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Abstract

We introduce the most recent and advanced implementation of constraint
handling rules (CHR) in a logic programming language. The Prolog imple-
mentation consists of a runtime system and a compiler. The runtime system
utilizes attributed variables for the realization of the constraint store with
efficient retrieval and update mechanisms. Rules describing the interactions
between constraints are compiled into Prolog clauses by a compiler, the core
of which comprises a small number of compact code generating templates in
the form of definite clause grammar rules.

1 Introduction

In the beginning of constraint logic programming (CLP), constraint solving was
“hard-wired” in a built-in constraint solver written in a low-level language. While
efficient, this so-called “black-box” approach makes it hard to modify a solver or
build a solver over a new domain, let alone debug, reason about and analyze it. This
is a problem, since one lesson learned from practical applications is that constraints
are often heterogeneous and application-specific. Consequently, several proposals
have been made to allow for more flexibility and customization of constraint systems
(“glass-box” or even “no-box” approaches):

e Demons, forward rules and conditionals in CHIP [Di*88] allow the definition
of propagation of constraints in a limited way.

e Constraint combinators in cc(FD) [vHSD92] allow to build more complex
constraints from simpler constraints.

*Part of the work was performed while visiting CWG at LMU with financial support from
DFG.



e Constraints connected to a Boolean variable in BNR-Prolog [BeOl92] and
“nested constraints” [Sid93] allow to express any logical formula over primitive
constraints.

e Indexicals in clp(FD) [CoDi93] allow to implement constraints over finite do-
mains at a medium level of abstraction.

e Meta- and attributed variables [Neu90, Hui90, Hol92] allow to attach con-
straints to variables at a low level of abstraction.

It should be noted that all the approaches but the last can only extend a solver
over a given, specific constraint domain, typically finite domains. The expressive
power to realize other (application-specific) constraint domains is only provided by
the last approach.

Attributed variables [Hol92] provide direct access storage locations for proper-
ties associated with variables. When such variables are unified, their attributes
have to be manipulated. Thus attributed variables make unification user-definable
[Hol90, Hol93]. Attributed variables require roughly the same implementation ef-
fort as hard-wired delay (suspension) and coroutining mechanisms found in ear-
lier Prolog implementations, while being more general. And indeed, attributed
variables nowadays serve as the primary low-level construct for implementing sus-
pension (delay) mechanisms and constraint solver extensions in many constraint
logic programming languages, e.g. SICStus [CaWi95] and ECL!PS® [Br*98] Prolog.
However writing constraints this way is tedious, a kind of “constraint assembler”
programming.

If there already is a powerful constraint assembler, one may wonder what an
associated high-level language could look like. Our proposal is a declarative lan-
guage designed for writing constraint solvers, called constraint handling rules (CHR)
[FrBr95b, Fru98, HoFr98a, FAM99]. With CHR, one can introduce user-defined
constraints into a given high level host language, be it Prolog or Lisp. CHR have
been used in dozens of projects worldwide to encode constraint handlers (solvers),
including new domains such as terminological and temporal reasoning [Fru98].

CHR is essentially a committed-choice language consisting of guarded rules that
rewrite constraints into simpler ones until they are solved. CHR can define both sim-
plification of and propagation over user-defined constraints. Simplification replaces
constraints by simpler constraints while preserving logical equivalence. Propagation
adds new constraints which are logically redundant but may cause further simplifi-
cation. CHR can be seen as a generalization of the various CHIP [Di*88] constructs
for user-defined constraints.

In contrast to the family of the general-purpose concurrent logic programming
languages [Sha89], concurrent constraint languages [Sar93] and the ALPS [Mah87]
framework, CHR allow for multiple heads, i.e. conjunctions of constraints in the
head of a rule, and propagation rules. Multiple heads are a feature that is essential
in solving conjunctions of constraints. With single-headed CHR alone, unsatisfia-
bility of constraints cannot always be detected (e.g X<Y,Y<X) and global constraint
satisfaction could not be achieved. The probably most distinguishing functionality
of CHR is that they act as a powerful iteration, retrieval, and update mechanism
over the so-called constraint store, the data structure holding constraints.

