
Principles of Constraint Systems and Constraint

Solvers

Thom Frühwirth
Faculty of Computer Science, University of Ulm, Germany

Thom.Fruehwirth@informatik.uni-ulm.de

Slim Abdennadher
Department of Computer Science, German University Cairo, Egypt

Slim.Abdennadher@guc.edu.eg

February 1, 2005

Abstract

In this compact overview, we introduce the most common constraint
systems used in constraint programming languages and algorithms to
solve them. Constraint systems are the result of taking a data type to-
gether with its operations and interpreting the resulting expressions as
constraints. These constraint systems use the universal data types of
numbers (integers or reals) to represent scalar data or terms to represent
structured data. Algorithms are presented as logical inference rules that
are directly executable in the Constraint Handling Rules language.

1 Introduction

The idea behind constraint-based programming is to solve problems by simply
stating constraints (conditions, properties) which must be satisfied by a solution
of the problem. For example, consider a bicycle number lock. We forgot the first
digit, but remember some constraints about it: The digit was an odd number,
greater than one, and not a prime number. Combining the pieces of partial
information expressed by these constraints (digit, greater than one, odd, not
prime) we are able to derive that the digit we are looking for is “9”.

As it runs, a constraint program successively generates constraints. A special
program, the constraint solver, stores, combines, and simplifies the constraints
until a solution is found. The partial solutions can be used to influence the run
of the program. In the constraint solver, efficient special-purpose algorithms are
employed for specific classes of constraints.

Programming with constraints makes it possible to model and specify prob-
lems with uncertain, incomplete information and to solve combinatorial prob-

1

lems, as they are abundant in industry and commerce, such as scheduling, plan-
ning, transportation, resource allocation, layout, design, and analysis.

For example, the system Daysy performs short-term personnel planning for
Lufthansa after disturbances in air traffic (delays, etc.), such that changes in
the schedule and costs are minimized. Nokia uses constraints for the automatic
configuration of software for mobile phones. The car manufacturer Renault has
been employing the technology for short-term production planning since 1995.

The advantages of constraint-based programming are: declarative problem
modeling on a solid mathematical basis, propagation of the effects of decisions
using efficient algorithms, and search for (optimal) solutions. The use of con-
straint programming supports the complete software development process. Be-
cause of its conceptual simplicity and efficiency, executable specifications, rapid
prototyping, and ease of maintainance are possible.

Contents. After the preliminaries, we introduce the common constraint systems,
i.e. classes of constraints together with their solvers. This presentation is closely
based on [FA03]. For each constraint system, we will give its allowed constraints,
its constraint theory, a typical algorithm to solve the constraints, properties
of the algorithm (termination and complexity), and an example of a typical
application. Complexity analysis will be based on semi-naive implementations
of CHR, while recent CHR compilers and other more low level implementations
may achieve better complexities.

The domains of the constraint systems we consider are numbers (integers or
reals), truth values and terms (trees). In particular, we will describe constraints
for Booleans, finite enumeration and interval domains, linear polynomial equa-
tions and rational trees. Algorithms will be based on local propagation methods
or variable elimination.

We will use the Constraint Handling Rules (CHR) [Frü98, Frü04] language
extended with disjunction, CHR∨, to specify and implement the algorithms.
Due to space limitations, we will introduce the CHR language only by means
of concrete code. With CHR, we can describe the algorithms in a concise and
compact manner by executable inference rules.

It should be emphasized that our view of constraint programming concen-
trates on the principles, and this not only for didactic and space reasons. For
each constraint system we introduce, a richer set of constraints, more sophis-
ticated algorithms and more efficient implementations than we give here are
known and commonly used in constraint programming languages, be they aca-
demic or commercial. Still, constraint solving can be understood from the
underlying principles as presented here. For lack of space we cannot discuss
constraint-based optimization and global constraints in this paper. We also
do not give an overview of current constraint-based systems or languages. For
further reading we recommend [FA03, MS98, Apt03].

2

2 Preliminaries

Before we introduce specific constraint systems with their algorithms, we de-
fine the notions of constraint systems and constraint solvers together with their
desirable properties and the main approaches behind constraint solving algo-
rithms.

2.1 Constraint Systems

A constraint system formally specifies the syntax and semantics of the con-
straints of interest. Constraints are considered as special predicates of first-
order logic. A constraint system states which are the constraint symbols, how
they are defined, and which constraint formulae are actually used for reasoning
in the context of constraint programming languages.

The following definition is based on Höhfeld and Smolka [HS88] and Jaffar
and Maher [JM94]. We assume some familiarity with first order predicate logic.

Definition 2.1 A constraint system is a tuple (Σ,D, CT , C), where

• Σ is a signature that contains the nullary constraint symbols true and false
and the binary constraint symbol = for equality.

• D is a domain (universe) together with an interpretation of the function
and constraint symbols in Σ.

• CT is a constraint theory that is a non-empty and consistent theory over
Σ.

• C are the allowed constraints, a set of formulae that contains the con-
straints true, false, and =, and that is closed under existential quantifi-
cation and conjunction.

CT defines the semantics and C the syntax of the constraint system. The
minimal requirements on allowed constraints come from their use in constraint
programming languages. The constraints true, false, and = play a prominent
role. In constraint programming, we are mainly concerned with conjunctions
of atomic constraints whose variables are (implicitly) existentially quantified.
In addition, the atomic constraints are syntactically restricted so that they can
be solved efficiently. Examples of constraint systems will be given in the next
sections.

2.2 Constraint Solvers

A constraint solver implements an algorithm for solving allowed constraints in
accordance with the constraint theory. The solver collects the constraints that
arrive incrementally from one or more running programs. It puts them into
the constraint store, a data structure for constraints. It tests their satisfiability,
simplifies and if possible solves them. The final constraint that results from a
computation is called the answer (constraint).

3

We regard the constraint solver as a function solve that takes an allowed
constraint and returns its simplified form. In particular, solve should be

Correct If solve(C) = D, then CT |= ∀(C ↔ D)

(Satisfaction-)complete If CT |= ¬∃C, then solve(C) = false

Incremental solve(solve(C) ∧D) = solve(C ∧D)

Incrementality means that simplifying C and then simplifying the result together
with newly arrived constraints D should give the same result as simplifying
C ∧D (up to reordering of constraints). Ideally, the incremental computation
solve(solve(C) ∧D) should not be more costly than solve(C ∧D).

When used from within a constraint programming language, a constraint
solver should be able to perform the following reasoning services (in order of
importance):

Satisfiability (Consistency) test
The solver returns false if C is inconsistent, i.e. if CT |= ¬∃C.

Example. X>Y ∧ Y >X is inconsistent, and X≥Y ∧ Y≥X is not.

This reasoning service corresponds to satisfaction-completeness. The
solver implements a decision procedure for satisfiability of allowed con-
straints. The detection of inconsistency is essential in constraint pro-
gramming, in particular it can avoid unnecessary continued search for
solutions.

Simplification
The solver tries to transform a given constraint C into a logically equiva-
lent, but simpler constraint D, where CT |= ∀(C ↔ D).

Example. X≤2 ∧X≤4 is simplified into X≤2, and 2∗X=6 into X=3.

The intuition is that a simpler constraint can be handled more efficiently
when new constraints arrive. It may also improve the presentation of the
answer constraint. However, what simpler exactly means depends on the
constraint system, and is often in the eye of the beholder. For example,
we may prefer a formulation with the least number of variables, but this
may not be the formulation with the least possible size. Finding the most
simple representation of a constraint can be substantially harder than
solving it.

Determination
Detect that a variable X occurring in a constraint C can only take a
unique value v, i.e. CT |= ∀(C → X=v), where v is a constant.

Example. X≤2∧2≤X implies X=2, and X ∗X=X ∧X < 1 implies X=0.

4

This special case of simplification is important for representing answers
as solutions that give values to variables. Determination also supports
a simple way of communication between different constraint solvers via
shared variables by exchanging values for those variables.

Variable projection/elimination
Eliminate a variable X by projecting a constraint C onto all other variables
resulting in D (which does not contain X), and where CT |= ∃XC ↔ D.

Example. Projection of ∃Y (X<Y ∧ Y <Z) onto X and Z results in X<Z
over the reals, but in X+1<Z over the integers. In the syntactic equation
∃Y (X=f(Y)), the variable Y cannot be eliminated.

Projection may keep the constraint store small and simplify the answer
constraint by eliminating local variables. However, in some cases, projec-
tion may yield a significant increase in the size and number of constraints.

The reasoning services can be regarded and implemented as variations of
simplification that maintains a normal form of the constraints. The normal form
then also determines what “simpler” means. The constraint solver is expected
to implement constraint simplification efficiently, more precisely, the average
time complexity should be a polynomial of low degree, typically not worse than
cubic. To achieve this efficiency, one is content with incomplete implementations
that when complete would take exponential time.

2.3 Constraint Solving Algorithms

A variety of algorithms exist for constraint systems, mostly adapted from arti-
ficial intelligence, graph theory and operations research. For didactic reasons,
we will concentrate on the basic principles of these algorithms. They will only
be of use if they have polynomial complexity (except for search, of course).

There are two main approaches for constraint solving algorithms, variable
elimination and local consistency (local propagation) techniques. Variable elim-
ination is usually satisfaction-complete, while local consistency techniques typ-
ically have to be interleaved with search to achieve completeness. A clear dis-
tinction between the two approaches is not always possible.

2.3.1 Variable Elimination

The allowed constraints are typically equations. Other constraints will be trans-
formed into equations if possible. The transformation may introduce auxiliary
variables and simple constraints on them. For example, we may replace X>Y
by X=Y +Z ∧ Z>0. (Fourier’s algorithm works directly on linear inequalities,
but has exponential complexity.)

Given an equation e1=e2, we call e1 the l.h.s. (left-hand side) and e2 r.h.s.
(right-hand side) of the equation. A normal form for an equation is typically
of the form X=e, where X is a variable and e is an expression of some specific

5

syntactic form. For example, the linear polynomial 2X +3Y is the normal form
of the arithmetic expression Y + 2(X + Y).

A solved (normal) form or solution of constraints is a logically equivalent for-
mulation of the constraints that determines variables (gives values to variables)
and that is, if possible, unique. A solution is usually a conjunction of syntactic
equality constraints of the form X=v, where X is the only l.h.s. occurrence of
the variable and v is a constant. For example, X=Y ∧ X=Z is not in solved
form, because X occurs twice on the l.h.s. of an equation. X=Y ∧ Y =Z is in
solved form, as is X=Z ∧ Z=Y . Hence, this solved form is not unique.

Variable elimination algorithms compute the solved form by eliminating mul-
tiple occurrences of variables. We repeatedly choose an equation X=e and re-
place all other occurrences of X by e. We simplify the resulting new expressions
such that the normal form is maintained. A well-known variable elimination
algorithm is Gaussian elimination for solving linear polynomial equations (Sec-
tion 5). For example, in X=7−Y ∧ X=3+Y , we can remove the second
occurrence of X. This results in X=7−Y ∧ Y =2. Removing Y finally leads to
the solution X=5 ∧ Y =2.

2.3.2 Local Propagation for Local Consistency

The given problem is broken down into small fixed-size overlapping sub-
problems. (By size we mean the number of constraints and variables.) These
sub-problems are considered repeatedly until a fixpoint is reached. The con-
straints of the sub-problems are tightened (simplified), and new implied (re-
dundant) constraints are computed (propagated) from them. The constraints
are added hoping that they cause further simplification for the overlapping sub-
problems.

For example, we may consider sub-problems consisting of two constraints.
Given X≥Y ∧ Y≥Z ∧ Z≥X, the first two constraints imply X≥Z. This
constraint tightens the third initial constraint Z≥X into Z=X.

For any given problem, there is only a polynomial number of fixed-size sub-
problems. So if we can deal with sub-problems in polynomial time, there is
a chance to have a polynomial algorithm to simplify the overall problem. (It
need not be so if the the atomic constraints of the problem allow an exponen-
tial or worse number of tightenings.) For example, if the constraints are simple
inequalities between two variables, we can compute implied and tightened con-
straints by a simple table look-up. Since there is a fixed number of different
kinds of inequalities, tightening can only be performed a constant number of
times per constraint.

While local propagation thus can be efficient, in general it only provides an
approximation algorithm for the set of solutions. That is, local consistency can
be achieved, ensuring that each sub-problem has a solution, but not necessarily
global consistency, meaning that the overall problem has a solution (see also
next subsection).

Classical consistency algorithms were first explored for constraint networks
in artificial intelligence research in the late 1960’s. The main algorithms are arc

6

consistency (Subsection 4.1) and path consistency. Originally, the algorithms
involved unary and binary constraints over finite sets of values only (so-called
finite domains, see Section 4). Since these algorithms tighten constraints by
removing values from the sets, they are polynomial.

Local consistency methods may require that expressions are in flat normal
form, where distinct variables are the only arguments of functions (i.e., func-
tions are not allowed to be nested). An expression can be flattened by per-
forming the opposite of variable elimination. Each non-variable sub-expression
and each repeated occurence of a variable is replaced by a new variable that is
equated with the replaced expression. For example, 2X+Y >5 is flattened into
W>F ∧ X+V =W ∧ X+Y =V ∧ F=5. Note that this transformation is only
necessary once, before the actual computation starts.

In this paper we choose flat normal forms mainly for didactic reasons. The
advantage of the flat normal form is the uniform treatment of the allowed
constraints in the constraint solver. The disadvantage is the introduction of
auxiliary variables and constraints. Consistency methods are sensitive to the
representation of the constraints. (There is no efficient and general way to find
the representation that enables most simplification most efficiently, even though
progress has been reported for linear integer arithmetic constraints [HS03].)

2.3.3 Search

Local consistency methods must be combined with search to achieve satisfac-
tion-completeness, i.e., global consistency. Search brings back exponential com-
plexity to combinatorial and other NP-complete constraint problems, because
dependencies between choices are not (and cannot) be fully taken care of. Search
is also called branching because it will introduce branches in the search tree as-
sociated with the computation. Search is a case analysis, that is case splitting
by introducing choices. Search techniques most used in constraint programming
are depth-first search, and branch and bound for optimisation.

Usually, search is interleaved with constraint solving. A minimal search
step is performed, it adds a new constraint that is simplified together with the
existing constraints. This process is repeated until a solution is found.

Search can be done by trying possible values for a variable X=v1∨. . .∨X=vn.
Such a search routine/procedure is called a labeling procedure or enumeration pro-
cedure. In the general case, a search routine replaces a constraint by a logically
equivalent disjunction of constraints, where the disjuncts are pairwise unsatisfi-
able (or at least do not imply each other). For example, X 6=Y can be searched
as X<Y ∨X>Y .

Often, a labeling procedure will use heuristics to choose the next variable and
value for labeling. The chosen sequence of variables is called a variable ordering.
For example, we may count the occurrences of variables in a constraint problem.
Then we may choose the variable that occurs most for labeling in the hope that
this will cause most simplification. This heuristic is an example of a static order.
Choosing the variable with the smallest set of possible values first is called first-
fail principle, since we may expect that labeling this variable will lead to failure

7

quickly, thus pruning branches in the search tree early. This heuritic results in
a dynamic order. Similarly, since the next value for labeling a variable must be
chosen, there are also value ordering heuristics. For an example, see the Boolean
constraint solver (Section 3).

2.4 Constraint Handling Rules

We will use the Constraint Handling Rules (CHR) [Frü98] language extended
with disjunction, CHR∨, to specify and implement the constraint solver algo-
rithms. CHR was initially developed for writing constraint solvers, but has
matured into a general-purpose concurrent constraint language over the last
decade. Its main features are a kind of multi-set rewriting combined with prop-
agation rules. The clean logical semantics of CHR facilitates non-trivial program
analysis and transformation. Implementations of CHR now exist in many Pro-
log systems, also in Haskell and Java. Besides constraint solvers, applications
of CHR range from type systems and time tabling to ray tracing and cancer
diagnosis [Frü04].

Due to space limitations, we will introduce CHR only very briefly. On the
web-site for CHR [Frü04], more information and executable constraint solvers
for online experimentation are available.

There are two types of rules in CHR, simplification rules of the form H <=> G
| B and propagation rules of the form H ==> G | B. The l.h.s. H is a conjunction
of CHR (i.e. user-defined, rule-defined) constraints, the guard G is a conjunction
of built-in (i.e. pre-defined) constraints, and finally, the r.h.s. B a conjunction
(or disjunction in CHR∨) of arbitrary constraints. An empty, trivial guard can
be omitted. An optional name may be prepended to the rule with the symbol
@. The CHR rules have an immediate logical reading, where the guard implies
a logical equality or implication between l.h.s. and r.h.s. of a rule.

The programs will use concrete syntax of Prolog implementations of CHR∨:
Conjunction ∧ is written as comma ’,’. Disjunction ∨ is written as semi-colon
’;’. Variables start with upper-case letters, constraint and function symbols
with lower-case letters. We also use some typical Prolog built-ins, such as syn-
tactic equality = that encodes term unification. For uniformity, these built-ins
are regarded as built-in constraints and will be explained at their use.

Operationally, a simplification rule H <=> G | B replaces instances of H by
B provided the guard holds. A propagation rule H ==> G | B instead adds B
to H. CHR is a concurrent committed-choice language, that means that rules
can be applied in parallel and that (unlike Prolog) a rule application is never
undone. CHR rules are applied exhaustively, until a fixed-point is reached, to
the global conjunction (considered as multi-set) of constraints. To avoid trivial
non-termination, a CHR propagation rule is never applied a second time to
the syntactically same conjunction of constraints. If new constraints arrive,
rule applications are restarted. (Thus any correct, terminating and confluent
constraint solver written in CHR will be incremental by nature.)

8

3 Boolean Algebra B

We start with the Boolean constraint system that admits a simple local consis-
tency algorithm to solve constraints [MSSA93].

Constraint System B

Domain
Truth values 0 and 1

Signature

• Function symbols.

– Truth values 0 and 1

– Unary connective ¬
– Binary connectives u,t,⊕,→,↔

• Constraint symbols.

– Nullary symbols true, false

– Binary symbol =

Constraint theory
Boolean algebra according to the following truth table.

X Y ¬X X u Y X t Y X ⊕ Y X → Y X ↔ Y
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 1

Allowed atomic constraints

C ::= true false X = Y ¬X = Z X � Y = Z,

where X, Y , and Z are variables or truth values and where � ∈ {u,t,⊕,→,↔}.

The domain consists of the truth values 0 for falsity, 1 for truth. The signa-
ture includes these constants and the usual logical connectives of propositional
logic as function symbols.

For simplicity, the constraint theory is given by a truth table. Boolean ex-
pressions are equal if they denote the same truth value. The theory is decidable
and complete. Despite its simplicity, the problem of determining whether a
Boolean constraint is satisfiable is NP-complete, i.e., the worst case running

9

time of any algorithm solving this problem is exponential in the size of the
problem.

The allowed atomic constraints are in flat normal form, each constraint
contains at most one logical connective. Non-flat constraints can be flattened.
For example, (X uY)tZ=¬W can be flattened into (U tZ=V)∧ (X uY =U)∧
(¬W=V). As the allowed atomic constraints correspond to Boolean functions,
we call the arguments X and Y of the allowed atomic constraints inputs and
the last one, Z, output.

3.1 Local Propagation Constraint Solver

In the Boolean constraint solver a local consistency algorithm is used. It simpli-
fies one atomic Boolean constraint at a time into one or more syntactic equalities
whenever possible. Unlike in Section 6, we assume here that syntactic equality
= is a built-in constraint. The rules for X u Y = Z, which is represented in
relational form as and(X,Y,Z), are as follows. For the other connectives, they
are analogous.

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and(X,Y,Z) <=> X=1 | Y=Z.
and(X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,Z) <=> X=Y | Y=Z.
and(X,Y,Z) <=> Z=1 | X=1,Y=1.

For example, the first rule says that the constraint and(X,Y,Z), when it is known
that the input X is 0, can be reduced to asserting that the output Z must be
0. Hence, the constraint and(X,Y,Z), X=0 will result in X=0, Z=0. Note that
a rule for Z=0 is missing, since this case admits no simplification into syntactic
equalities.

The above rules are based on the idea that, given a value for one of the vari-
ables in a constraint, we try to detect values for other variables. This approach
of determining variables is called value propagation and is similar in spirit to
constant propagation as used in data flow analysis of programs. Value propaga-
tion is frequently used in constraint-based graphical user interfaces to maintain
invariants of the layout.

However, the Boolean solver goes beyond propagating values, since it also
propagates equalities between variables. For example, and(1,Y,Z), neg(Y,Z)
will reduce to false, and this cannot be achieved by value propagation alone.

Termination. The above rules obviously terminate, since a CHR constraint
is always reduced to built-in constraints.

Complexity. We will give an informal derivation of the worst case time com-
plexity. Let c be the number of atomic Boolean constraints in a constraint
problem. Each rule application removes one constraint. Hence, there can be at
most c rule applications.

10

Before applying a rule, we have to find it. In the worst case, there are c rule
tries (rule application attempts), since we may have to check each of the at most
c constraints in the current state of computation against the given rules until
we find an applicable one. Each check can be done in quasi-constant time using
the union-find algorithm for built-in syntactic equality (see Subsection 6.1).

Thus the worst case time complexity of applying the above rules is slightly
worse than O(c2), the complexity observed in experiments is usually lin-
ear [Frü02].

3.1.1 Search

The above solver is incomplete. (It must be, since it has polynomial complexity
and solving Boolean constraints has exponential complexity.) For example, the
solver cannot detect inconsistency of and(X,Y,Z), and(X,Y,W), neg(Z,W).

For Boolean constraints, search (cf. Subsection 2.3.3) can be done by trying
the values 0 or 1 for a variable. The search routine for Boolean constraints
can be implemented in CHR∨ by a labeling procedure enum that takes a list
of variables as argument. The order of the variables in the list determines the
variable order.

enum([]) <=> true.
enum([X|L]) <=> bool(X), enum(L).

bool(X) <=> (X=0 ; X=1).

Lists have a special syntax, e.g., [1,2,3,4] is a list of four elements. The
empty list is []. The term [X|L] denotes the list whose first element is X and
whose remainder (tail) is the list L.

An efficient implementation has to make sure that constraint solving
and search are interleaved. For example, consider the constraint problem
and(X,Y,Z), and(X,Y,W), neg(Z,W), enum([X,Y,Z,W]). The computation
will reach enum without simplifying any constraints. enum will call bool(X),
which will try to impose the constraint X=0. This will cause the constraint
solver to simplify the and constraints into X=0, Z=0, W=0, which will in turn
cause neg(Z,W) to fail. Backtracking will undo X=0 and its consequences, and
X=1 will be tried. This time we get Y=Z, Y=W, and hence neg will fail again.
There are no more choices for X, so the computation fails finitely and false is
returned as a result.

To improve the labeling, we can introduce a variable ordering. We choose
the variable for labeling that occurs most in the problem - in the hope that this
will cause most simplification. This heuristic is called first-fail principle.

We can also introduce a value ordering. We count the cases in which the
values 0 and 1 cause simplification. For example, choosing 0 for the last argu-
ment of and does not cause any simplification. Based on the counts, we may
decide to try one of the values first.

11

Other Approaches. We briefly discuss other approaches for solving Boolean
constraints.

• Generic Consistency Methods (Local Propagation)

Boolean constraints can be translated into a constraint problem over finite
integer domains (Section 4) that are solved using consistency techniques.
This increases expressiveness, since arithmetic functions are available.

• Integer Programming

This technique from operations research uses linear programming meth-
ods to solve Boolean problems expressed as linear polynomial equations
(Section 5) over the integers. A wide range of methods exist, but the al-
gorithms are often not incremental, i.e., all constraints have to be known
from the beginning.

• Theorem Proving

The famous SAT problems can be regarded as propositional Boolean con-
straint problems in clausal form. Variants of resolution are employed to
solve problems in clausal form. (Resolution can be considered as con-
straint solving [Dum95].) Already the 3-SAT problem (conjunction of
clauses with at most three variables) is NP-complete.

• Boolean Unification

An extension of syntactic unification (Section 6) is used to solve Boolean
equalities. Boolean unification computes a single, most general solution.
Boolean variable elimination requires the introduction of auxiliary vari-
ables, possibly leading to an exponential blow-up in size.

3.2 Application Example: Digital Circuits

Digital circuits are usually modeled using Boolean constraints. They are applied
to generate, specialize, simulate, and analyze (verify and test) the circuits. Of
special importance is fault analysis. A digital circuit consist of (logical) gates,
which correspond to allowed atomic constraints.

We briefly show how to model the classical full-adder circuit. It adds three
single-digit binary numbers I1,I2,I3, where I3 is called the carry-in, to pro-
duce a single number consisting of two digits O1,O2, where O2 is called the
overflow or carry-out. Several full-adders can be interconnected to implement a
n-bit adder. The full-adder circuit can be implemented by the rule:

add(I1,I2,I3,O1,O2) <=>
and(I1,I2,A1),
xor(I1,I2,X1),
and(X1,I3,A2),
xor(X1,I3,O1),
or(A1,A2,O2).

12

For example, the constraint add(I1,I2,I3,O1,O2),I3=0,O2=1 will reduce to
I3=0,O2=1,I1=1,I2=1,O1=0. The computation proceeds as follows: because
I3=0, the output A2 of the and gate with input I3 must be 0. As O2=1 and
A2=0, the input A1 of the or gate must be 1. A1 is the output of an and gate, so
its inputs I1 and I2 must be both 1. Hence, the output X1 of the first xor gate
must be 0, and therefore also the output O1 of the second xor gate must be 0.

4 Finite Domains FD

Finite domains are one of the success stories of constraint logic programming
(CLP). In this constraint system, variables are constrained to take their value
from a given, finite set. Choosing integers for values allows for arithmetic expres-
sions as constraints. Many real-life combinatorial problems can be expressed in
this constraint system, most prominently scheduling and planning applications.
Finite domains appeared in one of the first CLP languages CHIP [DVS+88].
It was the result of a synthesis of logic programming (Prolog) and constraint
networks as explored in artificial intelligence research. Other influential CLP
languages with finite domains are clp(FD) [CD96] and cc(FD) [vHSD95].

Constraint System FD

Domain
The set Z of integers

Signature

• Function symbols.

– The integers 0 and 1

– Unary prefix operator − (minus sign)

– Binary infix operators +, and .. for intervals, and lists [. . .]

• Constraint symbols.

– Nullary symbols true, false

– Binary symbols =, <,≤, >,≥, 6=, and in for domains

Constraint theory
Presburger arithmetic extended by

• X + (−X) = 0, X≤Y ↔ ∃ZX + Z = Y (Z nonnegative), . . .

• X in n..m ