lemma [New42]
for term rewriting systems is applicable to CSR as well: If a program is
terminating, it suffices to consider local confluence to guarantee (global)
confluence. We will show that local confluence is decidable for CSR (while
termination, of course, is very likely to be undecidable).

Definition 3.3. A CSR program is called locally confluent, if the following
holds for all states 5,57, 55:

If 5+~ 59,5+ 55 then S and S5 are joinable.

(A) S (B) S
A VEVAN

N N

Figure 3. Confluence (A) and Local Confluence (B)

To analyze confluence of a given CSR program we have to check joinability
of all pairs of states, which have a common ancestor state. There are infi-
nitely many of those pairs, if there is at least one rule in the program. In
the following we will present a decidable, necessary and sufficient condition
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Confluence and Semantics of Constraint Simplification Rules 15

for terminating CSR programs to be confluent. The idea of this criterion, as
illustrated in Figure 4, is to test joinability of finitely many minimal pairs of
states. These so-called critical pairs can be derived from rules overlapping
heads. We then have to show that joinability of these minimal pairs is neces-
sary and sufficient for joinability of arbitrary pairs of states, i.e. that critical
pairs can be extended to any context in which two rules can be applied with
different results.

(B, T,G,V) (By, T,G, V)
<Bl/\G8 Cy,GANCg,V BQ/\GS CU,G/\CB,V>
\\\\\\\\\\\\:\‘glli////////////

Figure 4. Joinability of Critical Pair (Top) and Extended States (Bottom)

Definition 3.4. If one or more head constraints H; ,...,H; of a rule
(Hy,...,H, & G | B) can be equated with one or more head constraints
H! ,...,H! ofarule(H{,...,H] < G"| B')®, then we call the tuple

J1?

(G,BNH] A...NH| =|=B"NH;

Jk41

AHLY)

Zk+1

a critical pair of these rules. Here is G = GAG' A Hy, =H! AN ANHp=H
while {iy,...,4,} and {ji,...,jn} are permutations of {1, .. .,n} and
{1,...,m}, respectively, and 1 < k < min(m,n).V is the sequence of varia-

bles in Hy,...,H,, H{,...,H! .
FErample 3.2. Consider the program for maximum of Example 2.4:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X,Y,Z) & ¥Y<X | Z=X.
There are two trivial® and the following nontrivial critical pair!®:

& It can be a fresh variant of the first rule.
® We call critical pairs of the form (G, B =|= B, V) trivial.
10 With variables from different rules already identified for readability.
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16 Slim Abdennadher et al.
(X<Y A Y<X, Z=Y =|= z=X, I[X,Y,Zz])

Frample 3.3. Consider the following part of a CSR program defining inter-
actions between the boolean operations not, imp and or.

not(X,Y), imp(X,Y) <& true | X=0, Y=
not(X,Y), or(X,Z,Y) & true | X=0, Y=

These two rules have the nontrivial critical pair:

(true,
imp(X,Y) A X=0 A Y=1 A Z=1 =|= or(X,Z,Y) A X=0 A Y=1,
[X,Y,Z1)

Definition 3.5. A critical pair (G, By =|= By , V) is called joinable if
(B1, T,G,V)and (By, T,G, V) are joinable.

FErample 3.4. The critical pair in Example 3.2 is joinable, if the built-in cons-
traint solver normalizes X<Y A Y<X into X=Y. The critical pair in example
3.3 is also joinable, provided there are the following (or similar) rules in the
CSR program:

imp(0,1) <& true | true.
or(X,1,Z) & true | Z=1.

With the notion of critical pairs we are in a position to give a sufficient and
necessary condition for local confluence. The proof for the following theorem
can be found in appendix B.

Theorem 3.1. A CSR program is locally confluent iff all its critical pairs are
joinable.

Definition 3.6. A CSR program is called terminating, if there are no infinite
computations.

The following corollary is a simple consequence of Theorem 3.1 and New-
man’s lemma [New42]:

Corollary 3.1. A terminating CSR program is confluent iff it is locally con-
fluent.

The Corollary 3.1 gives a decidable characterization of confluent termina-
ting CSR programs: Joinability of a given critical pair is decidable for a
terminating CSR program and there are only finitely many critical pairs.

As in term rewriting systems, termination is crucial to go from local conflu-
ence to (global) confluence. It may be the case that the class of terminating
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Confluence and Semantics of Constraint Simplification Rules 17

CSR programs is too restrictive to cover all programs that are useful in
practice. But in the present we do not see a possibility to do without termi-
nation.

3.1. CONFLUENCE AND DETERMINISM

One may wonder why we need to bother with confluence instead of adopting
the notion of determinism from ALPS [Mah87] to CSR. In a deterministic
program, no two rules for the same predicate have overlapping guards. This
means that in a computation, at most one rule can be chosen for a goal.
Hence any possible order of rule applications results in the same final state.
It may seem that any confluent program can be translated into an equiva-
lent deterministic one. However, this is not the case, because the resulting
deterministic programs may be operationally weaker than their confluent
counterparts. The notion of deterministic programs is too strict for our pur-
poses. The weakness of the notion of determinism applied to CSR has three
reasons, of which the first two also hold for C*L languages:

First, the constraint system must be closed under negation so that a C*L
program can be transformed into one without overlapping guards.

Example 3.5. Remember the (confluent) rules for maximum:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X,Y,Z) & ¥Y<X | Z=X.

This program cannot be transformed into an equivalent one without over-
lapping guards, if = and < are the only built-in constraints.

Secondly, confluent programs can commit to a rule earlier than determini-
stic ones because their guards can be less rigid since they may overlap.

FErample 3.6. A deterministic version of maximum:

maximum(X,Y,Z) < X<Y | Z=Y.
maximum(X,Y,Z) & ¥Y<X | Z=X.

For the goal maximum(A,B,C) A A<B the answer is the goal itself, because
no rule is applicable. In the confluent version (Example 3.5) the first rule
commits and computes the answer A<B A C=B.

Third, in contrast to most C*L languages including ALPS, CSR allow “mul-
tiple heads”, i.e. conjunctions in the head of a rule. We can get into a situati-
on, where two rules can be applied to different but overlapping conjunctions
of constraints. In general it is not possible to avoid commitment to one of the
rules (and thus making the program deterministic!') by adding constraints
to the guards.

1 We conservatively extend the notion of deterministic ALPS programs to CSR: At
most one rule is applicable to any given goal.
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18 Slim Abdennadher et al.

FErample 3.7. Consider the two rules of Example 3.3:

not(X,Y), imp(X,Y) <& true | X=0, Y=1.
not(X,Y), or(X,Z,Y) & true | X=0, Y=1, Z=1.

Given a goal not(A,B)Aimp(A,B)Aor(A,C,B), both rules can be applied.
To ensure that only the fist rule can be applied, we would have to add a
condition to the guard of the first rule that or (A,C,B) does not exist in the
current state. Such a condition cannot be expressed by a constraint since it
is meta-logical as it can become dis-implied in the future.

4. Consistency and Confluence

We now show that confluence implies consistency of the logical meaning of a
range-restricted program. For this we have to require the constraint theory
to be ground complete!?. Since our test for confluence is decidable, it thus
can also be used to identify the parts of range-restricted terminating C*L
programs that have a consistent declarative semantics in our sense.

For the proof to go through, every rule has to satisfy a range-restriction
condition: Every variable in the body appears also in the head. We believe
that the result holds for general CSR programs, but to show this, it seems
that a different proof technique has to be found.

Definition 4.1. A constraint theory C'T'is called ground complete, if for every
ground atomic constraint ¢ either CT |= ¢ or CT |= —¢ holds.

Theorem 4.1. Let P be a range-restricted CSR program and C'T a ground
complete theory. If P is confluent, then P U C'T is consistent.

The theorem follows directly from the following two lemmas. In order to
formulate them, we first have to define the notion of computational equiva-
lence:

Definition /.2. Given a CSR program, we define the computational equiva-
lence «<*: Sy « S iff S — Sy or S1++ 9,. 5 «* 8 iff there is a sequence

S1,...,.5, such that Sy is 5, 9, is S’ and 5; < 5;14 for all 1.

We can easily see that for every computational equivalence S <* S’ there
is a sequence 51,771,599, 15, ...,T,_1,5, of the following form:

S Fra S =" e S =t L = T e S, =T S’
This sequence is more intuitively illustrated in Figure 5.

12 Note that this restriction is very weak, since the property holds for almost all useful
classes of constraint theories.
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Sy S
5/ NN TN

Figure 5. Computational Equivalence of S and S’

Lemma 4.1. If P is confluent, then (T, T, true,V) <* (T, T,false,V) does
not hold.

Proof. Let be St = (T, T,true,V) and Sg = (T, T,false, V). We show by
induction on the length of the computational equivalence n that there are
no states S¢,T1,...,T,_1,5, such that

St = 51 —="T) *~ ... =T 1 =85, =" SF

Base case: 57 "~ 5 —* SF cannot exist, because S7 and Sg are different
final states and P is confluent.

Induction step: We assume that the induction hypothesis holds for n, i.e.
St ¥ 51 =T Y= =T T Y5, —* Sr does not exist. We prove
the assertion for n 4+ 1 by contradiction:

We assume that a sequence of the form

St = 51 =T "= L = S, =T T, T 54— S oexists. We will lead
this assumption to a contradiction.

P is confluent, hence Sp and T,, are joinable. Since Sp is a final state,
there is a computation of T), that results in Sg (i.e. T}, —* Sr), and hence
9, —* Sp. Therefore there is a sequence of the form

St *— S =T, *— ...~ 85, 1 —="T,_1 "~ 5§, =" SF,
which is a contradiction to the induction hypothesis. a

Some notations and definitions are necessary before we go further. We use
the notation “#” for assignments, or valuations, to a set of variables. For
an interpretation I and a variable valuation 6 we denote the fact that the
formula or set of formulas F' is satisfied by I and 6 as “I,8 |= F”. The
fact that a closed formula is satisfied by an interpretation [ is denoted as
“I |: F”‘

An interpretation of PU C'T'is a structure that expands the Herbrand model
of C'T to include an interpretation of the set of the user-defined constraints
appearing in the CSR program P. A model of a (set of) rule(s) is an inter-
pretation modeling the rule (the set).
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Lemma 4.2. Let P be a range-restricted CSR program and CT a ground
complete theory. If (T, T,true,V) <* (T, T,false, V) does not hold, then
P U CTis consistent.

Proof. We show consistency by defining an interpretation which is a model
of PUCT.

We define

Io:={{C46,...,C.0} | ((C1 A...ANCp)0, T, true, V) <" (T, T,true, V)}.

Let be I := (UIp).?
Because of the consistence and the ground completeness CT has a single
Herbrand model

CM:=A{c| CT = ¢ and ¢ is ground}

Let 7 be I U CM. We know that false ¢ I, because (false, T,true, V)
—* (T, T,true,V) does not hold. Therefore 7 is a Herbrand interpretati-
on of PU CT. We show 7 |= P.

Let (H1A...ANH,, & GiN...ANG; | BiA...AByg) be a CSR rule from P. We
showZ EV (GiA...ANG;)— (HiN...ANHy = 3 (B1 A... A By))). Since
the rules are range-restricted, we have to show 7 =V ((G1 A ... A Gj) —
(HiN...NH, < By AN...\By))

To show that Z =V (GyA.. .ANG;) — (HiAN...ANH,, < By A...ABy) (which
is equivalent toZ =V (HiA.. .ANH,ANGIA...NG;) < (BiA...ABy NGy A
...ANG;))), we have to show that 7,0 = (H1 A ... NH, ANG1 A ... NG —
By AN...ABp NGy AL N G) for any variable valuation 6.

For all formulas (HyA...NH, ANGiA...NG; < By A ANByANGLA. . ANG))
and for any variable valuation # the following equivalences hold:

Z,0=HiN...NH, NGL AN NG
iff {H16,...,H,0,G416,...,G;0} CT
iff (HiA...ANH, ANGL A NGO, T, true, V) <™ (T, T, true, V)
iff (B1A...ABy, AG1A...ANG;)B, T, true, V) < (T, T, true, V)
iff {B16,...,B,0,G40,...,G;6} CT
it Z,0 = BiAN...ABy, NGy AL NG

Therefore 7,0 = HyAN.. .NH, NGy N.. . NG — By A...AB, NG1A... NG
for any variable valuation @ and for all formulas in P.

Then Z =V (GiA...ANGy) — (HiAN...NH, < By Ao A By)) for all
formulas from P. a

13 This operator denotes the union of all members of I.
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5. Confluence and Declarative Semantics

The following theorem states that we can improve on completeness, if a CSR
program is confluent and terminating.

Theorem 5.1. Let P be a terminating and confluent CSR program and G be
a goal. Then the following are equivalent:

a) P,CT EVY (C<=qG).

b) G has a computation with answer constraint C’ such that P,CT |
vV (C=C").

¢) Every computation of G has an answer constraint C’ such that P,CT |=

YV (C—=C).

Proof. “a) = b)” holds according to completeness of CSR computations,
Theorem 2.2.

“b) = ¢)” is implied directly by confluence and termination.

“c) = a)” holds according to soundness of CSR computations, Theorem
2.1. O

The following theorem gives a condition for existence of finitely failed com-
putations, provided the goals have the following property.

Definition 5.1. A goal is data-sufficient, if it has a computation with a final
state containing an empty user-defined store.

This property guarantees that there is a computation of the goal with an ans-
wer constraint containing only built-in constraints. The property is exactly

the same as the one used in [Mah87], but we use a more explicit definition!*.

Theorem 5.2. Let P be a range-restricted and confluent CSR program, CT
a ground complete theory, and G' a data-sufficient goal. If P,CT | -3G
then G has a finitely failed computation.

Proof. GG has a computation with answer constraint C' containing only built-
in constraints, because G is data-sufficient.

By Theorem 2.1 the following does hold:

P,.CTEVY(C < G).
P,CT |= =3G implies P,CT =V (false < G'). Therefore
P,CT EV (C < false).

14 Personal communication with M. Maher, Email, January 1997.
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Since P is confluent, P is consistent!® (by Theorem 4.1). Furthermore, P
does not define built-in constraints and C' consists of built-in constraints
only. Hence the following also holds:

CT =V (C < false).
Since C' consists of built-in constraints only, C' must be false. a

The following corollary is a soundness and completeness result for finite
failure. It is a consequence of Theorems 5.1, 4.1 and 5.2.

Corollary 5.1. (Soundness and Completeness of Finite Failure) Let P be
a range-restricted, terminating and confluent CSR program, CT a ground
complete theory, and G a data-sufflicient goal.

The following are equivalent:

a) P,CT = -3G
b) G has a finitely failed computation.
¢) Every computation of GG is finitely failed.

These results are similar to those for ALPS [Mah87], even though ALPS
has a different declarative semantics (based on Clark’s completion) and a
different operational semantics (rules can commit more often).