Besides defining the behaviour of constraints, CHR can be and have been used
as

e general purpose concurrent constraint language with ask and tell,
e 3s fairly efficient production rule system,

e as a special kind of theorem prover,



e in general as system combining forward and backward chaining.

The first implementations of CHR were interpreters: In 1991 in ECL!PS¢ Prolog,
in 1993 in Common LISP [Her93]. In 1994, the first compiler was written as a library
of ECLIPS® [FrBr95a, FrBr95b]. An interpreter was written in the concurrent logical
object-oriented constraint language OZ [SmTr94] in 1996. Independent of our work,
anew experimental prototype of CHR has been implemented in ECL!PS® 4.0 [She98]
in 1998.

Nowadays, CHR are typically realized as a library containing a compiler, runtime
system and dozens of constraint solvers written in CHR. Rules compile into Prolog
clauses which inspect and update the constraint store at runtime. Such a type of
compilation of committed-choice languages into Prolog has been investigated before,
be it translating GHC [UeCh85], implementations of delay declarations [Nai85] or
the efficient implementation of QD-Janus [Deb93]. Today, we benefit from more
powerful programming constructs, in particular customizable suspension mecha-
nisms provided by attributed variables. CHR specific topics are multiple heads
(multi-heads) and propagation rules. The new idea is to realize the CHR constraint
store through attributed variables. So CHR can also be understood as a powerful
means to manipulate the attributes of variables in a declarative high-level fashion.

In this paper we describe the most recent and advanced implementation of CHR
in SICStus Prolog [HoFr98a], which improves both on the previous implementation
[FrBr95b] in terms of completeness, flexibility and efficiency and on the principles
that should guide such an implementation [FrBr95a]. For the user, the new release
of CHR improves over older versions in the following aspects:

e The number of heads in a rule is no longer limited to two.

e Guards now with Ask and Tell as in concurrent constraint languages.
e For more control, rules are compiled in textual order.

e Improved set of built-in predicates for advanced CHR users.

e New options and pragmas for powerful compiler optimizations.

e Compilation is now transparent to the user, on-the-fly when loading.
e Constant time access to constraints.

e Code runs generally about twice as fast as in older versions.

e The runtime system includes a stepper for Prolog-like debugging.

Two examples will guide us through the paper. Even though they do not define
typical constraints, we chose them for didactic reasons. They are small but can
still illustrate various considerations and stages of our compilation scheme. We use
Prolog syntax in this paper.

Example 1.1 (Primes) We implement the sieve of Eratosthenes to compute primes
in a way reminiscent of the “chemical abstract machine” [BCL88]: The constraint

candidates(N) generates candidates for prime numbers, prime (M), where M is be-

tween 1 and N. The candidates react with each other such that each number absorbs

multiples of itself. In the end, only prime numbers remain.

candidates (1) <=> true.
generate @ candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M).

sieve @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.



The first rule says that the number 1 is not a good candidate for a prime,
candidates (1) is thus rewritten into true, a constraint that is always satisfied
and therefore it has no effect. Note that head matching is used in CHR so the first
rule will only apply to candidates(1). A constraint for candidates with a free
variable, like candidates (X), will suspend (delay).

The generate rule generates a candidate prime (N) and proceeds recursively with
the next smaller number, provided the guard (precondition, test) N>1 is satisfied.

The third, multi-headed rule named sieve reads as follows: If there is a con-
straint prime(I) and some other constraint prime(J) such that J mod I =:= 0
holds, i.e. J is a multiple of I, then keep prime(I) but remove prime(J) and
execute the body of the rule, true.

Example 1.2 (Cycle) The following rule finds all cycles of length five in a graph
encoded through a collection of directed edges.

edge(A,B), edge(B,C), edge(C,D), edge(D,E), edge(E,A) ==> loop([A,B,C,D,E]).
Given these edges,

edge(1,4), edge(1,9), edge(2,8), edge(3,10), edge(5,1),
edge(5,8), edge(7,4), edge(7,5), edge(7,10), edge(8,3),
edge(8,9), edge(9,3), edge(10,7).

the rule adds the following constraints to the store:

loop([3,10,7,5,8]), loop([8,3,10,7,5]1), loop([5,8,3,10,71),
loop([7,5,8,3,101), loop([10,7,5,8,3]).

