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tWe introdu
e the most re
ent and advan
ed implementation of 
onstrainthandling rules (CHR) in a logi
 programming language. The Prolog imple-mentation 
onsists of a runtime system and a 
ompiler. The runtime systemutilizes attributed variables for the realization of the 
onstraint store witheÆ
ient retrieval and update me
hanisms. Rules des
ribing the intera
tionsbetween 
onstraints are 
ompiled into Prolog 
lauses by a 
ompiler, the 
oreof whi
h 
omprises a small number of 
ompa
t 
ode generating templates inthe form of de�nite 
lause grammar rules.1 Introdu
tionIn the beginning of 
onstraint logi
 programming (CLP), 
onstraint solving was\hard-wired" in a built-in 
onstraint solver written in a low-level language. WhileeÆ
ient, this so-
alled \bla
k-box" approa
h makes it hard to modify a solver orbuild a solver over a new domain, let alone debug, reason about and analyze it. Thisis a problem, sin
e one lesson learned from pra
ti
al appli
ations is that 
onstraintsare often heterogeneous and appli
ation-spe
i�
. Consequently, several proposalshave been made to allow for more 
exibility and 
ustomization of 
onstraint systems(\glass-box" or even \no-box" approa
hes):� Demons, forward rules and 
onditionals in CHIP [Di*88℄ allow the de�nitionof propagation of 
onstraints in a limited way.� Constraint 
ombinators in 

(FD) [vHSD92℄ allow to build more 
omplex
onstraints from simpler 
onstraints.�Part of the work was performed while visiting CWG at LMU with �nan
ial support fromDFG. 1



� Constraints 
onne
ted to a Boolean variable in BNR-Prolog [BeOl92℄ and\nested 
onstraints" [Sid93℄ allow to express any logi
al formula over primitive
onstraints.� Indexi
als in 
lp(FD) [CoDi93℄ allow to implement 
onstraints over �nite do-mains at a medium level of abstra
tion.� Meta- and attributed variables [Neu90, Hui90, Hol92℄ allow to atta
h 
on-straints to variables at a low level of abstra
tion.It should be noted that all the approa
hes but the last 
an only extend a solverover a given, spe
i�
 
onstraint domain, typi
ally �nite domains. The expressivepower to realize other (appli
ation-spe
i�
) 
onstraint domains is only provided bythe last approa
h.Attributed variables [Hol92℄ provide dire
t a

ess storage lo
ations for proper-ties asso
iated with variables. When su
h variables are uni�ed, their attributeshave to be manipulated. Thus attributed variables make uni�
ation user-de�nable[Hol90, Hol93℄. Attributed variables require roughly the same implementation ef-fort as hard-wired delay (suspension) and 
oroutining me
hanisms found in ear-lier Prolog implementations, while being more general. And indeed, attributedvariables nowadays serve as the primary low-level 
onstru
t for implementing sus-pension (delay) me
hanisms and 
onstraint solver extensions in many 
onstraintlogi
 programming languages, e.g. SICStus [CaWi95℄ and ECLiPSe [Br*98℄ Prolog.However writing 
onstraints this way is tedious, a kind of \
onstraint assembler"programming.If there already is a powerful 
onstraint assembler, one may wonder what anasso
iated high-level language 
ould look like. Our proposal is a de
larative lan-guage designed for writing 
onstraint solvers, 
alled 
onstraint handling rules (CHR)[FrBr95b, Fru98, HoFr98a, FAM99℄. With CHR, one 
an introdu
e user-de�ned
onstraints into a given high level host language, be it Prolog or Lisp. CHR havebeen used in dozens of proje
ts worldwide to en
ode 
onstraint handlers (solvers),in
luding new domains su
h as terminologi
al and temporal reasoning [Fru98℄.CHR is essentially a 
ommitted-
hoi
e language 
onsisting of guarded rules thatrewrite 
onstraints into simpler ones until they are solved. CHR 
an de�ne both sim-pli�
ation of and propagation over user-de�ned 
onstraints. Simpli�
ation repla
es
onstraints by simpler 
onstraints while preserving logi
al equivalen
e. Propagationadds new 
onstraints whi
h are logi
ally redundant but may 
ause further simpli�-
ation. CHR 
an be seen as a generalization of the various CHIP [Di*88℄ 
onstru
tsfor user-de�ned 
onstraints.In 
ontrast to the family of the general-purpose 
on
urrent logi
 programminglanguages [Sha89℄, 
on
urrent 
onstraint languages [Sar93℄ and the ALPS [Mah87℄framework, CHR allow for multiple heads, i.e. 
onjun
tions of 
onstraints in thehead of a rule, and propagation rules. Multiple heads are a feature that is essentialin solving 
onjun
tions of 
onstraints. With single-headed CHR alone, unsatis�a-bility of 
onstraints 
annot always be dete
ted (e.g X<Y,Y<X) and global 
onstraintsatisfa
tion 
ould not be a
hieved. The probably most distinguishing fun
tionalityof CHR is that they a
t as a powerful iteration, retrieval, and update me
hanismover the so-
alled 
onstraint store, the data stru
ture holding 
onstraints.Besides de�ning the behaviour of 
onstraints, CHR 
an be and have been usedas � general purpose 
on
urrent 
onstraint language with ask and tell,� as fairly eÆ
ient produ
tion rule system,� as a spe
ial kind of theorem prover,2