As a conclusion of this section we present a comparison of the various com-
pleteness and soundness results for successful computations (SC) and finite
failure (FF) for C*L languages'® as presented in [JM94] and CSR in Figure
6.

\ \ 41, \ CSR \ Determ. C*L \ Confl. CSR

Soundness (SC) yes | yes yes yes
Completeness (SC) no | yes yes yes
Soundness (FT) yes | yes yes yes
Completeness (FI') | no no yes yes

Figure 6. Soundness and Completeness Results for C*L and CSR

15 Thus, the proof also goes through for consistent programs.
1% Note that the declarative semantics of these languages is different from CSR’s (based
on Clark’s completion).
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6. Conclusions and Future Work

We introduced the notion of confluence for Constraint Simplification Rules
(CSR). Confluence guarantees that a CSR program consisting only of sim-
plification rules will always compute the same result for a given set of user-
defined constraints independent of which rules are applied.

Based on classical notions in term rewriting systems, we have given a cha-
racterization of confluence for terminating CSR programs through joinabi-
lity of critical pairs, yielding a decidable, sufficient and necessary condition
and syntactically based test for confluence. We have shown that confluence
implies consistency of the logical meaning of CSR programs.

We also gave various soundness and completeness results for CSR programs.
Our theorems are stronger than what holds for the related families of C1L
programming languages. Our approach complements recent work in pro-
gram analysis as in [MO95, CFMW97], where a different, less rigid notion
of confluence is defined: A committed-choice program is confluent, if diffe-
rent process schedulings give rise to the same set of possible outcomes. The
idea of [M0O95, CFMW97] is to introduce a non-standard semantics, which
is confluent for all committed-choice programs.

We have developed a tool [Mar96] in ECL'PS® (ECRC Constraint Logic Pro-
gramming System [ACD%94]) which tests confluence of CSR programs. Our
tests show that most existing constraint solvers written in CSR are indeed
confluent. A solver performing Gaussian elimination was not confluent. It
can easily be made confluent by adding a condition to the guard (in this
case, at the expense of efficiency). Current work [Abd97] integrates the two
other kinds of CHR rules, the propagation and the simpagation rules, into
our condition for confluence. The idea is to extend states by a component
that keeps track of which propagation rules have already been applied and
in this way avoids trivial nontermination.

As in term rewriting systems, termination is crucial to go from local conflu-
ence to (global) confluence. Thus investigations into termination are neces-
sary.

We also want to investigate further the relationship of CSR to general-
purpose C*L languages. We plan to study completion methods to make a
non-confluent CSR program confluent. Like in term rewriting systems, the
idea is to turn critical pairs into rules.

Finally, we would like to thank the anonymous referees, who have pointed
out some errors and omissions in preliminary versions of this paper.
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Appendix
A. Proofs for Section 2.3

Lemma A.1. Let P be a CSR program, G be a goal. If C' is a computable
constraint of G, then

P.CT =V (C = G).

Proof. We prove the claim by structural induction over the computations:
Base case: No transition is applied to the initial state (G, T,true, V), i.e.
C' = (, and the state is possibly normalized by A/. Then the following holds:

P.CTEVY (C < G).
Induction step: We have the following computation
(G, T,true, V) =" (G, Cl;, C, V) — (GS", C, CB, V).

In order to prove that the last computation step preserves logical equiva-
lence, we prove that each transition of the operational semantics preserves
logical equivalence:

(1) Solve: Then (s is of the form C'A G's, where C'is a built-in constraint.
The transition applied to the state (C'A G's,C;,Cy, V) leads to the new
state (G's",Cl, C%, V) = N((Gs,Cl, Cg ANCV)).
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Let Z; be the local variables of (C'A G's, Cf;, C'5, V). By the induction hypo-
thesis the following holds:

P,CT =Y (331 (CAGsAC A CR) = G).
The following holds by Lemma 2.1:
P,CT =Y (Jz1 (CAGsACpy ACR) — Azo(Gs" ANC A CR)),

where 7y are the local variables of (G's”,C[;, C%, V).
Therefore

P.CT Y (355 (Gs" ATl ACYH) = G).

(2) Introduce: Then G'¢' is of the form C' A G's, where C' is a user-defined
constraint. Introduce applied to the state (C' A G's,C[;,Cg, V) leads to the
new state (G's”,Cl;,C%, V) = N({(Gs,C A Cl,Cg, V).

Let Z; be the local variables of (C'A G's, Cf;, C'5, V). By the induction hypo-
thesis the following holds:

P,CT =Y (331 (CAGsAC A CR) = G).

Zy are also the local variables of the state (G's, C' A Cf;, Cg, V). The following
equivalence holds:

P,CT =Y (31 (GsANC ACH A CR) = G).

Since A does not change the state (G's, C' A C};,C, V), a4 are also the local
variables of the state (G's”,C[;, C%,V):

P.OT =V (325 (G ACl A C) = @),

(3) Simplify: Then C7; is of the form H' A Cy, where (H & C' | B) is a
fresh CSR rule from P and CT |V (Cy — Jy (H=H' N C)).

The transition applied to the state (G's’, H' A Cyr,C'5, V) leads to the new
state (G's”,C, C, V) = N((Gs' A B,Cy, H=H' A C,V)).

Let Z; be the local variables of (G's', H' A Cy,C%, V). By the induction
hypothesis the following holds:

P,CTEY (3, (GsS'ANH' ACy A Cg) = G). (4)

The entailment condition says that the context C'g is equivalent to its con-
junction with the instantiated guard.

CTEVY(Cyg = CyAIy(H=H AC))
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CTEVY(Cy <y (CxgAH=HAC))

By replacing Cz by 3y (Cx A H=H' A C) in equation (4) we obtain:

P,CTEY (o1 (G ANH' ANCy ATy (Cg A H=H' A C)) < G).
The variables y are the variables occurring only in H, then the following
holds:

P,CTEY (Jo1 Iy (GS NH' NCyuANCg N H=H'AC) = G). (5)

According to the fact that CT'|= H=H' — (H < H') we obtain:

P,CTEY (321 gy (GS ANCuNCygANH=H'NH NC) < G). (6)
From P, CTEV ((C — (H < 3y, B))) we deduce:
P,CTEY(HAC) <3y (BAC))

By replacing H A C by Jy2 (B A C) in equation (6) we obtain:

P,CTEVY (Jo1 Yy (G ACuy ANCg N H=H ATy (BAC)) = G). (7)

The variables gy, are the variables occurring only in B, then the following

holds:
P, CTEY (21 3y 2 (Gs’/\CU/\ng/\HiH’/\B/\C) = G).

The entailment condition says that C' is entailed by the context C', then
the following holds:

P,CTEVY (Juy 3 352 (G ACu ACy A HE=H' A B) = G).

The variables y; (resp. y) are the variables occurring only in B (resp.
H=H'), then Zy = & U g U y are the local variables of the state
(G$'NB,Cy, H=H' A Cg,V):

P,CTEVY (Jz; (G ANBANCyNH=H"NCg) < G).
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Let Z3 be the local variables of (Gs”,CY;, C'%, V), then by Lemma 2.1:
P,CTEVY (33 (GS ABANCyNH=H'ANCy) < 325 (Gs" ANC ACE)).
Therefore
P,CTEVY (a3 (Gs" ACHACE) = G)

holds. O

B. Proofs for Section 3

We first give the lemmas which are used in the proof of Theorem 3.1. Com-
plete proofs for the lemmas are omitted for space reasons, they can be found
in [Meu96].

The first lemma states when joinability is compatible with changing the
global variable stores:

Lemma B.1. Let (Gs1,Cuy1,Cp1,V) and (Gsy, Cug, Cp2, V) be joinable.
Then the following holds:

a) If V' CV, then (Gs1,Cr, Cp1, V') and (Gsg, Cua, Cpa, V') are joinable.

b) If V' contains only fresh variables, then (G'si,Cp1,Cp1,VoV’) and
(Gsg,Crr2,Cpa, Vo V') are joinable (o denotes concatenation).

Proof sketch. a) If we reduce the number of global variables, there may be
one effect on the computation steps: Variables that have been global befo-
re, are strictly local now. These variables will be eliminated by A. Built-in
constraints containing these variables will be changed to a representation
without these variables. But the loss of information about these variables
does not affect computation steps, because strictly local variables by defini-
tion do not appear anywhere else in the state. This is shown by induction
over the number of computation steps.

b) This is shown by straightforward structural induction over computations.

The next lemma states that addition of constraints to the stores does not
change joinability of the states. It is a consequence of monotonicity of logical
consequence and of Lemma 2.2.

Lemma B.2. If (C1 A Cy A Cs,Gs A Cy ACg) is connected in V and

(Gs,Cy,Cg, V) =" (G, Cr,C, V),
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then
(Gs AN Cq,CuANCo,Cp NC3, V) ="

N(<G8/ A Cl, C{] A CQ, C/B A 03, V>)

The next lemma states that atoms can be moved from the goal store to the
user-defined store without losing joinability.

Lemma B.3. If
(Gsy NG, T,Cp1, V) and (Gsy A G, T,CB2, V)
are joinable, and G; and G5 are user-defined constraints, then
(Gs1,G1,Cp1, V) and (Gsg, G, Cpa, V)
are also joinable.

Proof. We divide GGs; A G into the built-in constraints G, the user-defined
constraints G g7 471, which are not touched during the join, i.e. which remain
in the goal store, and the user-defined constraints G'arov g1, which are tou-
ched in the process of joining. Analogously, we divide Gsy A G5 into Goa,

Gsrarz and GypovEs.
In a first step, we show that, provided the requirement is met,

(Geo1, Gumover AN Gstari, Ce1, V) and (Goa, Gyovee A Gstate, Cea, V)

are also joinable:

The only operation accessing the goal store with user-defined constraints is
Introduce. Hence, all constraints Gprover and Gyovgs, respectively, are
moved to the user-defined stores with Introduce steps during the process
of joining. We can apply these Introduce steps in the beginning of the
respective computation and append the remaining steps thereafter without
changing the outcomes. Therefore (Gc1 A Gsrari, Gmover,Cei, V) and
(Goa NGsrare, Grovez, Cez, V) are also joinable, i.e. there are compu-
tation sequences for both states resulting in (G'A Gsrar1,Cv,Cg, V) and
(G'" N GsTaT2,Clr, CR, V), respectively, with these two states being variants.
The same sequence of computation steps can be applied to the states
(Geo1, Gymover AN Gstari,Ce1, V) and (Geoo, Guovez A Gstar2, Ce2, V),
resulting in the states (G,Cu NGstar,CB, V) and
(G',Cl; NGsTaT2,CR, V) which are variants. This means that

(Go1,Gymover AN Gstari,Ce1, V) and (Geo, Grmovee A Gstare, Cea, V)
are joinable.
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In the second step, we show the assertion of the lemma:
GuymovEilr AN Gstari represents the user-defined portion of Gsy A G, and
analogously G'yjov e A GsTars represents the user-defined portion of Gisg A
G9. Because (G7 and (G5 consist only of user-defined constraints, they are
contained in GprovE1 AGstar1 and Gyroves AGsTaT2, respectively. Hence,
we can define Gprrry as the conjunction of user-defined constraints, so that
G1 N Gprrrr = Gumover A Gsrari- (Remember that the conjunction is
associative and commutative.) Analogously, we can define G'prrps.
We can deduce that (Ger NGprrr, G1,CB1, V) and
(Gc1 NGprrra,Ge,Cpa, V) are joinable: If we a apply a series of Intro-
duce steps to these states, we result in (Gec1,Grover A Gsrari, Cei, V)
and (Gca, Gpovez A Gstarz, Cea, V), respectively, which are joinable.
Because Goi AGprrr1 = Gs1, and GoaAGprrrs = Gsg, we finally conclude,
that

<G81, Gl, CB17 V> and <G82, GQ, CBQ, V>

are joinable. a

We are now in a position to prove the main theorem:

Proof of Theorem 3.1: “=" direction: Let P be alocally confluent CSR pro-
gram. We prove by contradiction that all critical pairs are joinable: Assume
that (G1AGa, By AHy =|= By A Hq,V)is a critical pair that is not joinable.
We will construct a common ancestor state and then use the local confluence
to contradict the assumption. With reordering the head constraints we can
assume that this pair derives from the two rules

Ry Hl,Hg =4 G1|B1
Ry : HQ,H4 =4 G2|B27

where Hs and Hy can be equated!”. Then

<B1 ANHy, T,G1 A GQ,V> and
(By A Hy, T, Gy A G, V)

are not joinable and therefore

<B1,H2, Gl A GQ, V> and
(By, Hi,Gy NG, V)
are not joinable.

Let  (T,H{ANH,ANHLGUANGY YY) be  a fresh  variant  of
<T,H1 ANHyANHs, Gy A GQ,V>.

17 Remember that throughout the whole paper, the H; denote conjunctions of atoms.
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Now we can apply both Ry and Ry onto the state
(T,H{ NHYNHE G NG V') with the results

N{BY,H,, Gy NGy AN HY=H; N HY=H3, V")) and

N T} G A Gl 0 TS 3 I3,V
The fresh variants of the rules were H{ HY < G/ | B{ and
HY HY & GY | BY. Because of the local confluence these states are joinable.
We know that NV propagates the equalities H{'=H{ A HY=H} and HY=H} A
H}!=H! into the respective goal store. This implies that we can substitute
the variables in question, i.e. replace Bf and BY by B/ and B}, respectively,
without changing the outcome of A.
If there are variables in BY or BY which do not occur in H{ANHY or H}NHY,
respectively, i.e. variables whose values are not governed by the equalities
H{=H{NHY=H! and HY=H) N H{=H!, we do replace them by new varia-
bles, which does not influence the outcome of joinability.
Therefore

N (B, H, GUAGYA HI=H, A HI=HL, V') and
N{BL H,GYNGYN HY=H) N HY=H,, V')
are joinable, too.

The following two states have the same normalized form as the upper states,
and are as a simple consequence of Lemma 2.3 also joinable:

(BY, H), Gy A GS, V') and
(B, L, G A Gl V),
This is a contradiction to the claim that the variant states

<B1,H2,G1 A GQ,V> and
(By, Hi,Gy NG, V)

are not joinable.

“«<=" direction: Let P be a CSR program where all critical pairs are joinable.
We will show that P is locally confluent. Assume that we are in state 518
where there are at least two different possibilities of computation:

S — 51 and S — 55

We have to show that 57 and 59 are joinable. We investigate all pairs 5 —
51 and 5 — 959 and show that 57 and 99 are joinable. The joinability of
critical pairs will play a central role in the case Simplify vs. Simplify only.

18 Because of Lemma 2.3 we can assume that S is normalized.
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Solve vs. Solve: Then S is of the form (C; A C2 A Gs,Cy, Cg, V). We can
move two different built-in constraints from the goal store to the built-in
store:

(Cy NCo ANGs,Cy, Cp, VY — N{(CyAGs,Crr,Cp A Cy,V)Y)
= <C£ A Gsl,CUl,CBl,V> and

(Cy NCo ANGs,Cy, Cp, VY — N({(Cy ANGs,Crr,Cp A Cy, V)
= <C{ A GSQ,CUQ,CBQ,V>.

It is easy to see that we can apply the other Solve step onto each resulting
state. It is obvious that the resulting states will be identical:

N(<G81, CU17 CBl A Cé, V>) = N(<G82, CUQ, CB2 A C{, V>)

Solve vs. Simplify: S is of the form (C AGs, H' A Cy,Cg, V), where C
is a built-in constraint, and H’ is a conjunction of user-defined constraints
matching with the head of a rule ({ < G| B) and the guard G of the rule
is implied by Cp.

Application of Simplify results in Ssrpp = (B'ANC'ANGS, Cp, Cg V) =
N{BANCANGs,Cy,Cg AN H=H',V)), whereas application of Solve leads to
SsorveE = <G8”, H" A C{}, Cg, V> = N(<G8, H'A Cy,CACp, V>)

Of course, Solve is applicable on Sgrayp, resulting in Sgyp =
N{B' NG, CL, CMACR,V)Y).

Application of Simplify on Ssorvg is possible, because CT |=
C%<Y 3z(C A Cp) (¢ strictly local in (Gs",H"ACY;,C ANCg,V)) and
CT = ¥Y(Cp — Fy(G A H=H')) (y are the variables in (H & G | B)),
therefore CT = V(C% — Jy(G A H=H")) holds. This results in Spnp =
N{(BAGS", Cl,CLANH=H"V)), which is in fact identical to Sgnxp:

CT E (@n " AN Cp—=(3z C4 AN H=H"), where Zz and
Zy are the strictly local wvariables in (B'AGS,Cl,C'ACg,V) and
(BAGS",CP,Cu N H=H"V), respectively, must hold, because of the fol-
lowing two equivalences which are guaranteed by the projection property of

N:

CT | V(Cg—3z, Cp N H=H")
CT E Y(Ch=3z Cg A C).

(Analysis of the strictly local variables of the respective states leads to CT' |=
(350 C"NCR)—= (32, CEANH=H").)

Because of the uniqueness of NV, the built-in states of Spyp and 5% are
identical. According to equality propagation of N, Spyp and Sy, have
identical goal and user-defined stores.

Introduce vs. Introduce: We know that S must be of the form
(C1 NCy NGs,Cy,Cp,V) where C7 and C3 are user-defined constraints.
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Obviously the results of two computations are identical, since conjuncts can
be permuted.

Introduce vs. Simplify: 5 is of the form (C' A Gs, H A Cy,Cp, V), where
(' is a user-defined constraint, and H a conjunction of constraints matching

with the head of a rule (H; < G|B). The two successor states are

Introduce : 51 = N((Gs,C ANH ACy,Cg,V))
= <G8,C/\H /\CU,CB,V> and
Simplify : 55 = N(CANGsAB,Cy,Cg AN H = Hy,V))
= (C'"NGS' NB',Cy, Cy, V).

The second of the four equations holds, because we assumed that .5 was nor-
malized. We can apply the other computation step onto 57 and 59 resulting
in:

S1 = N{GsAB,CANCy,CgANH = Hy,V))
= (Gs'NB',C"ACp;,CR, V) and

Sh = N((Gs' N B ,C" A Cly, O, V))
= (Gs'ANB',C"ACp, CR, V).

The second equation follows from the fourth equation in the equations abo-
ve. The fourth equation holds, because 53 was normalized.
This means that 57 = 5%, i.e. 51 and 53 are joinable.

Introduce vs. Solve: This situation is analogous to the case Introduce
vs. Simplify.

Simplify vs. Simplify: Let be

R= Hy,.  H,&G|B
R = H|,... H, &G |B

the rules!? being applied to the state S. We have to show that application
of R or R’ onto the state S results in joinable states. We know that the
built-in store C'p of § is satisfiable, otherwise no rule could be applied. We
can distinguish two different subcases:

Disjoint Peak: No constraint H; of the head of the rule R can be equated
with a constraint H; of the head of the other rule R’. Obviously the two
rules can be applied in any order, since they replace different conjuncts.
Critical Peak: In order to show joinability of 57 and 59, we will use the

19 R and R’ can be fresh variants of the same rule.
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assumption that all critical pairs are joinable, find a critical pair that corre-
sponds to 57 and 59 and modify the two involved states step by step, whilst
keeping joinability, until we know in the end that 57 and 53 are joinable.
Without loss of generality we can change the order of the head atomsin R
and R’. We can assume that the variables in the CSR program are disjoint
from the variables in the actual state 5. Now we are in a situation where the
first atoms of the rules can be equated (i.e. CT |= I(H1=H{ N...NH;=H!)
where 1 < i< mnand i <n').

Let S = (Gs,G1 A ... NGy, Cpg,V) be the actual state, on which the rules
R and R’ are applicable. In order to be applied, the conditions of Simplify
must be fulfilled, i.e. CT =V (Cp — 32C4) and CT |V (Cp — FyCs),
where 7 and (5 are the conjunctions of the respective guard with the
equality constraints derived from the matching, i.e. the following conjunction
of constraints:

Ci = GANGI=IHI AN . ANG=H NG =Hia Ao NG=1HH,,
Cy = G'NGI=H{ AN ... NG=H NG =H Ao NGy —i=H),.

We use abbreviations to represent the atoms in question:

H=HA...\NH,,

H = HA...AH,
G =GN NGy,
G'=GiIN NG ANG1 Ao NGy,
He = HiA...NH;,
HlL = Hin...NH],

Ggr = Gn_|_1 VANAN Gn-l—n’—i-l—l Ao NG,

G% = Gi-l—l/\---/\Gn/\Gn-I—n’—i-I—l/\---/\Gm-
H and H' are the heads of R and R', G (resp. () are the matching cons-
traints of the user-defined store in 5 with H (resp. H'), Hn and H{, are
the common parts of /f and H' (i.e. the overlapping constraints of the rule
heads), and (/g and G represent the contents of the user-defined store after
removing the matching constraints ¢ and G’, respectively.

The application of R and R’, respectively, on the actual state will result in
the following two states:

ST = N(<G8/\B,GR,CB/\GiE,V>)
Sy = N{GsA B G Cg ANG'=H',V))

We will show in the following that 57 and S are joinable.
We can see that the rules R and R’ have the critical pair

(GANG'NHa=HL, BANH A...NH,=|=B" NHipy Ao NHGY').
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We will use Cjon as an abbreviation for the joined guard, GAG'AH~=H!,.
We know that this critical pair is joinable. So there is a computation resulting
in two final states 5] and S where 57 and 5% are variants:

N(<B/\H£+1 /\.../\Hé/,T,CJOIN,V/w — S{,
N(<B//\H¢+1 /\.../\Hn,T,CJOIN,V/>) — Sé.

We can apply Lemma B.1 b) here and add V to the global variables stores,
because by our assumption V shares no variables with the two states:

N(<B A Hz{-l—l AN A Hé/, T,CJOIN,V/ o V>) and

N(<B/ N Hi-|—1 AN H,, T,CJOIN,V/O V>)
are joinable. S
By Lemma B.2 we can add the built-in constraints Cg AG=H ANG'=H' and
the user-defined constraints G,,4,/—;41 A ... A Gy to the constraint stores
of each state without losing joinability. The requirements of the lemma are
met because the variables in H and H’ are contained in V' and Cpg, G, G’

and, by assumption, G4,/ —;41 A ... A Gy, share no variables with the goal,
user-defined and built-in stores of the previous states.

N(<G8/\B/\H’G,T,CJOIN/\CB/\Gig/\élig/,V/OV» and
N(<G8/\B//\HG,T,CJOIN/\CB/\Gig/\élig/,V/OV»

are joinable. Here H'G stands for Hl A ... ANH), NGryp_ipi Ao A Gy
and HG stands for Higy Ao . AHy ANGrgp—iza Ao AN Gy

Now we can remove the global variables V' from the variable stores by app-
lying Lemma B.1 a) and keep joinability of

N(<G8/\B/\H’G,T,CJOIN/\CB/\Gig/\éligl,V» and (8)
N(<G8/\B//\HG,T,CJO[N/\CB/\Gig/\éligl,v>). (9)

Because both R and R’ are applicable to the state S, we know that:
CT VY (Cp— 32Ig(GAG' AN Ha=H]))
implying that

CTEVY (CegAIzIy(G=HANG'=H")
= CpANITIGGAG NHA=HLANG=H ANG'=H"))

The uniqueness property of A" implies that

N{GsANBANH'G, T,Cg NG=H ANG'=H',V)) and
N{(Gsn B NHG, T,Cg ANG=H ANG'=H',V))
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are identical to the states (8) and (9) and therefore joinable.

We propagate the equalities G’=H’ in the built-in stores to the rest of the
states. This results in states with the same normalized form. Therefore we
can replace H! \A...AH], by GiaA. . NG and likewise Hip A AH,
by Giy1 A ... A G, and get joinable states again:

N{GsANBANGR, T,Cg ANG=H ANG'=H',V)) and
N{GsANB' NG, T,Cg ANG=H NG'=H'",V)).

Let x be the variables of f{’; By our assumption the variables z in
(GsNBAGR, T,CpANG=H NG'=H',V) are strictly local, and the follo-
wing holds (because the constraint G'=H’ means that G’ is an instance of
H'):

CTEY 33(CegANG=HANG=H")~(Cg NG=H)).
The uniqueness property of N and a likewise reasoning for the variables of
H then lead to:

N(<G8AB/\GR,T,CB/\
= N(<G8AB/\GR,T,CB/\

G-I, V))

N{GsANB' NG, T,CgANG=H NG'=H',V))
= N{GsAB NGy, T,Cg ANG'=H',V)).

This implies that the states

N({GsANBANGR,T,Cg ANG=H,V)) and
N{GsANB NG, T,CgAG'=H',V))

are joinable. By applying Lemma B.3 we finally know that

N(<G8 A B,GR,CB A Gig,V» and
N{(GsA B ,GRr,Cp ANG'=H'V))

are joinable. a
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