Overview of the Paper

We quickly recapture syntax and semantics for CHR. Then we describe the three
phases of the new compilation scheme and the runtime system for CHR.. We conclude
with a comparison with the previous implementation. This paper is a revised version
of [HoFr99a, HoFr98b].

2 Syntax and Semantics

We assume some familiarity with (concurrent) constraint (logic) programming, e.g.
[Sha89, vHSD92, Sar93, JaMa94, FrAb97, MaSt98]. As a special purpose language,
CHR extend a host language with (extended) constraint solving capabilities. Aux-
iliary computations in CHR programs are executed as host language statements.
Here the host language is (SICStus) Prolog. For more formal and detailed syntax
and semantics of constraint handling rules see [Fru98, FAM99].

2.1 Syntax

Syntax is given in EBNF grammar style.

Definition 2.1 There are three kinds of CHR. A simplification CHR is of the form!
[Name ’@’] Headl,...,HeadN ’<=>’ [Guard ’|’] Body.

where the rule has an optional name Name, which is a Prolog term, and the multi-
head Headl,...,HeadN is a conjunction of CHR constraints, which are Prolog
atoms. The guard is optional; if present, Guard is a Prolog goal excluding CHR
constraints; if not present, it has the same meaning as the guard ’true |’. The
body Body is a Prolog goal including CHR constraints

A propagation CHR is of the form

LFor simplicity, we omit syntactic extensions like pragmas which are not relevant for this paper.



[Name ’@’] Headl,...,HeadN ’==>’ [Guard ’|’] Body.

A simpagation CHR. is a combination of the above two kinds of rule, it is of the
form

[Name ’@’] Headl,...’\’...,HeadN ’==>’ [Guard ’|’] Body.
where the symbol >\’ separates the head constraints into two nonempty parts.

A simpagation rule combines simplification and propagation in one rule. The
rule Headsk \ HeadsR <=> Body is equivalent to the simplification rule Headsk,
HeadsR <=> HeadsK, Body, i.e. HeadsK is kept while HeadsR is removed. However,
the simpagation rule is more compact to write, more efficient to execute and has
better termination behaviour than the corresponding simplification rule.

2.2 Semantics

In this paper, we are interested in the operational semantics of CHR in actual im-
plementations. A CHR constraint is implemented as both code (a Prolog predicate)
and data (a Prolog term in the constraint store). Every time a CHR constraint is
posted (executed) or woken (reconsidered, re-executed), it checks itself the applica-
bility of the rules it appears in. Such a constraint is called (currently) active, while
the other constraints in the constraint store that are not executed at the moment
are called (currently) passive.

Heads. For each rule, one of its heads is matched against the constraint. Match-
ing succeeds if the constraint is an instance of the head, i.e. the head serves as a
pattern. If matching succeeded and a rule has more than one head, the constraint
store is searched for partner constraints that match the other heads. If the matching
succeeds, the guard is executed. Otherwise the next rule is tried.

Guard. A guard is a precondition on the applicability of a rule. The guard
either succeeds or fails. A guard succeeds if the execution succeeds without causing
an instantiation error and without touching a variable from the heads. A variable
is touched if gets more constrained by a built-in constraint. If the guard succeeds,
the rule applies, one commits to it and it fires. Otherwise it fails and the next rule
is tried.

Body. If the firing CHR is a simplification rule, the matched constraints are
removed from the store and the body of the CHR is executed. Similarly for a firing
simpagation rule, except that the constraints that matched the heads preceding
’\’ are kept. If the firing CHR is a propagation rule the body of the CHR is
executed without removing any constraints. It is remembered that the propagation
rule fired, so it will not fire again with the same constraints. When the currently
active constraint has not been removed, the next rule is tried.

(Re-)Suspension. If all rules have been tried and the active constraint has not
been removed, it suspends (delays) until a variable occurring in the constraint is
touched. Here suspension means that the constraint is inserted into the constraint
store as data. When a constraint is woken, all its rules are tried again.