� in general as system 
ombining forward and ba
kward 
haining.The �rst implementations of CHR were interpreters: In 1991 in ECLiPSe Prolog,in 1993 in Common LISP [Her93℄. In 1994, the �rst 
ompiler was written as a libraryof ECLiPSe [FrBr95a, FrBr95b℄. An interpreter was written in the 
on
urrent logi
alobje
t-oriented 
onstraint language OZ [SmTr94℄ in 1996. Independent of our work,a new experimental prototype of CHR has been implemented in ECLiPSe 4.0 [She98℄in 1998.Nowadays, CHR are typi
ally realized as a library 
ontaining a 
ompiler, runtimesystem and dozens of 
onstraint solvers written in CHR. Rules 
ompile into Prolog
lauses whi
h inspe
t and update the 
onstraint store at runtime. Su
h a type of
ompilation of 
ommitted-
hoi
e languages into Prolog has been investigated before,be it translating GHC [UeCh85℄, implementations of delay de
larations [Nai85℄ orthe eÆ
ient implementation of QD-Janus [Deb93℄. Today, we bene�t from morepowerful programming 
onstru
ts, in parti
ular 
ustomizable suspension me
ha-nisms provided by attributed variables. CHR spe
i�
 topi
s are multiple heads(multi-heads) and propagation rules. The new idea is to realize the CHR 
onstraintstore through attributed variables. So CHR 
an also be understood as a powerfulmeans to manipulate the attributes of variables in a de
larative high-level fashion.In this paper we des
ribe the most re
ent and advan
ed implementation of CHRin SICStus Prolog [HoFr98a℄, whi
h improves both on the previous implementation[FrBr95b℄ in terms of 
ompleteness, 
exibility and eÆ
ien
y and on the prin
iplesthat should guide su
h an implementation [FrBr95a℄. For the user, the new releaseof CHR improves over older versions in the following aspe
ts:� The number of heads in a rule is no longer limited to two.� Guards now with Ask and Tell as in 
on
urrent 
onstraint languages.� For more 
ontrol, rules are 
ompiled in textual order.� Improved set of built-in predi
ates for advan
ed CHR users.� New options and pragmas for powerful 
ompiler optimizations.� Compilation is now transparent to the user, on-the-
y when loading.� Constant time a

ess to 
onstraints.� Code runs generally about twi
e as fast as in older versions.� The runtime system in
ludes a stepper for Prolog-like debugging.Two examples will guide us through the paper. Even though they do not de�netypi
al 
onstraints, we 
hose them for dida
ti
 reasons. They are small but 
anstill illustrate various 
onsiderations and stages of our 
ompilation s
heme. We useProlog syntax in this paper.Example 1.1 (Primes) We implement the sieve of Eratosthenes to 
ompute primesin a way reminis
ent of the \
hemi
al abstra
t ma
hine" [BCL88℄: The 
onstraint
andidates(N) generates 
andidates for prime numbers, prime(M), where M is be-tween 1 and N. The 
andidates rea
t with ea
h other su
h that ea
h number absorbsmultiples of itself. In the end, only prime numbers remain.
andidates(1) <=> true.generate � 
andidates(N) <=> N>1 | M is N-1, prime(N), 
andidates(M).sieve � prime(I) \ prime(J) <=> J mod I =:= 0 | true.3



The �rst rule says that the number 1 is not a good 
andidate for a prime,
andidates(1) is thus rewritten into true, a 
onstraint that is always satis�edand therefore it has no e�e
t. Note that head mat
hing is used in CHR so the �rstrule will only apply to 
andidates(1). A 
onstraint for 
andidates with a freevariable, like 
andidates(X), will suspend (delay).The generate rule generates a 
andidate prime(N) and pro
eeds re
ursively withthe next smaller number, provided the guard (pre
ondition, test) N>1 is satis�ed.The third, multi-headed rule named sieve reads as follows: If there is a 
on-straint prime(I) and some other 
onstraint prime(J) su
h that J mod I =:= 0holds, i.e. J is a multiple of I, then keep prime(I) but remove prime(J) andexe
ute the body of the rule, true.Example 1.2 (Cy
le) The following rule �nds all 
y
les of length �ve in a graphen
oded through a 
olle
tion of dire
ted edges.edge(A,B), edge(B,C), edge(C,D), edge(D,E), edge(E,A) ==> loop([A,B,C,D,E℄).Given these edges,edge(1,4), edge(1,9), edge(2,8), edge(3,10), edge(5,1),edge(5,8), edge(7,4), edge(7,5), edge(7,10), edge(8,3),edge(8,9), edge(9,3), edge(10,7).the rule adds the following 
onstraints to the store:loop([3,10,7,5,8℄), loop([8,3,10,7,5℄), loop([5,8,3,10,7℄),loop([7,5,8,3,10℄), loop([10,7,5,8,3℄).Overview of the PaperWe qui
kly re
apture syntax and semanti
s for CHR. Then we des
ribe the threephases of the new 
ompilation s
heme and the runtime system for CHR. We 
on
ludewith a 
omparison with the previous implementation. This paper is a revised versionof [HoFr99a, HoFr98b℄.2 Syntax and Semanti
sWe assume some familiarity with (
on
urrent) 
onstraint (logi
) programming, e.g.[Sha89, vHSD92, Sar93, JaMa94, FrAb97, MaSt98℄. As a spe
ial purpose language,CHR extend a host language with (extended) 
onstraint solving 
apabilities. Aux-iliary 
omputations in CHR programs are exe
uted as host language statements.Here the host language is (SICStus) Prolog. For more formal and detailed syntaxand semanti
s of 
onstraint handling rules see [Fru98, FAM99℄.2.1 SyntaxSyntax is given in EBNF grammar style.De�nition 2.1 There are three kinds of CHR. A simpli�
ation CHR is of the form1[Name '�'℄ Head1,...,HeadN '<=>' [Guard '|'℄ Body.where the rule has an optional name Name, whi
h is a Prolog term, and the multi-head Head1,...,HeadN is a 
onjun
tion of CHR 
onstraints, whi
h are Prologatoms. The guard is optional; if present, Guard is a Prolog goal ex
luding CHR
onstraints; if not present, it has the same meaning as the guard 'true |'. Thebody Body is a Prolog goal in
luding CHR 
onstraintsA propagation CHR is of the form1For simpli
ity, we omit synta
ti
 extensions like pragmas whi
h are not relevant for this paper.4



[Name '�'℄ Head1,...,HeadN '==>' [Guard '|'℄ Body.A simpagation CHR is a 
ombination of the above two kinds of rule, it is of theform[Name '�'℄ Head1,...'\'...,HeadN '==>' [Guard '|'℄ Body.where the symbol '\' separates the head 
onstraints into two nonempty parts.A simpagation rule 
ombines simpli�
ation and propagation in one rule. Therule HeadsK \ HeadsR <=> Body is equivalent to the simpli�
ation rule HeadsK,HeadsR <=> HeadsK, Body, i.e. HeadsK is kept while HeadsR is removed. However,the simpagation rule is more 
ompa
t to write, more eÆ
ient to exe
ute and hasbetter termination behaviour than the 
orresponding simpli�
ation rule.2.2 Semanti
sIn this paper, we are interested in the operational semanti
s of CHR in a
tual im-plementations. A CHR 
onstraint is implemented as both 
ode (a Prolog predi
ate)and data (a Prolog term in the 
onstraint store). Every time a CHR 
onstraint isposted (exe
uted) or woken (re
onsidered, re-exe
uted), it 
he
ks itself the appli
a-bility of the rules it appears in. Su
h a 
onstraint is 
alled (
urrently) a
tive, whilethe other 
onstraints in the 
onstraint store that are not exe
uted at the momentare 
alled (
urrently) passive.Heads. For ea
h rule, one of its heads is mat
hed against the 
onstraint. Mat
h-ing su

eeds if the 
onstraint is an instan
e of the head, i.e. the head serves as apattern. If mat
hing su

eeded and a rule has more than one head, the 
onstraintstore is sear
hed for partner 
onstraints that mat
h the other heads. If the mat
hingsu

eeds, the guard is exe
uted. Otherwise the next rule is tried.Guard. A guard is a pre
ondition on the appli
ability of a rule. The guardeither su

eeds or fails. A guard su

eeds if the exe
ution su

eeds without 
ausingan instantiation error and without tou
hing a variable from the heads. A variableis tou
hed if gets more 
onstrained by a built-in 
onstraint. If the guard su

eeds,the rule applies, one 
ommits to it and it �res. Otherwise it fails and the next ruleis tried.Body. If the �ring CHR is a simpli�
ation rule, the mat
hed 
onstraints areremoved from the store and the body of the CHR is exe
uted. Similarly for a �ringsimpagation rule, ex
ept that the 
onstraints that mat
hed the heads pre
eding'\' are kept. If the �ring CHR is a propagation rule the body of the CHR isexe
uted without removing any 
onstraints. It is remembered that the propagationrule �red, so it will not �re again with the same 
onstraints. When the 
urrentlya
tive 
onstraint has not been removed, the next rule is tried.(Re-)Suspension. If all rules have been tried and the a
tive 
onstraint has notbeen removed, it suspends (delays) until a variable o

urring in the 
onstraint istou
hed. Here suspension means that the 
onstraint is inserted into the 
onstraintstore as data. When a 
onstraint is woken, all its rules are tried again.3 The CompilerThe 
ompiler is written in (SICStus) Prolog [HoFr98a℄ and translates CHR intoProlog on-the-
y, while the �le is loaded (
onsulted). Its kernel 
onsists of a de�nite
lause grammar that generates the target instru
tions (
lauses) driven by templates.We will use example 1.1 to explain the three phases of the 
ompiler:1. Parsing, 5



