
A Prolog Constraint Handling Rules Compiler andRuntime SystemChristian Holzbaur�University of ViennaDepartment of Medi
al Cyberneti
s and Arti�
ial Intelligen
eFreyung 6, A-1010 Vienna, Austria
hristian�ai.univie.a
.atThom Fr�uhwirthLudwig-Maximilians-UniversityDepartment of Computer S
ien
eOettingenstrasse 67, D-80538 Muni
h, Germanyfruehwir�informatik.uni-muen
hen.deSeptember 15, 1999Abstra
tWe introdu
e the most re
ent and advan
ed implementation of
onstrainthandling rules (CHR) in a logi
 programming language. The Prolog imple-mentation
onsists of a runtime system and a
ompiler. The runtime systemutilizes attributed variables for the realization of the
onstraint store witheÆ
ient retrieval and update me
hanisms. Rules des
ribing the intera
tionsbetween
onstraints are
ompiled into Prolog
lauses by a
ompiler, the
oreof whi
h
omprises a small number of
ompa
t
ode generating templates inthe form of de�nite
lause grammar rules.1 Introdu
tionIn the beginning of
onstraint logi
 programming (CLP),
onstraint solving was\hard-wired" in a built-in
onstraint solver written in a low-level language. WhileeÆ
ient, this so-
alled \bla
k-box" approa
h makes it hard to modify a solver orbuild a solver over a new domain, let alone debug, reason about and analyze it. Thisis a problem, sin
e one lesson learned from pra
ti
al appli
ations is that
onstraintsare often heterogeneous and appli
ation-spe
i�
. Consequently, several proposalshave been made to allow for more
exibility and
ustomization of
onstraint systems(\glass-box" or even \no-box" approa
hes):� Demons, forward rules and
onditionals in CHIP [Di*88℄ allow the de�nitionof propagation of
onstraints in a limited way.� Constraint
ombinators in

(FD) [vHSD92℄ allow to build more
omplex
onstraints from simpler
onstraints.�Part of the work was performed while visiting CWG at LMU with �nan
ial support fromDFG. 1

� Constraints
onne
ted to a Boolean variable in BNR-Prolog [BeOl92℄ and\nested
onstraints" [Sid93℄ allow to express any logi
al formula over primitive
onstraints.� Indexi
als in
lp(FD) [CoDi93℄ allow to implement
onstraints over �nite do-mains at a medium level of abstra
tion.� Meta- and attributed variables [Neu90, Hui90, Hol92℄ allow to atta
h
on-straints to variables at a low level of abstra
tion.It should be noted that all the approa
hes but the last
an only extend a solverover a given, spe
i�

onstraint domain, typi
ally �nite domains. The expressivepower to realize other (appli
ation-spe
i�
)
onstraint domains is only provided bythe last approa
h.Attributed variables [Hol92℄ provide dire
t a

ess storage lo
ations for proper-ties asso
iated with variables. When su
h variables are uni�ed, their attributeshave to be manipulated. Thus attributed variables make uni�
ation user-de�nable[Hol90, Hol93℄. Attributed variables require roughly the same implementation ef-fort as hard-wired delay (suspension) and
oroutining me
hanisms found in ear-lier Prolog implementations, while being more general. And indeed, attributedvariables nowadays serve as the primary low-level
onstru
t for implementing sus-pension (delay) me
hanisms and
onstraint solver extensions in many
onstraintlogi
 programming languages, e.g. SICStus [CaWi95℄ and ECLiPSe [Br*98℄ Prolog.However writing
onstraints this way is tedious, a kind of \
onstraint assembler"programming.If there already is a powerful
onstraint assembler, one may wonder what anasso
iated high-level language
ould look like. Our proposal is a de
larative lan-guage designed for writing
onstraint solvers,
alled
onstraint handling rules (CHR)[FrBr95b, Fru98, HoFr98a, FAM99℄. With CHR, one
an introdu
e user-de�ned
onstraints into a given high level host language, be it Prolog or Lisp. CHR havebeen used in dozens of proje
ts worldwide to en
ode
onstraint handlers (solvers),in
luding new domains su
h as terminologi
al and temporal reasoning [Fru98℄.CHR is essentially a
ommitted-
hoi
e language
onsisting of guarded rules thatrewrite
onstraints into simpler ones until they are solved. CHR
an de�ne both sim-pli�
ation of and propagation over user-de�ned
onstraints. Simpli�
ation repla
es
onstraints by simpler
onstraints while preserving logi
al equivalen
e. Propagationadds new
onstraints whi
h are logi
ally redundant but may
ause further simpli�-
ation. CHR
an be seen as a generalization of the various CHIP [Di*88℄
onstru
tsfor user-de�ned
onstraints.In
ontrast to the family of the general-purpose
on
urrent logi
 programminglanguages [Sha89℄,
on
urrent
onstraint languages [Sar93℄ and the ALPS [Mah87℄framework, CHR allow for multiple heads, i.e.
onjun
tions of
onstraints in thehead of a rule, and propagation rules. Multiple heads are a feature that is essentialin solving
onjun
tions of
onstraints. With single-headed CHR alone, unsatis�a-bility of
onstraints
annot always be dete
ted (e.g X<Y,Y<X) and global
onstraintsatisfa
tion
ould not be a
hieved. The probably most distinguishing fun
tionalityof CHR is that they a
t as a powerful iteration, retrieval, and update me
hanismover the so-
alled
onstraint store, the data stru
ture holding
onstraints.Besides de�ning the behaviour of
onstraints, CHR
an be and have been usedas � general purpose
on
urrent
onstraint language with ask and tell,� as fairly eÆ
ient produ
tion rule system,� as a spe
ial kind of theorem prover,2

� in general as system
ombining forward and ba
kward
haining.The �rst implementations of CHR were interpreters: In 1991 in ECLiPSe Prolog,in 1993 in Common LISP [Her93℄. In 1994, the �rst
ompiler was written as a libraryof ECLiPSe [FrBr95a, FrBr95b℄. An interpreter was written in the
on
urrent logi
alobje
t-oriented
onstraint language OZ [SmTr94℄ in 1996. Independent of our work,a new experimental prototype of CHR has been implemented in ECLiPSe 4.0 [She98℄in 1998.Nowadays, CHR are typi
ally realized as a library
ontaining a
ompiler, runtimesystem and dozens of
onstraint solvers written in CHR. Rules
ompile into Prolog
lauses whi
h inspe
t and update the
onstraint store at runtime. Su
h a type of
ompilation of
ommitted-
hoi
e languages into Prolog has been investigated before,be it translating GHC [UeCh85℄, implementations of delay de
larations [Nai85℄ orthe eÆ
ient implementation of QD-Janus [Deb93℄. Today, we bene�t from morepowerful programming
onstru
ts, in parti
ular
ustomizable suspension me
ha-nisms provided by attributed variables. CHR spe
i�
 topi
s are multiple heads(multi-heads) and propagation rules. The new idea is to realize the CHR
onstraintstore through attributed variables. So CHR
an also be understood as a powerfulmeans to manipulate the attributes of variables in a de
larative high-level fashion.In this paper we des
ribe the most re
ent and advan
ed implementation of CHRin SICStus Prolog [HoFr98a℄, whi
h improves both on the previous implementation[FrBr95b℄ in terms of
ompleteness,
exibility and eÆ
ien
y and on the prin
iplesthat should guide su
h an implementation [FrBr95a℄. For the user, the new releaseof CHR improves over older versions in the following aspe
ts:� The number of heads in a rule is no longer limited to two.� Guards now with Ask and Tell as in
on
urrent
onstraint languages.� For more
ontrol, rules are
ompiled in textual order.� Improved set of built-in predi
ates for advan
ed CHR users.� New options and pragmas for powerful
ompiler optimizations.� Compilation is now transparent to the user, on-the-
y when loading.� Constant time a

ess to
onstraints.� Code runs generally about twi
e as fast as in older versions.� The runtime system in
ludes a stepper for Prolog-like debugging.Two examples will guide us through the paper. Even though they do not de�netypi
al
onstraints, we
hose them for dida
ti
 reasons. They are small but
anstill illustrate various
onsiderations and stages of our
ompilation s
heme. We useProlog syntax in this paper.Example 1.1 (Primes) We implement the sieve of Eratosthenes to
ompute primesin a way reminis
ent of the \
hemi
al abstra
t ma
hine" [BCL88℄: The
onstraint
andidates(N) generates
andidates for prime numbers, prime(M), where M is be-tween 1 and N. The
andidates rea
t with ea
h other su
h that ea
h number absorbsmultiples of itself. In the end, only prime numbers remain.
andidates(1) <=> true.generate �
andidates(N) <=> N>1 | M is N-1, prime(N),
andidates(M).sieve � prime(I) \ prime(J) <=> J mod I =:= 0 | true.3

The �rst rule says that the number 1 is not a good
andidate for a prime,
andidates(1) is thus rewritten into true, a
onstraint that is always satis�edand therefore it has no e�e
t. Note that head mat
hing is used in CHR so the �rstrule will only apply to
andidates(1). A
onstraint for
andidates with a freevariable, like
andidates(X), will suspend (delay).The generate rule generates a
andidate prime(N) and pro
eeds re
ursively withthe next smaller number, provided the guard (pre
ondition, test) N>1 is satis�ed.The third, multi-headed rule named sieve reads as follows: If there is a
on-straint prime(I) and some other
onstraint prime(J) su
h that J mod I =:= 0holds, i.e. J is a multiple of I, then keep prime(I) but remove prime(J) andexe
ute the body of the rule, true.Example 1.2 (Cy
le) The following rule �nds all
y
les of length �ve in a graphen
oded through a
olle
tion of dire
ted edges.edge(A,B), edge(B,C), edge(C,D), edge(D,E), edge(E,A) ==> loop([A,B,C,D,E℄).Given these edges,edge(1,4), edge(1,9), edge(2,8), edge(3,10), edge(5,1),edge(5,8), edge(7,4), edge(7,5), edge(7,10), edge(8,3),edge(8,9), edge(9,3), edge(10,7).the rule adds the following
onstraints to the store:loop([3,10,7,5,8℄), loop([8,3,10,7,5℄), loop([5,8,3,10,7℄),loop([7,5,8,3,10℄), loop([10,7,5,8,3℄).Overview of the PaperWe qui
kly re
apture syntax and semanti
s for CHR. Then we des
ribe the threephases of the new
ompilation s
heme and the runtime system for CHR. We
on
ludewith a
omparison with the previous implementation. This paper is a revised versionof [HoFr99a, HoFr98b℄.2 Syntax and Semanti
sWe assume some familiarity with (
on
urrent)
onstraint (logi
) programming, e.g.[Sha89, vHSD92, Sar93, JaMa94, FrAb97, MaSt98℄. As a spe
ial purpose language,CHR extend a host language with (extended)
onstraint solving
apabilities. Aux-iliary
omputations in CHR programs are exe
uted as host language statements.Here the host language is (SICStus) Prolog. For more formal and detailed syntaxand semanti
s of
onstraint handling rules see [Fru98, FAM99℄.2.1 SyntaxSyntax is given in EBNF grammar style.De�nition 2.1 There are three kinds of CHR. A simpli�
ation CHR is of the form1[Name '�'℄ Head1,...,HeadN '<=>' [Guard '|'℄ Body.where the rule has an optional name Name, whi
h is a Prolog term, and the multi-head Head1,...,HeadN is a
onjun
tion of CHR
onstraints, whi
h are Prologatoms. The guard is optional; if present, Guard is a Prolog goal ex
luding CHR
onstraints; if not present, it has the same meaning as the guard 'true |'. Thebody Body is a Prolog goal in
luding CHR
onstraintsA propagation CHR is of the form1For simpli
ity, we omit synta
ti
 extensions like pragmas whi
h are not relevant for this paper.4

[Name '�'℄ Head1,...,HeadN '==>' [Guard '|'℄ Body.A simpagation CHR is a
ombination of the above two kinds of rule, it is of theform[Name '�'℄ Head1,...'\'...,HeadN '==>' [Guard '|'℄ Body.where the symbol '\' separates the head
onstraints into two nonempty parts.A simpagation rule
ombines simpli�
ation and propagation in one rule. Therule HeadsK \ HeadsR <=> Body is equivalent to the simpli�
ation rule HeadsK,HeadsR <=> HeadsK, Body, i.e. HeadsK is kept while HeadsR is removed. However,the simpagation rule is more
ompa
t to write, more eÆ
ient to exe
ute and hasbetter termination behaviour than the
orresponding simpli�
ation rule.2.2 Semanti
sIn this paper, we are interested in the operational semanti
s of CHR in a
tual im-plementations. A CHR
onstraint is implemented as both
ode (a Prolog predi
ate)and data (a Prolog term in the
onstraint store). Every time a CHR
onstraint isposted (exe
uted) or woken (re
onsidered, re-exe
uted), it
he
ks itself the appli
a-bility of the rules it appears in. Su
h a
onstraint is
alled (
urrently) a
tive, whilethe other
onstraints in the
onstraint store that are not exe
uted at the momentare
alled (
urrently) passive.Heads. For ea
h rule, one of its heads is mat
hed against the
onstraint. Mat
h-ing su

eeds if the
onstraint is an instan
e of the head, i.e. the head serves as apattern. If mat
hing su

eeded and a rule has more than one head, the
onstraintstore is sear
hed for partner
onstraints that mat
h the other heads. If the mat
hingsu

eeds, the guard is exe
uted. Otherwise the next rule is tried.Guard. A guard is a pre
ondition on the appli
ability of a rule. The guardeither su

eeds or fails. A guard su

eeds if the exe
ution su

eeds without
ausingan instantiation error and without tou
hing a variable from the heads. A variableis tou
hed if gets more
onstrained by a built-in
onstraint. If the guard su

eeds,the rule applies, one
ommits to it and it �res. Otherwise it fails and the next ruleis tried.Body. If the �ring CHR is a simpli�
ation rule, the mat
hed
onstraints areremoved from the store and the body of the CHR is exe
uted. Similarly for a �ringsimpagation rule, ex
ept that the
onstraints that mat
hed the heads pre
eding'\' are kept. If the �ring CHR is a propagation rule the body of the CHR isexe
uted without removing any
onstraints. It is remembered that the propagationrule �red, so it will not �re again with the same
onstraints. When the
urrentlya
tive
onstraint has not been removed, the next rule is tried.(Re-)Suspension. If all rules have been tried and the a
tive
onstraint has notbeen removed, it suspends (delays) until a variable o

urring in the
onstraint istou
hed. Here suspension means that the
onstraint is inserted into the
onstraintstore as data. When a
onstraint is woken, all its rules are tried again.3 The CompilerThe
ompiler is written in (SICStus) Prolog [HoFr98a℄ and translates CHR intoProlog on-the-
y, while the �le is loaded (
onsulted). Its kernel
onsists of a de�nite
lause grammar that generates the target instru
tions (
lauses) driven by templates.We will use example 1.1 to explain the three phases of the
ompiler:1. Parsing, 5

2. translating CHR into
lauses using templates and3. partial evaluation using ma
ros.Phase 2 is the essential one that en
odes the algorithm.3.1 Parsing PhaseUsing the appropriate operator de
larations, a CHR
an be read and written as aProlog term. Hen
e parsing basi
ally redu
es to
omputing information from theparse tree and to produ
ing a
anoni
al form of the rules. Information needed fromthe parse tree in
ludes:� The set of global variables, i.e. those that appear in the heads of a rule.� The set of variables shared between the heads.In the
anoni
al form of the rules,� ea
h rule is asso
iated with a unique identi�er,� rule heads are
olle
ted into two lists (named Keep and Remove), and� guard and body are made expli
it with defaults applied.One list,
alled Keep,
ontains all head
onstraints that are kept when the ruleis applied, the other list,
alled Remove,
ontains all head
onstraints that are re-moved. One list may be empty. As a result of this representation, simpli�
ation,propagation and simpagation rules
an be treated uniformly.Example 3.1 (Primes,
ontd.) The
anoni
al form of the rules for the primenumber example is given below.% rule(Id,Keep, Remove, Guard, Body)rule(1, [℄, [
andidates(1)℄, true, true).rule(2, [℄, [
andidates(A)℄, A>1, (B is A-1,prime(A),
andidates(B))).rule(3, [prime(A)℄,[prime(B)℄, B mod A =:= 0, true).3.2 Translation PhaseEa
h o

urren
e of a CHR
onstraint in the head of a rule gives rise to one Prolog
lause for that
onstraint. The
lause head
ontains the a
tive
onstraint, while the
lause body does the following:� mat
h formal parameters to a
tual arguments of head
onstraint� �nd and mat
h passive partner
onstraints in
onstraint store�
he
k the guard�
ommit via
ut� remove mat
hed
onstraints from
onstraint store if required� exe
ute body of ruleWe �rst illustrate the
ompilation with a simple example, a single-headed sim-pli�
ation CHR, then we
onsider general
ases of arbitrary multi-headed rules.6

Example 3.2 (Primes,
ontd.) For the
onstraint
andidates/1 the
ompilergenerates the following intermediate
ode (edited for readability).% for ea
h o

urren
e of the
onstraint as a head of a rule:% in rule
andidates(1) <=> true
andidates(A) :- % 1mat
h([1℄, [A℄), % 2
he
k_guard([℄, true), % 3!, % 4true. % 5% in rule
andidates(N) <=> N>1 | M is N-1, prime(N),
andidates(M)
andidates(A) :- % 6mat
h([C℄, [A℄), % 7
he
k_guard([C℄, C>1), % 8!, % 9D is C-1, % 10prime(C), % 11
andidates(D). % 12% if no rule applied, suspend the
onstraint on its variables
andidates(A) :- % 13suspend(
andidates(A)). % 14The predi
ate mat
h(L1,L2) mat
hes the a
tual arguments (in list L2) againstthe formal parameters (in list L1). The predi
ate
he
k guard(VL,G)
he
ks theguard G.
he
k guard/2 fails as soon as the global variables (list VL) are tou
hed2.When no rule applied, the last
lause inserts the
onstraint into the
onstraintstore using a suspension me
hanism. It allo
ates the suspension data stru
ture andasso
iates it with ea
h variable o

urring in the
onstraint. Tou
hing any su
hvariable will wake the
onstraint.Join Computation for Finding Partner ConstraintsThe real
hallenge left is to implement multi-headed CHR. In a naive implementa-tion of a rule, the
onstraint store is queried for the
ross-produ
t of mat
hing head
onstraints. For ea
h tuple in the
ross-produ
t the guard is
he
ked in the
or-responding environment. If the guard is satis�ed,
onstraints that mat
hed headsin the Remove list are removed from the store and the instan
e of the rule's bodyis exe
uted. Note that the removal of
onstraints removes tuples from the
ross-produ
t. The situation is quite similar to the mat
hing phase in rule/produ
tionsystems. The earlier predominant state-preserving RETE mat
h algorithm [For82℄was redeemed by the superior state-less TREAT algorithm [Mir87℄. State preserva-tion is even more debatable in the presen
e of guards. Thus, the CHR
ompilationdraws upon a state-less in
remental mat
hing me
hanism.There are two design alternatives for the join
omputation: Either a deter-ministi
 re
ursive loop or a nondeterministi
 ba
ktra
king sear
h for the partner
onstraints, in
ase at least one
onstraint gets removed.The dire
t join
omputation
ode template employs one deterministi
 re
ursivepredi
ate per partner
onstraint. A runtime predi
ate (init_iteration/4) pro-vides data for these loops in the form of lists of
onstraints for a given fun
torand arity F/A. Argument mat
hing is performed inside the loops, and the environ-ment for the guard and body evaluation is gradually a

umulated and passed viapredi
ate arguments to the innermost loop.2In most Prolog implementations, it is more eÆ
ient to re-exe
ute head mat
hing and guardsinstead of suspending all of them and exe
uting them in
rementally.7

The se
ond ba
ktra
king join
omputation s
heme is appli
able if at least one
onstraint gets removed by the rule: Instead of deterministi
 re
ursion for ea
hpartner, we �nd individual partners nondeterministi
ally within a single predi
ate.The nondeterministi
 formulation produ
es more
ompa
t
ode. In terms of theunderlying WAM [Ait90℄ we trade environment allo
ation against
hoi
e point allo-
ation. The relative speed of the two approa
hes depends on the parti
ular Prologsystem hosting CHR. In our
ase, a slight advantage of the re
ursive version wasover
ompensated by the time required for garbage
olle
tion.In �gure 1 we
ompare the re
ursive and ba
ktra
king join
omputation. 10random graphs with 10 to 200 edges were fed through the rule from example 1.2.n = 200 edges means that in order to �nd all
y
les of length �ve, we may have tolook at � n5 � edge
ombinations. Ea
h data point represents mean and standarddeviation from 10 experiments. The re
ursive and the ba
ktra
king
ode operatedon the same 10 random graphs. The verti
al axis represents runtime in se
ondsin
luding garbage
olle
tion and operating system management time3.
'ba
ktra
king''ba
ktra
king''re
ursive''re
ursive'

200180160140120100806040200

2.521.510.50 Figure 1: Re
ursive vs. ba
ktra
king join
omputationSummarizing, our implementation
omputes only those tuples in the
ross-produ
t that are really needed (as in [FrBr95a℄). Nondeterministi
 enumerationof the
onstraints is preferred over deterministi
 iteration whenever possible, be-
ause Prolog is good at ba
ktra
king [HoFr98b℄.Compilation TemplatesWhether the a
tive
onstraint is removed when a given rule applies and whetherany head
onstraints are removed, leads to the following three prototypi
al
ases,ea
h
overed by a
ode generating template in the
ompiler:1. Case A
tive
onstraint from Remove list2. Case A
tive
onstraint from Keep list, Remove list nonempty3. Case A
tive
onstraint from Keep list, Remove list empty3predi
ate statisti
s(walltime,) in SICStus 8

Case 1. A
tive
onstraint from Remove listThe a
tive head
onstraint is to be removed if the rule applies, so the rule un-der
onsideration is either a simpli�
ation or simpagation rule. It
an be applied atmost on
e with the
urrent a
tive
onstraint. The sear
h for the partner
onstraintsin this
ase
an be performed through nondeterministi
 enumeration. Here is thetemplate, slightly abridged. The predi
ate ndmp
 generates the
ode to nondeter-ministi
ally enumerate and mat
h the partners, one by one.
ompile(remove(A
tive), Remove, Keep, Guard, Body, ...% generated
ode((
onstraint(head(F/A,R-N), args(A
tual)) :-mat
h(Args, A
tual),RemoveCode, % Identify Remove partnersKeepCode, % Identify Keep partners
he
k_guard(Vars, Guard),!,remove_
onstraints(RemCs),Body))) :-%
ompiler
odeA
tive =.. [_|Args℄,same_length(Args, A
tual),...ndmp
(Remove, RemoveCode, RemCs, ...),ndmp
(Keep, KeepCode, ...).The variables F,A,R and N stand for fun
tor, arity of the
onstraint, rule iden-ti�er and number of head in rule, respe
tively.Example 3.3 (Primes,
ontd.) The se
ond o

urren
e of prime/1 in rule 3 ofExample 1.1 mat
hes this template, and here is its instantiation:% prime(I) \ prime(J) <=> J mod I =:= 0 | true.
onstraint(head(prime/1,3-2), args([A℄)) :-mat
h([C℄, [A℄),% RemoveCode (for one partner
onstraint)get_
onstr_via([℄, Constraints),nd_init_iteration(Constraints, prime/1, Candidate),get_args(Candidate, [F℄),mat
h([C℄-[G℄, [C℄-[F℄),% KeepCode (no partner
onstraints to be kept in this
ase)true,% Guard
he
k_guard([G,C℄, (C mod G =:= 0)),!,remove_
onstraints([℄), % no
onstraints to remove here% Bodytrue.The predi
ate get
onstr via(VL,Cs) returns the
onstraints suspended on afree variable o

urring in the list VL. If there is no variable in VL, it returns allthe
onstraints in the store. nd init iteration(Constraints, F/A, Candidate)nondeterministi
ally returns a
andidate
onstraint with fun
tor F and arity A fromthe
onstraint store. 9

Case 2. A
tive
onstraint from Keep list, Remove list nonemptyThis
ase applies only if there is at least one
onstraint to be removed, but thea
tive
onstraint will be kept. It
an only originate from a simpagation rule. Sin
ethe a
tive
onstraint is kept, one has to
ontinue looking for appli
able rules, evenafter the rule applied. However, sin
e at least one partner
onstraint will havebeen removed, the same rule will only be appli
able again with another
onstraintfrom the store in pla
e of the removed one. Therefore, we
an deterministi
allyiterate over the
onstraints that are
andidates for mat
hing the
orrespondinghead from Remove, while the remaining partners
an be found via nondeterministi
enumeration as before. At the end of the iteration, we have to
ontinue with theremaining rules for the a
tive
onstraint.Example 3.4 (Primes,
ontd.) For spa
e reasons, we just present a simple in-stan
e of the template, originating from the �rst o

urren
e of prime/1 in rule 3(for readability with the
onstraint predi
ate already
attened, as des
ribed in Se
-tion 3.3):% rule prime(I) \ prime(J) <=> J mod I =:= 0 | true.prime(A, B) :-get_
onstr_via([℄, C), % get
onstraints from storeinit_iteration(C, prime/1, D), % get partner
andidates!,prime(D, B, A). % try to apply the ruleprime(A, B, C) :-iteration_last(A), % no more partner
andidateprime_1(C, B). % try next rule headprime(A, B, C) :-iteration_next(A, D, E), % try next partner
andidate(get_args(D, [F℄),mat
h([C℄-[G℄, [C℄-[F℄),
he
k_guard([C,G℄, (G mod C =:= 0))-> % rule appliesremove_
onstraints([D℄), % remove the partner from store; true % rule did not apply), % in any
ase, try same ruleprime(E, B, C). % with another partner
andidateprime_1(C, B) :- ... %
ode to try next rule headOne instan
e (for lists) of the generi
 predi
ates steering the iteration is:iteration_last([℄).iteration_next([D|E℄, D, E).Case 3. A
tive
onstraint from Keep list, Remove list emptyThis
ase originates from propagation rules. Sin
e no
onstraint will be removed,all possible
ombinations of mat
hing
onstraints have to be tried. The rule under
onsideration may apply with ea
h
ombination. Therefore, all the partners (notjust one as in the previous
ase) have to be sear
hed through nested deterministi
iteration. No matter if and how often the rule was appli
able, we have to
ontinuewith the remaining rules for the a
tive
onstraint.10

Example 3.5 This propagation rule is part of an interval solver. X::Min:Max
on-strains X to be within given lower and upper bounds Min and Max. le means less-or-equal.X le Y, X::MinX:MaxX, Y::MinY:MaxY ==> X::MinX:MaxY, Y::MinX:MaxY.The propagation rule produ
es basi
ally the following
ode for X le Y.X le Y :- le_1(X, Y).le_1(X, Y) :- % a
tive
onstraint (X le Y)get_
onstr_via([X℄, CXs), % get
onstraints on Xinit_iteration(CXs, ::/2, PCXs), % get partner
andidates!,le_1_0(PCXs, X, Y). % try to apply the rulele_1(X, Y) :- % rule was not appli
able at allle_2(X, Y). %
ontinue with next rulele_2(X, Y) :- % no next rulesuspend(X le Y). % done, suspend the
onstraintle_1_0(PCXs, X, Y) :- % outer loop for X::MinX:MaxXiteration_last(PCXs), % no more partner
andidatele_2(X, Y). %
ontinue with next rulele_1_0(PCXs, X, Y) :-iteration_next(PCXs, CX, PCXs1), % try next partner
andidate for X(get_args(CX,...), mat
h(...),% mat
h argumentsget_
onstr_via([Y℄, CYs), % get
onstraints on Y for next headinit_iteration(CYs, ::/2, PCYs)-> le_1_1(PCYs, PCXs1, X, Y) % try to apply the rule; le_1_0(PCXs1, X, Y) % try next partner
andidate for X).le_1_1(PCYs, PCXs, X, Y) :- % inner loop for Y::MinY:MaxYiteration_last(PCYs), % no more partner
andidate for Yle_1_0(PCXs, X, Y). %
ontinue with outer loop for Xle_1_1(PCYs, PCXs, X, Y) :-iteration_next(PCYs, CY, PCYs1), % try next partner
andidate for Y(get_args(CY,...), mat
h(...),% mat
h arguments-> % rule applies finallyX::MinX:MaxY, Y::MinX:MaxY,% rule bodyle_1_1(PCYs1, PCXs, X, Y) %
ontinue, find another Y partner; % rule did not applyle_1_1(PCYs1, PCXs, X, Y) %
ontinue, find another Y partner).3.3 Partial Evaluation PhaseThe translation granularity was
hosen so that the generated
ode would roughlyrun as is, with little emphasis on eÆ
ien
y
oming from lo
al optimizations andspe
ializations. These are performed in the �nal, third phase of the
ompiler usinga simple instan
e of partial evaluation (PE). It is performed by using ma
ros asthey are available in most Prolog systems, e.g. [CaWi95℄. In
ontrast to approa
hesthat address all aspe
ts of a language in a partial evaluator su
h as [Sah91℄, ourrestri
ted form of PE
an be realized with an eÆ
ien
y that meets the requirementsof a produ
tion
ompiler. The fun
tionalities of the main
ompiler ma
ros are asfollows: 11

� The generi
 predi
ates steering the iteration over partner
onstraints are spe-
ialized with respe
t to a parti
ular representation of these multi-sets.� Re
ursions are unfolded at
ompile time when the argument they re
urse overis suÆ
iently known (typi
ally lists with a known length).� Head mat
hing is spe
ialized into uni�
ation instru
tions guarded by nonvar/1tests (as in [UeCh85℄).� The intermediate
ode uses redundant fun
tion symbols for the
onvenien
eof the
ompiler writers, e.g. to keep obje
t,
ompiler and runtime-system vari-ables visually apart. These symbols also help in type-
he
king the
ompiler.Redundant fun
tion symbols are removed by
attening, in parti
ular in thehead to fa
ilitate
lause indexing. For example,
onstraint(head(prime/1,3-2),args([A℄)) will be transformed into prime1 3 2(A).Example 3.6 (Primes,
ontd.) The ma
ro expansion phase results in the follow-ing
ode for our example 3.2. The
ode for mat
hing and guard
he
king has beenin-lined. The resulting trivial mat
hings (line 7), guards (line 3) and bodies (line5) have been removed by PE.% rule
andidates(1) <=> true.
andidates(A) :- % 1A==1, % 2!. % 4% rule
andidates(N) <=> N>1 | M is N-1, prime(N),
andidates(M).
andidates(A) :- % 6nonvar(A), % 8A>1, % 8!, % 9B is A-1, % 10prime(A), % 11
andidates(B). % 12
andidates(A) :- % 13suspend(
andidates(A)). % 144 The Runtime SystemThe
ompiler generates Prolog
lauses. Thus e.g. memory management is alreadytaken
are of. There are however fun
tionalities that are not provided dire
tly bymost Prolog implementations:� We need means to suspend, wake and re-suspend
onstraint predi
ates.� We need eÆ
ient a

ess to suspended
onstraints in the store through di�erenta

ess paths.4.1 SuspensionsTypi
ally, the attributes of variables are goals that suspend on that variable. Theyare re-exe
uted (woken) ea
h time one of their variables is tou
hed. Via the at-tributed variables interfa
e as found in SICStus or ECLiPSe Prolog the behaviourof attributed variables under uni�
ation is spe
i�ed with a user-de�ned predi
ate.In the CHR implementation, suspended goals are our means to store
onstraints.In more detail, the
omponents of the CHR suspension data stru
ture are:� Constraint goal 12

� State of
onstraint� Unique identi�er� Propagation history� Re-use
ounterThe state indi
ates if the
onstraint is a
tive, mat
hed, removed or passive. Theunique identi�er is used, together with the propagation history, to ensure termina-tion for propagation rules. Ea
h propagation rule �res at most on
e for ea
h tupleformed by the set of mat
hed head
onstraints. The re-use
ounter is in
rementedwith every re-use of the suspension. It is used for pro�ling and some more subtleaspe
ts of
ontrolling rule termination outside the s
ope of this paper.To reuse suspensions, we made the suspension itself an argument of the re-exe
uted goal. Internally, ea
h
onstraint has an additional argument. When �rstexe
uted, the argument is a free variable. When the
onstraint suspends, this extraargument is bound to the suspension itself. When it runs again, the suspensionme
hanism now has a handle to the suspension and
an update its state. Code forthis me
hanism was removed from the listed
ode samples in this paper to avoid
lutter.4.2 A

ess Paths and IndexingWhen a CHR sear
hes for a partner
onstraint, a variable
ommon to two headsof a rule
onsiderably restri
ts the number of
andidate
onstraints to be
he
ked,be
ause both partners must be suspended on this variable. The variables sharedbetween partner
onstraints index the
onstraint store. Like with traditional databases, the index may speed up join
omputations. Thus we usually a

ess the
onstraint store by looking at only those
onstraints (
f. get
onstr via/2). The�rst argument is the list of shared variables between the head for whi
h the iterationis to be initiated and the heads mat
hed so far.Sin
e fun
tor and arity of the partner
onstraints we are sear
hing for are known,dire
t a

ess to the set of
onstraints of given fun
tor/arity is desirable. Earlier im-plementations performed this sele
tion by linear sear
h over a part of the suspended
onstraints. A

ess to data through a variable, and then fun
tor/arity, is exa
tlythe fun
tionality provided eÆ
iently by attributed variables. In our runtime systemwe map every fun
tor/arity pair to a �xed attribute slot of a variable at
ompiletime yielding
onstant time a

ess to the
onstraints. Only the arguments need tobe mat
hed at runtime.Example 4.1 (Graph, nonground) We keep the rule from example 1.2 as it is,and
hange the graph representation. Instead of ground verti
es, we use variables:edge(X1,X4), edge(X1,X9), edge(X2,X8), edge(X3,X10), edge(X5,X1),edge(X5,X8), edge(X7,X4), edge(X7,X5), edge(X7,X10), edge(X8,X3),edge(X8,X9), edge(X9,X3), edge(X10,X7).% the rule produ
es:loop([X3,X10,X7,X5,X8℄)loop([X8,X3,X10,X7,X5℄)loop([X5,X8,X3,X10,X7℄)loop([X7,X5,X8,X3,X10℄)loop([X10,X7,X5,X8,X3℄) 13

In �gure 2 we repeat the experiment from �gure 1. The non-ground graphrepresentation allows for the utilization of the index mentioned. The di�eren
e in
omputation time is two orders of magnitude. The di�eren
e between the deter-ministi
 and nondeterministi
 versions is rather insigni�
ant.
'nonground''nonground''ground''ground'

200180160140120100806040200

1001010.10.01 Figure 2: Join
omputation with and without indexing5 Con
lusionsThe CHR system outlined in this paper was implemented in four man-months. The
ompiler is 1100 lines of Prolog, the runtime system around 600, whi
h together isless than half of the ECLiPSe implementation. The new implementation removessome limitations of former implementations:� The number of heads in a rule is no longer limited to two. The restri
tionwas motivated originally by eÆ
ien
y
onsiderations sin
e more heads needmore sear
h time. One
an en
ode rules with more than two heads usingadditional auxiliary intermediate
onstraints. But then, the resulting rulesare not only hard to understand, they are also less eÆ
ient than a true multi-headed implementation.� Guards now support Ask and Tell [Sar93℄. In this way, CHR
an also be usedas a general-purpose
on
urrent
onstraint language. (In this paper we only
onsidered Ask parts of guards.)� Attributed variables let us eÆ
iently implement the generalized suspensionme
hanism needed for CHR at the sour
e level. In parti
ular,
onstant timea

ess to
onstraints has been provided, instead of linear time in previousimplementations.� The CHR
ompiler has been \orthogonalized" by introdu
ing three
learlyde�ned
ompilation phases. Compilation is now on-the-
y, while loading. Thetemplate-based translation with subsequent ma
ro-based partial evaluationallows for easy experimentation with di�erent translation s
hemata.14

� CHR spe
i�
 demands, su
h as a

ess paths using indexing and suspensionre
y
ling, are taken
are of expli
itly through
ustomized versions of the sus-pension me
hanism.� Due to spa
e limitations we also have not dis
ussed options and pragmasin this paper - these are annotations to programs, rules or
onstraints thatenable the
ompiler to perform powerful optimizations, that
an sometimesmake programs terminate or redu
e their
omplexity
lass. In addition, rulesapply now in textual order, whi
h gives the programmer more
ontrol.Ben
hmarking is diÆ
ult, be
ause the new implementation is in SICStusProlog,while the previous one was in ECLiPSeProlog. Attributed variables are imple-mented di�erently in these Prologs. Our measurements indi
ate that the new
om-piler produ
es
ode that is roughly twi
e as fast. The speed ratio improves the moredi�erent
onstraints are present, due to improved data stru
tures and a

ess paths.Among the plans for the future development of the CHR implementation isthe spe
i�
ation of the
onstraint store as an abstra
t data type. The defaultimplementation would be the one based on suspensions via attributed variables.In that way the user
an exploit pe
uliarities of his/her appli
ation. If all the
onstraints are ground for example, they make no referen
e to the suspend/wakeme
hanism. In that
ase they are probably better kept in a relational data base,whi
h quite likely provides indi
es to fa
ilitate the join
omputations.More information about CHR is available at the CHR homepagehttp://www.informatik.uni-muen
hen.de/�fruehwir/
hr-intro.htmlReferen
es[Ait90℄ Ait-Ka
i H.: The WAM: A (Real) Tutorial, Digital Equipment, Paris, 1990.[BCL88℄ Banatre J.-P., Coutant A. and Le Metayer D., A Parallel Ma
hine for Multi-set Transformation and its Programming Style, Future Generation ComputerSystems 4:133-144, 1988.[BeOl92℄ F. Benhamou and W.J. Older, Bell Northern Resear
h, Applying interval arith-meti
 to Integer and Boolean
onstraints, Te
hni
al Report, June 1992.[Br*98℄ P. Brisset et al., ECLiPSe 4.0 User Manual, IC-Par
 at Imperial College, Lon-don, July 1998.[CaWi95℄ Carlsson M., Widen J, Si
stus Prolog Users Manual, Release 3#0, SwedishInstitute of Computer S
ien
e, SICS/R-88/88007C, 1995.[CoDi93℄ Diaz D., Codognet P, A Minimal Extension of the WAM for
lp(FD), in War-ren D.S. (Ed.), Pro
eedings of the Tenth International Conferen
e on Logi
Programming, The MIT Press, Budapest, Hungary, pp.774-790, 1993.[Di*88℄ M. Din
bas et al., The Constraint Logi
 Programming Language CHIP, FifthGeneration Computer Systems, Tokyo, Japan, De
ember 1988.[Deb93℄ S. K. Debray, QD-Janus : A Sequential Implementation of Janus in Prolog,Software|Pra
ti
e and Experien
e, Vol 23(12):1337-1360, De
ember 1993.[For82℄ Forgy C.L, Rete: A Fast Algorithm for the Many Pattern/Many Obje
t PatternMat
h Problem, Arti�
ial Intelligen
e, Vol 19(1):17-37, 1982.[FrAb97℄ T. Fr"uhwirth und S. Abdennadher, Constraint-Programmierung, Lehrbu
h,Springer Verlag, September 1997.[FrBr95a℄ T. Fr�uhwirth and P. Brisset, High-Level Implementations of Constraint Han-dling Rules, Te
hni
al Report ECRC-95-20, ECRC Muni
h, Germany, June1995.[FrBr95b℄ T. Fr�uhwirth and P. Brisset, Chapter on Constraint Handling Rules, inECLiPSe 3.5.1 Extensions User Manual, ECRC Muni
h, Germany, De
ember1995. 15

[FAM99℄ T. Fr�uhwirth, S. Abdennadher and H. Meuss, Con
uen
e and Semanti
s of Con-straint Simpli�
ation Rules, in E. Freuder (Ed.), Spe
ial Issue on the Se
ondInternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Program-ming, Constraint Journal, Kluwer A
ademi
 Publishers, Vol 4(2), Mai 1999.[Fru98℄ T. Fr�uhwirth, Theory and Pra
ti
e of Constraint Handling Rules, in P. Stu
keyand K. Marriot (Eds.), Spe
ial Issue on Constraint Logi
 Programming, Journalof Logi
 Programming, Vol 37(1-3), pp 95-138, O
tober 1998.[Her93℄ B. Herbig, Eine homogene Implementierungsebene f�ur einen hybriden Wis-sensrepr�asentationsformalismus, Master Thesis, in German, University ofKaiserslautern, Germany, April 1993.[Hol90℄ Holzbaur C, Spe
i�
ation of Constraint Based Inferen
e Me
hanisms throughExtended Uni�
ation, Department of Medi
al Cyberneti
s and Arti�
ial Intel-ligen
e, University of Vienna, Dissertation, 1990.[Hol92℄ C. Holzbaur, Metastru
tures vs. Attributed Variables in the Context of Exten-sible Uni�
ation, In 1992 International Symposium on Programming LanguageImplementation and Logi
 Programming, pages 260{268. LNCS631, SpringerVerlag, August 1992.[Hol93℄ C. Holzbaur, Extensible Uni�
ation as Basis for the Implementation of CLPLanguages, in Baader F., et al., Pro
eedings of the Sixth International Workshopon Uni�
ation, Boston University, MA, TR-93-004, pp.56-60, 1993.[HoFr98a℄ C. Holzbaur and T. Fr�uhwirth, Constraint Handling Rules Referen
e Manual,for SICStus Prolog, �Osterrei
his
hes Fors
hungsinstitut f�ur Arti�
ial Intelli-gen
e, Vienna, Austria, TR-98-01, Mar
h 1998.[HoFr98b℄ C. Holzbaur and T. Fr�uhwirth, Join Evaluation S
hemata for Constraint Han-dling Rules, 13th Workshop Logis
he Programmierung WLP'98, TU Vienna,Austria, September 1998.[HoFr99a℄ C. Holzbaur and T. Fr�uhwirth, Compiling Constraint Handling Rules intoProlog with Attributed Variables, International Conferen
e on Prin
iples andPra
ti
e of De
larative Programming (PPDP'99), Paris, Fran
e, Septem-ber/O
tober 1999.[Hui90℄ Huitouze S.le, A new data stru
ture for implementing extensions to Prolog, inDeransart P. and Maluszunski J. (Eds.), Programming Language Implementa-tion and Logi
 Programming, Springer, Heidelberg, pp. 136-150, 1990.[JaMa94℄ J. Ja�ar and M. J. Maher, Constraint Logi
 Programming: A Survey, Journalof Logi
 Programming, Vol 19,20:503-581, 1994.[Mah87℄ Maher M. J., Logi
 Semanti
s for a Class of Committed-Choi
e Programs,Fourth Intl Conf on Logi
 Programming, Melbourne, Australia, MIT Press, pp858-876, 1987.[MaSt98℄ K. Marriott and P. J. Stu
key, Programming with Constraints, MIT Press,USA, Mar
h 1998.[Mir87℄ Miranker D.P., TREAT: A Better Mat
h Algorithm for AI Produ
tion Sys-tems, in Pro
eedings of the Sixth National Conferen
e on Arti�
ial Intelligen
e(AAAI- 87), Morgan Kaufmann, Los Altos, CA, pp.42-47, 1987.[Nai85℄ L. Naish, Prolog
ontrol rules, Pro
eedings of the Ninth International JointConferen
e on Arti�
ial Intelligen
e, Los Angeles, California, pp. 720-722,September 1985.[Neu90℄ U. Neumerkel, Extensible uni�
ation by metastru
tures, In Pro
. of Meta-programming in Logi
 (META'90), Leuven, Belgium, 1990.[Sah91℄ Sahlin D, An Automati
 Partial Evaluator for Full Prolog, Swedish Institute ofComputer S
ien
e, 1991.[Sar93℄ V. A. Saraswat, Con
urrent Constraint Programming, MIT Press, Cambridge,1993. 16

[Sha89℄ E. Shapiro, The Family of Con
urrent Logi
 Programming Languages, ACMComputing Surveys, Vol 21(3):413-510, September 1989.[She98℄ K. Shen, The Extended CHR Implementation,
hapter in ECLiPSe 4.0 LibraryManual, IC-Par
 at Imperial College, London, July 1998.[Sid93℄ G.A. Sidebottom, A Language for Optimizing Constraint Propagation, SimonFraser University, Canada, 1993.[SmTr94℄ G. Smolka and R. Treinen (Eds.), DFKI Oz Do
umentation Series, DFKI,Saarbr�u
ken, Germany, 1994.[UeCh85℄ Ueda K. and Chikayama T., Con
urrent Prolog Compiler on Top of Prolog, inSymposium on Logi
 Programming, The Computer So
iety Press, pp.119-127,1985.[vHSD92℄ P. van Hentenry
k, H. Simonis and M. Din
bas, Constraint Satisfa
tion UsingConstraint Logi
 Programming, Arti�
ial Intelligen
e, Vol 58(1-3):113{159,De
ember 1992.

17