3 The Compiler

The compiler is written in (SICStus) Prolog [HoFr98a] and translates CHR into
Prolog on-the-fly, while the file is loaded (consulted). Its kernel consists of a definite
clause grammar that generates the target instructions (clauses) driven by templates.
We will use example 1.1 to explain the three phases of the compiler:

1. Parsing,



2. translating CHR into clauses using templates and
3. partial evaluation using macros.

Phase 2 is the essential one that encodes the algorithm.

3.1 Parsing Phase

Using the appropriate operator declarations, a CHR can be read and written as a
Prolog term. Hence parsing basically reduces to computing information from the
parse tree and to producing a canonical form of the rules. Information needed from
the parse tree includes:

e The set of global variables, i.e. those that appear in the heads of a rule.
e The set of variables shared between the heads.
In the canonical form of the rules,
e each rule is associated with a unique identifier,
e rule heads are collected into two lists (named Keep and Remove), and
e guard and body are made explicit with defaults applied.

One list, called Keep, contains all head constraints that are kept when the rule
is applied, the other list, called Remove, contains all head constraints that are re-
moved. One list may be empty. As a result of this representation, simplification,
propagation and simpagation rules can be treated uniformly.

Example 3.1 (Primes, contd.) The canonical form of the rules for the prime
number example is given below.

% rule(Id,Keep, Remove, Guard, Body)
rule(1, [1, [candidates(1)], true, true) .
rule(2, [1, [candidates(A)], A>1, (B is A-1,prime(A),candidates(B))).
rule(3, [prime(A)], [prime(B)], B mod A =:= 0, true).

3.2 Translation Phase

Each occurrence of a CHR constraint in the head of a rule gives rise to one Prolog
clause for that constraint. The clause head contains the active constraint, while the
clause body does the following:

e match formal parameters to actual arguments of head constraint

e find and match passive partner constraints in constraint store

check the guard

e commit via cut

e remove matched constraints from constraint store if required
e execute body of rule

We first illustrate the compilation with a simple example, a single-headed sim-
plification CHR,, then we consider general cases of arbitrary multi-headed rules.



Example 3.2 (Primes, contd.) For the constraint candidates/1 the compiler
generates the following intermediate code (edited for readability).

% for each occurrence of the constraint as a head of a rule:

% in rule candidates(1) <=> true

candidates(A) :- % 1
match([1], [A]l), 5 2
check_guard([], true), h 3
', h 4
true. % 5

% in rule candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M)

candidates(A) :- h 6
match([C], [A]), ho 7
check_guard([C], C>1), h 8
', h 9
D is C-1, % 10
prime(C), h 11
candidates (D). h 12

% if no rule applied, suspend the constraint on its variables
candidates(4) :- % 13
suspend (candidates(A)). h 14

The predicate match(L1,L2) matches the actual arguments (in list L2) against
the formal parameters (in list L1). The predicate check_guard(VL,G) checks the
guard G. check_guard/2 fails as soon as the global variables (list VL) are touched?.

When no rule applied, the last clause inserts the constraint into the constraint
store using a suspension mechanism. It allocates the suspension data structure and
associates it with each variable occurring in the constraint. Touching any such
variable will wake the constraint.

Join Computation for Finding Partner Constraints

The real challenge left is to implement multi-headed CHR. In a naive implementa-
tion of a rule, the constraint store is queried for the cross-product of matching head
constraints. For each tuple in the cross-product the guard is checked in the cor-
responding environment. If the guard is satisfied, constraints that matched heads
in the Remove list are removed from the store and the instance of the rule’s body
is executed. Note that the removal of constraints removes tuples from the cross-
product. The situation is quite similar to the matching phase in rule/production
systems. The earlier predominant state-preserving RETE match algorithm [For82]
was redeemed by the superior state-less TREAT algorithm [Mir87]. State preserva-
tion is even more debatable in the presence of guards. Thus, the CHR compilation
draws upon a state-less incremental matching mechanism.

There are two design alternatives for the join computation: FEither a deter-
ministic recursive loop or a nondeterministic backtracking search for the partner
constraints, in case at least one constraint gets removed.

The direct join computation code template employs one deterministic recursive
predicate per partner constraint. A runtime predicate (init_iteration/4) pro-
vides data for these loops in the form of lists of constraints for a given functor
and arity F/A. Argument matching is performed inside the loops, and the environ-
ment for the guard and body evaluation is gradually accumulated and passed via
predicate arguments to the innermost loop.

2Tn most Prolog implementations, it is more efficient to re-execute head matching and guards
instead of suspending all of them and executing them incrementally.



The second backtracking join computation scheme is applicable if at least one
constraint gets removed by the rule: Instead of deterministic recursion for each
partner, we find individual partners nondeterministically within a single predicate.
The nondeterministic formulation produces more compact code. In terms of the
underlying WAM [Ait90] we trade environment allocation against choice point allo-
cation. The relative speed of the two approaches depends on the particular Prolog
system hosting CHR. In our case, a slight advantage of the recursive version was
overcompensated by the time required for garbage collection.

In figure 1 we compare the recursive and backtracking join computation. 10
random graphs with 10 to 200 edges were fed through the rule from example 1.2.
n = 200 edges means that in order to find all cycles of length five, we may have to
look at ( 4 ) edge combinations. Each data point represents mean and standard
deviation from 10 experiments. The recursive and the backtracking code operated
on the same 10 random graphs. The vertical axis represents runtime in seconds
including garbage collection and operating system management time?®.

2.5 T T T T T T T T
1 1 1 ‘ ‘ 1 ! ’recursive
‘recursive

0 20 40 60 80 100 120 140 160 180 200
Figure 1: Recursive vs. backtracking join computation

Summarizing, our implementation computes only those tuples in the cross-
product that are really needed (as in [FrBr95a]). Nondeterministic enumeration
of the constraints is preferred over deterministic iteration whenever possible, be-
cause Prolog is good at backtracking [HoFr98b].

Compilation Templates

Whether the active constraint is removed when a given rule applies and whether
any head constraints are removed, leads to the following three prototypical cases,
each covered by a code generating template in the compiler:

1. Case Active constraint from Remove list
2. Case Active constraint from Keep list, Remove list nonempty

3. Case Active constraint from Keep list, Remove list empty

3predicate statistics(walltime, _) in SICStus



Case 1. Active constraint from Remove list

The active head constraint is to be removed if the rule applies, so the rule un-
der consideration is either a simplification or simpagation rule. It can be applied at
most once with the current active constraint. The search for the partner constraints
in this case can be performed through nondeterministic enumeration. Here is the
template, slightly abridged. The predicate ndmpc generates the code to nondeter-
ministically enumerate and match the partners, one by one.

compile (remove (Active), Remove, Keep, Guard, Body,

% generated code

((constraint (head(F/A,R-N), args(Actual)) :-
match(Args, Actual),
RemoveCode, % Identify Remove partners
KeepCode, % Identify Keep partners
check_guard (Vars, Guard),
1

remove_constraints(RemCs) ,

Body
)
) -
% compiler code
Active =.. [_|Args],

same_length(Args, Actual),

ndmpc (Remove, RemoveCode, RemCs, ...),
ndmpc (Keep, KeepCode, ...).

The variables F,A,R and N stand for functor, arity of the constraint, rule iden-
tifier and number of head in rule, respectively.

Example 3.3 (Primes, contd.) The second occurrence of prime/1 in rule 3 of
Ezxample 1.1 matches this template, and here is its instantiation:

% prime(I) \ prime(J) <=> Jmod I =:= 0 | true.

constraint (head (prime/1,3-2), args([A])) :-
match([C], [A]l),

% RemoveCode (for one partner constraint)
get_constr_via([], Constraints),
nd_init_iteration(Constraints, prime/1, Candidate),
get_args(Candidate, [F]),
match([C]-[G], [CI-[FI),

% KeepCode (no partner constraints to be kept in this case)
true,

% Guard

check_guard([G,C], (C mod G =:= 0)),

! B

remove_constraints([]), % no constraints to remove here
% Body

true.

The predicate get_constr _via(VL,Cs) returns the constraints suspended on a
free variable occurring in the list VL. If there is mo variable in VL, it returns all
the constraints in the store. nd_init_iteration(Constraints, F/A, Candidate)
nondeterministically returns a candidate constraint with functor F and arity A from
the constraint store.



Case 2. Active constraint from Keep list, Remove list nonempty

This case applies only if there is at least one constraint to be removed, but the
active constraint will be kept. It can only originate from a simpagation rule. Since
the active constraint is kept, one has to continue looking for applicable rules, even
after the rule applied. However, since at least one partner constraint will have
been removed, the same rule will only be applicable again with another constraint
from the store in place of the removed one. Therefore, we can deterministically
iterate over the constraints that are candidates for matching the corresponding
head from Remove, while the remaining partners can be found via nondeterministic
enumeration as before. At the end of the iteration, we have to continue with the
remaining rules for the active constraint.

Example 3.4 (Primes, contd.) For space reasons, we just present a simple in-
stance of the template, originating from the first occurrence of prime/1 in rule 3
(for readability with the constraint predicate already flattened, as described in Sec-
tion 3.8):

% rule prime(I) \ prime(J) <=> Jmod I =:= 0 | true.
prime(A, B) :-
get_constr_via([], C), % get constraints from store

init_iteration(C, prime/1, D), %
]

get partner candidates

prime(D, B, A). % try to apply the rule
prime(A, B, C) :-
iteration_last(A), h
prime_1(C, B). %

no more partner candidate
try next rule head

prime(A, B, C) :-
iteration_next (A, D, E),
( get_args(D, [F]),
match([C]-[G], [CI-[F1),
check_guard([C,G], (G mod C =:=

=

try next partner candidate

0))

->
remove_constraints([D]),
true

)’

prime(E, B, C).

rule applies
remove the partner from store

rule did not apply
in any case, try same rule
with another partner candidate

prime_1(C, B) :- ... % code to try next rule head

One instance (for lists) of the generic predicates steering the iteration is:

iteration_last([1).
iteration_next ([DIE], D, E).

Case 3. Active constraint from Keep list, Remove list empty

This case originates from propagation rules. Since no constraint will be removed,
all possible combinations of matching constraints have to be tried. The rule under
consideration may apply with each combination. Therefore, all the partners (not
just one as in the previous case) have to be searched through nested deterministic
iteration. No matter if and how often the rule was applicable, we have to continue
with the remaining rules for the active constraint.

10



Example 3.5 This propagation rule is part of an interval solver. X: :Min:Max con-
strains X to be within given lower and upper bounds Min and Max. le means less-
or-equal.

X le Y, X::MinX:MaxX, Y::MinY:MaxY ==> X::MinX:MaxY, Y::MinX:MaxV.
The propagation rule produces basically the following code for X le Y.

Xle Y :- le_1(X, Y).

le_1(X, Y) :- % active constraint (X le Y)
get_constr_via([X], CXs), % get constraints on X
init_iteration(CXs, ::/2, PCXs), % get partner candidates
! >
le_1_0(PCXs, X, Y). % try to apply the rule

le_1(X, Y) :- % rule was not applicable at all
le_2(X, Y). % continue with next rule

le_2(X, Y) :- % no next rule
suspend (X le Y). % done, suspend the constraint
le_1_0(PCXs, X, Y) :- % outer loop for X::MinX:MaxX
iteration_last (PCXs), % no more partner candidate
le_2(X, Y). % continue with next rule

le_1_0(PCXs, X, Y) :-
iteration_next (PCXs, CX, PCXsl1), % try next partner candidate for X

(  get_args(CX,...), match(...),’ match arguments
get_constr_via([Y], CYs), % get constraints on Y for next head
init_iteration(CYs, ::/2, PCYs)