2. translating CHR into 
lauses using templates and3. partial evaluation using ma
ros.Phase 2 is the essential one that en
odes the algorithm.3.1 Parsing PhaseUsing the appropriate operator de
larations, a CHR 
an be read and written as aProlog term. Hen
e parsing basi
ally redu
es to 
omputing information from theparse tree and to produ
ing a 
anoni
al form of the rules. Information needed fromthe parse tree in
ludes:� The set of global variables, i.e. those that appear in the heads of a rule.� The set of variables shared between the heads.In the 
anoni
al form of the rules,� ea
h rule is asso
iated with a unique identi�er,� rule heads are 
olle
ted into two lists (named Keep and Remove), and� guard and body are made expli
it with defaults applied.One list, 
alled Keep, 
ontains all head 
onstraints that are kept when the ruleis applied, the other list, 
alled Remove, 
ontains all head 
onstraints that are re-moved. One list may be empty. As a result of this representation, simpli�
ation,propagation and simpagation rules 
an be treated uniformly.Example 3.1 (Primes, 
ontd.) The 
anoni
al form of the rules for the primenumber example is given below.% rule(Id,Keep, Remove, Guard, Body)rule(1, [℄, [
andidates(1)℄, true, true).rule(2, [℄, [
andidates(A)℄, A>1, (B is A-1,prime(A),
andidates(B))).rule(3, [prime(A)℄,[prime(B)℄, B mod A =:= 0, true).3.2 Translation PhaseEa
h o

urren
e of a CHR 
onstraint in the head of a rule gives rise to one Prolog
lause for that 
onstraint. The 
lause head 
ontains the a
tive 
onstraint, while the
lause body does the following:� mat
h formal parameters to a
tual arguments of head 
onstraint� �nd and mat
h passive partner 
onstraints in 
onstraint store� 
he
k the guard� 
ommit via 
ut� remove mat
hed 
onstraints from 
onstraint store if required� exe
ute body of ruleWe �rst illustrate the 
ompilation with a simple example, a single-headed sim-pli�
ation CHR, then we 
onsider general 
ases of arbitrary multi-headed rules.6



Example 3.2 (Primes, 
ontd.) For the 
onstraint 
andidates/1 the 
ompilergenerates the following intermediate 
ode (edited for readability).% for ea
h o

urren
e of the 
onstraint as a head of a rule:% in rule 
andidates(1) <=> true
andidates(A) :- % 1mat
h([1℄, [A℄), % 2
he
k_guard([℄, true), % 3!, % 4true. % 5% in rule 
andidates(N) <=> N>1 | M is N-1, prime(N), 
andidates(M)
andidates(A) :- % 6mat
h([C℄, [A℄), % 7
he
k_guard([C℄, C>1), % 8!, % 9D is C-1, % 10prime(C), % 11
andidates(D). % 12% if no rule applied, suspend the 
onstraint on its variables
andidates(A) :- % 13suspend(
andidates(A)). % 14The predi
ate mat
h(L1,L2) mat
hes the a
tual arguments (in list L2) againstthe formal parameters (in list L1). The predi
ate 
he
k guard(VL,G) 
he
ks theguard G. 
he
k guard/2 fails as soon as the global variables (list VL) are tou
hed2.When no rule applied, the last 
lause inserts the 
onstraint into the 
onstraintstore using a suspension me
hanism. It allo
ates the suspension data stru
ture andasso
iates it with ea
h variable o

urring in the 
onstraint. Tou
hing any su
hvariable will wake the 
onstraint.Join Computation for Finding Partner ConstraintsThe real 
hallenge left is to implement multi-headed CHR. In a naive implementa-tion of a rule, the 
onstraint store is queried for the 
ross-produ
t of mat
hing head
onstraints. For ea
h tuple in the 
ross-produ
t the guard is 
he
ked in the 
or-responding environment. If the guard is satis�ed, 
onstraints that mat
hed headsin the Remove list are removed from the store and the instan
e of the rule's bodyis exe
uted. Note that the removal of 
onstraints removes tuples from the 
ross-produ
t. The situation is quite similar to the mat
hing phase in rule/produ
tionsystems. The earlier predominant state-preserving RETE mat
h algorithm [For82℄was redeemed by the superior state-less TREAT algorithm [Mir87℄. State preserva-tion is even more debatable in the presen
e of guards. Thus, the CHR 
ompilationdraws upon a state-less in
remental mat
hing me
hanism.There are two design alternatives for the join 
omputation: Either a deter-ministi
 re
ursive loop or a nondeterministi
 ba
ktra
king sear
h for the partner
onstraints, in 
ase at least one 
onstraint gets removed.The dire
t join 
omputation 
ode template employs one deterministi
 re
ursivepredi
ate per partner 
onstraint. A runtime predi
ate (init_iteration/4) pro-vides data for these loops in the form of lists of 
onstraints for a given fun
torand arity F/A. Argument mat
hing is performed inside the loops, and the environ-ment for the guard and body evaluation is gradually a

umulated and passed viapredi
ate arguments to the innermost loop.2In most Prolog implementations, it is more eÆ
ient to re-exe
ute head mat
hing and guardsinstead of suspending all of them and exe
uting them in
rementally.7



The se
ond ba
ktra
king join 
omputation s
heme is appli
able if at least one
onstraint gets removed by the rule: Instead of deterministi
 re
ursion for ea
hpartner, we �nd individual partners nondeterministi
ally within a single predi
ate.The nondeterministi
 formulation produ
es more 
ompa
t 
ode. In terms of theunderlying WAM [Ait90℄ we trade environment allo
ation against 
hoi
e point allo-
ation. The relative speed of the two approa
hes depends on the parti
ular Prologsystem hosting CHR. In our 
ase, a slight advantage of the re
ursive version wasover
ompensated by the time required for garbage 
olle
tion.In �gure 1 we 
ompare the re
ursive and ba
ktra
king join 
omputation. 10random graphs with 10 to 200 edges were fed through the rule from example 1.2.n = 200 edges means that in order to �nd all 
y
les of length �ve, we may have tolook at � n5 � edge 
ombinations. Ea
h data point represents mean and standarddeviation from 10 experiments. The re
ursive and the ba
ktra
king 
ode operatedon the same 10 random graphs. The verti
al axis represents runtime in se
ondsin
luding garbage 
olle
tion and operating system management time3.
'ba
ktra
king''ba
ktra
king''re
ursive''re
ursive'

200180160140120100806040200

2.521.510.50 Figure 1: Re
ursive vs. ba
ktra
king join 
omputationSummarizing, our implementation 
omputes only those tuples in the 
ross-produ
t that are really needed (as in [FrBr95a℄). Nondeterministi
 enumerationof the 
onstraints is preferred over deterministi
 iteration whenever possible, be-
ause Prolog is good at ba
ktra
king [HoFr98b℄.Compilation TemplatesWhether the a
tive 
onstraint is removed when a given rule applies and whetherany head 
onstraints are removed, leads to the following three prototypi
al 
ases,ea
h 
overed by a 
ode generating template in the 
ompiler:1. Case A
tive 
onstraint from Remove list2. Case A
tive 
onstraint from Keep list, Remove list nonempty3. Case A
tive 
onstraint from Keep list, Remove list empty3predi
ate statisti
s(walltime, ) in SICStus 8



Case 1. A
tive 
onstraint from Remove listThe a
tive head 
onstraint is to be removed if the rule applies, so the rule un-der 
onsideration is either a simpli�
ation or simpagation rule. It 
an be applied atmost on
e with the 
urrent a
tive 
onstraint. The sear
h for the partner 
onstraintsin this 
ase 
an be performed through nondeterministi
 enumeration. Here is thetemplate, slightly abridged. The predi
ate ndmp
 generates the 
ode to nondeter-ministi
ally enumerate and mat
h the partners, one by one.
ompile(remove(A
tive), Remove, Keep, Guard, Body, ...% generated 
ode((
onstraint(head(F/A,R-N), args(A
tual)) :-mat
h(Args, A
tual),RemoveCode, % Identify Remove partnersKeepCode, % Identify Keep partners
he
k_guard(Vars, Guard),!,remove_
onstraints(RemCs),Body))) :-% 
ompiler 
odeA
tive =.. [_|Args℄,same_length(Args, A
tual),...ndmp
(Remove, RemoveCode, RemCs, ...),ndmp
(Keep, KeepCode, ...).The variables F,A,R and N stand for fun
tor, arity of the 
onstraint, rule iden-ti�er and number of head in rule, respe
tively.Example 3.3 (Primes, 
ontd.) The se
ond o

urren
e of prime/1 in rule 3 ofExample 1.1 mat
hes this template, and here is its instantiation:% prime(I) \ prime(J) <=> J mod I =:= 0 | true.
onstraint(head(prime/1,3-2), args([A℄)) :-mat
h([C℄, [A℄),% RemoveCode (for one partner 
onstraint)get_
onstr_via([℄, Constraints),nd_init_iteration(Constraints, prime/1, Candidate),get_args(Candidate, [F℄),mat
h([C℄-[G℄, [C℄-[F℄),% KeepCode (no partner 
onstraints to be kept in this 
ase)true,% Guard
he
k_guard([G,C℄, (C mod G =:= 0)),!,remove_
onstraints([℄), % no 
onstraints to remove here% Bodytrue.The predi
ate get 
onstr via(VL,Cs) returns the 
onstraints suspended on afree variable o

urring in the list VL. If there is no variable in VL, it returns allthe 
onstraints in the store. nd init iteration(Constraints, F/A, Candidate)nondeterministi
ally returns a 
andidate 
onstraint with fun
tor F and arity A fromthe 
onstraint store. 9



Case 2. A
tive 
onstraint from Keep list, Remove list nonemptyThis 
ase applies only if there is at least one 
onstraint to be removed, but thea
tive 
onstraint will be kept. It 
an only originate from a simpagation rule. Sin
ethe a
tive 
onstraint is kept, one has to 
ontinue looking for appli
able rules, evenafter the rule applied. However, sin
e at least one partner 
onstraint will havebeen removed, the same rule will only be appli
able again with another 
onstraintfrom the store in pla
e of the removed one. Therefore, we 
an deterministi
allyiterate over the 
onstraints that are 
andidates for mat
hing the 
orrespondinghead from Remove, while the remaining partners 
an be found via nondeterministi
enumeration as before. At the end of the iteration, we have to 
ontinue with theremaining rules for the a
tive 
onstraint.Example 3.4 (Primes, 
ontd.) For spa
e reasons, we just present a simple in-stan
e of the template, originating from the �rst o

urren
e of prime/1 in rule 3(for readability with the 
onstraint predi
ate already 
attened, as des
ribed in Se
-tion 3.3):% rule prime(I) \ prime(J) <=> J mod I =:= 0 | true.prime(A, B) :-get_
onstr_via([℄, C), % get 
onstraints from storeinit_iteration(C, prime/1, D), % get partner 
andidates!,prime(D, B, A). % try to apply the ruleprime(A, B, C) :-iteration_last(A), % no more partner 
andidateprime_1(C, B). % try next rule headprime(A, B, C) :-iteration_next(A, D, E), % try next partner 
andidate( get_args(D, [F℄),mat
h([C℄-[G℄, [C℄-[F℄),
he
k_guard([C,G℄, (G mod C =:= 0))-> % rule appliesremove_
onstraints([D℄), % remove the partner from store; true % rule did not apply), % in any 
ase, try same ruleprime(E, B, C). % with another partner 
andidateprime_1(C, B) :- ... % 
ode to try next rule headOne instan
e (for lists) of the generi
 predi
ates steering the iteration is:iteration_last([℄).iteration_next([D|E℄, D, E).Case 3. A
tive 
onstraint from Keep list, Remove list emptyThis 
ase originates from propagation rules. Sin
e no 
onstraint will be removed,all possible 
ombinations of mat
hing 
onstraints have to be tried. The rule under
onsideration may apply with ea
h 
ombination. Therefore, all the partners (notjust one as in the previous 
ase) have to be sear
hed through nested deterministi
iteration. No matter if and how often the rule was appli
able, we have to 
ontinuewith the remaining rules for the a
tive 
onstraint.10



Example 3.5 This propagation rule is part of an interval solver. X::Min:Max 
on-strains X to be within given lower and upper bounds Min and Max. le means less-or-equal.X le Y, X::MinX:MaxX, Y::MinY:MaxY ==> X::MinX:MaxY, Y::MinX:MaxY.The propagation rule produ
es basi
ally the following 
ode for X le Y.X le Y :- le_1(X, Y).le_1(X, Y) :- % a
tive 
onstraint (X le Y)get_
onstr_via([X℄, CXs), % get 
onstraints on Xinit_iteration(CXs, ::/2, PCXs), % get partner 
andidates!,le_1_0(PCXs, X, Y). % try to apply the rulele_1(X, Y) :- % rule was not appli
able at allle_2(X, Y). % 
ontinue with next rulele_2(X, Y) :- % no next rulesuspend(X le Y). % done, suspend the 
onstraintle_1_0(PCXs, X, Y) :- % outer loop for X::MinX:MaxXiteration_last(PCXs), % no more partner 
andidatele_2(X, Y). % 
ontinue with next rulele_1_0(PCXs, X, Y) :-iteration_next(PCXs, CX, PCXs1), % try next partner 
andidate for X( get_args(CX,...), mat
h(...),% mat
h argumentsget_
onstr_via([Y℄, CYs), % get 
onstraints on Y for next headinit_iteration(CYs, ::/2, PCYs)-> le_1_1(PCYs, PCXs1, X, Y) % try to apply the rule; le_1_0(PCXs1, X, Y) % try next partner 
andidate for X).le_1_1(PCYs, PCXs, X, Y) :- % inner loop for Y::MinY:MaxYiteration_last(PCYs), % no more partner 
andidate for Yle_1_0(PCXs, X, Y). % 
ontinue with outer loop for Xle_1_1(PCYs, PCXs, X, Y) :-iteration_next(PCYs, CY, PCYs1), % try next partner 
andidate for Y( get_args(CY,...), mat
h(...),% mat
h arguments-> % rule applies finallyX::MinX:MaxY, Y::MinX:MaxY,% rule bodyle_1_1(PCYs1, PCXs, X, Y) % 
ontinue, find another Y partner; % rule did not applyle_1_1(PCYs1, PCXs, X, Y) % 
ontinue, find another Y partner).3.3 Partial Evaluation PhaseThe translation granularity was 
hosen so that the generated 
ode would roughlyrun as is, with little emphasis on eÆ
ien
y 
oming from lo
al optimizations andspe
ializations. These are performed in the �nal, third phase of the 
ompiler usinga simple instan
e of partial evaluation (PE). It is performed by using ma
ros asthey are available in most Prolog systems, e.g. [CaWi95℄. In 
ontrast to approa
hesthat address all aspe
ts of a language in a partial evaluator su
h as [Sah91℄, ourrestri
ted form of PE 
an be realized with an eÆ
ien
y that meets the requirementsof a produ
tion 
ompiler. The fun
tionalities of the main 
ompiler ma
ros are asfollows: 11