->

le_1_1(PCYs, PCXsl, X, Y) % try to apply the rule
le_1_0(PCXs1, X, Y) % try next partner candidate for X
).
le_1_1(PCYs, PCXs, X, Y) :- % inner loop for Y::MinY:MaxY
iteration_last (PCYs), % no more partner candidate for Y
le_1_0(PCXs, X, Y). % continue with outer loop for X

le_1_1(PCYs, PCXs, X, Y) :-
iteration_next (PCYs, CY, PCYsl), ) try next partner candidate for Y
(  get_args(CY,...), match(...),’ match arguments
-> % rule applies finally
X::MinX:MaxY, Y::MinX:MaxV,% rule body
le_1_1(PCYs1, PCXs, X, Y) 7/ continue, find another Y partner
; % rule did not apply
le_1_1(PCY¥sl, PCXs, X, Y) % continue, find another Y partner

3.3 Partial Evaluation Phase

The translation granularity was chosen so that the generated code would roughly
run as is, with little emphasis on efficiency coming from local optimizations and
specializations. These are performed in the final, third phase of the compiler using
a simple instance of partial evaluation (PE). It is performed by using macros as
they are available in most Prolog systems, e.g. [CaWi95]. In contrast to approaches
that address all aspects of a language in a partial evaluator such as [Sah91], our
restricted form of PE can be realized with an efficiency that meets the requirements
of a production compiler. The functionalities of the main compiler macros are as
follows:

11



e The generic predicates steering the iteration over partner constraints are spe-
cialized with respect to a particular representation of these multi-sets.

e Recursions are unfolded at compile time when the argument they recurse over
is sufficiently known (typically lists with a known length).

e Head matching is specialized into unification instructions guarded by nonvar/1
tests (as in [UeCh85]).

e The intermediate code uses redundant function symbols for the convenience
of the compiler writers, e.g. to keep object, compiler and runtime-system vari-
ables visually apart. These symbols also help in type-checking the compiler.
Redundant function symbols are removed by flattening, in particular in the

head to facilitate clause indexing. For example, constraint (head (prime/1,3-2),

args([A])) will be transformed into prime1_3_2(A).

Example 3.6 (Primes, contd.) The macro expansion phase results in the follow-
ing code for our example 3.2. The code for matching and guard checking has been
in-lined. The resulting trivial matchings (line 7), guards (line 8) and bodies (line
5) have been removed by PE.

% rule candidates(l) <=> true.

candidates (A) :- ho1
A==1, % 2
r, % 4
% rule candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M).
candidates(A) :- % 6
nonvar (A) , % 8
A>1, h 8
', % 9
B is A-1, % 10
prime (), %11
candidates(B). % 12
candidates (A) :- h 13
suspend (candidates(4)). % 14

4 The Runtime System

The compiler generates Prolog clauses. Thus e.g. memory management is already
taken care of. There are however functionalities that are not provided directly by
most Prolog implementations:

e We need means to suspend, wake and re-suspend constraint predicates.

e We need efficient access to suspended constraints in the store through different
access paths.

4.1 Suspensions

Typically, the attributes of variables are goals that suspend on that variable. They

are re-executed (woken) each time one of their variables is touched. Via the at-

tributed variables interface as found in SICStus or ECL‘PS® Prolog the behaviour

of attributed variables under unification is specified with a user-defined predicate.

In the CHR implementation, suspended goals are our means to store constraints.
In more detail, the components of the CHR suspension data structure are:

e Constraint goal
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e State of constraint
e Unique identifier

e Propagation history
e Re-use counter

The state indicates if the constraint is active, matched, removed or passive. The
unique identifier is used, together with the propagation history, to ensure termina-
tion for propagation rules. Each propagation rule fires at most once for each tuple
formed by the set of matched head constraints. The re-use counter is incremented
with every re-use of the suspension. It is used for profiling and some more subtle
aspects of controlling rule termination outside the scope of this paper.

To reuse suspensions, we made the suspension itself an argument of the re-
executed goal. Internally, each constraint has an additional argument. When first
executed, the argument is a free variable. When the constraint suspends, this extra
argument is bound to the suspension itself. When it runs again, the suspension
mechanism now has a handle to the suspension and can update its state. Code for
this mechanism was removed from the listed code samples in this paper to avoid
clutter.

4.2 Access Paths and Indexing

When a CHR searches for a partner constraint, a variable common to two heads
of a rule considerably restricts the number of candidate constraints to be checked,
because both partners must be suspended on this variable. The variables shared
between partner constraints indez the constraint store. Like with traditional data
bases, the index may speed up join computations. Thus we usually access the
constraint store by looking at only those constraints (cf. get_constr_via/2). The
first argument, is the list of shared variables between the head for which the iteration
is to be initiated and the heads matched so far.

Since functor and arity of the partner constraints we are searching for are known,
direct access to the set of constraints of given functor/arity is desirable. Earlier im-
plementations performed this selection by linear search over a part of the suspended
constraints. Access to data through a variable, and then functor/arity, is exactly
the functionality provided efficiently by attributed variables. In our runtime system
we map every functor/arity pair to a fixed attribute slot of a variable at compile
time yielding constant time access to the constraints. Only the arguments need to
be matched at runtime.

Example 4.1 (Graph, nonground) We keep the rule from example 1.2 as it is,
and change the graph representation. Instead of ground vertices, we use variables:

edge (X1,X4), edge(X1,X9), edge(X2,X8), edge(X3,X10), edge(X5,X1),
edge (X5,X8), edge(X7,X4), edge(X7,X5), edge(X7,X10), edge(X8,X3),
edge (X8,X9), edge(X9,X3), edge(X10,X7).

% the rule produces:

loop([X3,X10,X7,X5,X8])
loop([X8,X3,X10,X7,X5])
loop([X5,X8,%X3,X10,X71)
loop([X7,X5,X8,X3,X10])
loop([X10,X7,X5,X8,X3])
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In figure 2 we repeat the experiment from figure 1. The non-ground graph
representation allows for the utilization of the index mentioned. The difference in
computation time is two orders of magnitude. The difference between the deter-
ministic and nondeterministic versions is rather insignificant.
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Figure 2: Join computation with and without indexing

5 Conclusions

The CHR system outlined in this paper was implemented in four man-months. The
compiler is 1100 lines of Prolog, the runtime system around 600, which together is
less than half of the ECL’PS® implementation. The new implementation removes
some limitations of former implementations:

e The number of heads in a rule is no longer limited to two. The restriction
was motivated originally by efficiency considerations since more heads need
more search time. One can encode rules with more than two heads using
additional auxiliary intermediate constraints. But then, the resulting rules
are not only hard to understand, they are also less efficient than a true multi-
headed implementation.

e Guards now support Ask and Tell [Sar93]. In this way, CHR can also be used
as a general-purpose concurrent constraint language. (In this paper we only
considered Ask parts of guards.)

e Attributed variables let us efficiently implement the generalized suspension
mechanism needed for CHR at the source level. In particular, constant time
access to constraints has been provided, instead of linear time in previous
implementations.

e The CHR compiler has been “orthogonalized” by introducing three clearly
defined compilation phases. Compilation is now on-the-fly, while loading. The
template-based translation with subsequent macro-based partial evaluation
allows for easy experimentation with different translation schemata.
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e CHR specific demands, such as access paths using indexing and suspension
recycling, are taken care of explicitly through customized versions of the sus-
pension mechanism.

e Due to space limitations we also have not discussed options and pragmas
in this paper - these are annotations to programs, rules or constraints that
enable the compiler to perform powerful optimizations, that can sometimes
make programs terminate or reduce their complexity class. In addition, rules
apply now in textual order, which gives the programmer more control.

Benchmarking is difficult, because the new implementation is in SICStusProlog,
while the previous one was in ECL!PS®Prolog. Attributed variables are imple-
mented differently in these Prologs. Our measurements indicate that the new com-
piler produces code that is roughly twice as fast. The speed ratio improves the more
different constraints are present, due to improved data structures and access paths.

Among the plans for the future development of the CHR implementation is
the specification of the constraint store as an abstract data type. The default
implementation would be the one based on suspensions via attributed variables.
In that way the user can exploit peculiarities of his/her application. If all the
constraints are ground for example, they make no reference to the suspend/wake
mechanism. In that case they are probably better kept in a relational data base,
which quite likely provides indices to facilitate the join computations.

More information about CHR is available at the CHR homepage
http://www.informatik.uni-muenchen.de/~fruehwir/chr-intro.html
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