� The generi
 predi
ates steering the iteration over partner 
onstraints are spe-
ialized with respe
t to a parti
ular representation of these multi-sets.� Re
ursions are unfolded at 
ompile time when the argument they re
urse overis suÆ
iently known (typi
ally lists with a known length).� Head mat
hing is spe
ialized into uni�
ation instru
tions guarded by nonvar/1tests (as in [UeCh85℄).� The intermediate 
ode uses redundant fun
tion symbols for the 
onvenien
eof the 
ompiler writers, e.g. to keep obje
t, 
ompiler and runtime-system vari-ables visually apart. These symbols also help in type-
he
king the 
ompiler.Redundant fun
tion symbols are removed by 
attening, in parti
ular in thehead to fa
ilitate 
lause indexing. For example, 
onstraint(head(prime/1,3-2),args([A℄)) will be transformed into prime1 3 2(A).Example 3.6 (Primes, 
ontd.) The ma
ro expansion phase results in the follow-ing 
ode for our example 3.2. The 
ode for mat
hing and guard 
he
king has beenin-lined. The resulting trivial mat
hings (line 7), guards (line 3) and bodies (line5) have been removed by PE.% rule 
andidates(1) <=> true.
andidates(A) :- % 1A==1, % 2!. % 4% rule 
andidates(N) <=> N>1 | M is N-1, prime(N), 
andidates(M).
andidates(A) :- % 6nonvar(A), % 8A>1, % 8!, % 9B is A-1, % 10prime(A), % 11
andidates(B). % 12
andidates(A) :- % 13suspend(
andidates(A)). % 144 The Runtime SystemThe 
ompiler generates Prolog 
lauses. Thus e.g. memory management is alreadytaken 
are of. There are however fun
tionalities that are not provided dire
tly bymost Prolog implementations:� We need means to suspend, wake and re-suspend 
onstraint predi
ates.� We need eÆ
ient a

ess to suspended 
onstraints in the store through di�erenta

ess paths.4.1 SuspensionsTypi
ally, the attributes of variables are goals that suspend on that variable. Theyare re-exe
uted (woken) ea
h time one of their variables is tou
hed. Via the at-tributed variables interfa
e as found in SICStus or ECLiPSe Prolog the behaviourof attributed variables under uni�
ation is spe
i�ed with a user-de�ned predi
ate.In the CHR implementation, suspended goals are our means to store 
onstraints.In more detail, the 
omponents of the CHR suspension data stru
ture are:� Constraint goal 12



� State of 
onstraint� Unique identi�er� Propagation history� Re-use 
ounterThe state indi
ates if the 
onstraint is a
tive, mat
hed, removed or passive. Theunique identi�er is used, together with the propagation history, to ensure termina-tion for propagation rules. Ea
h propagation rule �res at most on
e for ea
h tupleformed by the set of mat
hed head 
onstraints. The re-use 
ounter is in
rementedwith every re-use of the suspension. It is used for pro�ling and some more subtleaspe
ts of 
ontrolling rule termination outside the s
ope of this paper.To reuse suspensions, we made the suspension itself an argument of the re-exe
uted goal. Internally, ea
h 
onstraint has an additional argument. When �rstexe
uted, the argument is a free variable. When the 
onstraint suspends, this extraargument is bound to the suspension itself. When it runs again, the suspensionme
hanism now has a handle to the suspension and 
an update its state. Code forthis me
hanism was removed from the listed 
ode samples in this paper to avoid
lutter.4.2 A

ess Paths and IndexingWhen a CHR sear
hes for a partner 
onstraint, a variable 
ommon to two headsof a rule 
onsiderably restri
ts the number of 
andidate 
onstraints to be 
he
ked,be
ause both partners must be suspended on this variable. The variables sharedbetween partner 
onstraints index the 
onstraint store. Like with traditional databases, the index may speed up join 
omputations. Thus we usually a

ess the
onstraint store by looking at only those 
onstraints (
f. get 
onstr via/2). The�rst argument is the list of shared variables between the head for whi
h the iterationis to be initiated and the heads mat
hed so far.Sin
e fun
tor and arity of the partner 
onstraints we are sear
hing for are known,dire
t a

ess to the set of 
onstraints of given fun
tor/arity is desirable. Earlier im-plementations performed this sele
tion by linear sear
h over a part of the suspended
onstraints. A

ess to data through a variable, and then fun
tor/arity, is exa
tlythe fun
tionality provided eÆ
iently by attributed variables. In our runtime systemwe map every fun
tor/arity pair to a �xed attribute slot of a variable at 
ompiletime yielding 
onstant time a

ess to the 
onstraints. Only the arguments need tobe mat
hed at runtime.Example 4.1 (Graph, nonground) We keep the rule from example 1.2 as it is,and 
hange the graph representation. Instead of ground verti
es, we use variables:edge(X1,X4), edge(X1,X9), edge(X2,X8), edge(X3,X10), edge(X5,X1),edge(X5,X8), edge(X7,X4), edge(X7,X5), edge(X7,X10), edge(X8,X3),edge(X8,X9), edge(X9,X3), edge(X10,X7).% the rule produ
es:loop([X3,X10,X7,X5,X8℄)loop([X8,X3,X10,X7,X5℄)loop([X5,X8,X3,X10,X7℄)loop([X7,X5,X8,X3,X10℄)loop([X10,X7,X5,X8,X3℄) 13



In �gure 2 we repeat the experiment from �gure 1. The non-ground graphrepresentation allows for the utilization of the index mentioned. The di�eren
e in
omputation time is two orders of magnitude. The di�eren
e between the deter-ministi
 and nondeterministi
 versions is rather insigni�
ant.
'nonground''nonground''ground''ground'

200180160140120100806040200

1001010.10.01 Figure 2: Join 
omputation with and without indexing5 Con
lusionsThe CHR system outlined in this paper was implemented in four man-months. The
ompiler is 1100 lines of Prolog, the runtime system around 600, whi
h together isless than half of the ECLiPSe implementation. The new implementation removessome limitations of former implementations:� The number of heads in a rule is no longer limited to two. The restri
tionwas motivated originally by eÆ
ien
y 
onsiderations sin
e more heads needmore sear
h time. One 
an en
ode rules with more than two heads usingadditional auxiliary intermediate 
onstraints. But then, the resulting rulesare not only hard to understand, they are also less eÆ
ient than a true multi-headed implementation.� Guards now support Ask and Tell [Sar93℄. In this way, CHR 
an also be usedas a general-purpose 
on
urrent 
onstraint language. (In this paper we only
onsidered Ask parts of guards.)� Attributed variables let us eÆ
iently implement the generalized suspensionme
hanism needed for CHR at the sour
e level. In parti
ular, 
onstant timea

ess to 
onstraints has been provided, instead of linear time in previousimplementations.� The CHR 
ompiler has been \orthogonalized" by introdu
ing three 
learlyde�ned 
ompilation phases. Compilation is now on-the-
y, while loading. Thetemplate-based translation with subsequent ma
ro-based partial evaluationallows for easy experimentation with di�erent translation s
hemata.14



� CHR spe
i�
 demands, su
h as a

ess paths using indexing and suspensionre
y
ling, are taken 
are of expli
itly through 
ustomized versions of the sus-pension me
hanism.� Due to spa
e limitations we also have not dis
ussed options and pragmasin this paper - these are annotations to programs, rules or 
onstraints thatenable the 
ompiler to perform powerful optimizations, that 
an sometimesmake programs terminate or redu
e their 
omplexity 
lass. In addition, rulesapply now in textual order, whi
h gives the programmer more 
ontrol.Ben
hmarking is diÆ
ult, be
ause the new implementation is in SICStusProlog,while the previous one was in ECLiPSeProlog. Attributed variables are imple-mented di�erently in these Prologs. Our measurements indi
ate that the new 
om-piler produ
es 
ode that is roughly twi
e as fast. The speed ratio improves the moredi�erent 
onstraints are present, due to improved data stru
tures and a

ess paths.Among the plans for the future development of the CHR implementation isthe spe
i�
ation of the 
onstraint store as an abstra
t data type. The defaultimplementation would be the one based on suspensions via attributed variables.In that way the user 
an exploit pe
uliarities of his/her appli
ation. If all the
onstraints are ground for example, they make no referen
e to the suspend/wakeme
hanism. In that 
ase they are probably better kept in a relational data base,whi
h quite likely provides indi
es to fa
ilitate the join 
omputations.More information about CHR is available at the CHR homepagehttp://www.informatik.uni-muen
hen.de/�fruehwir/
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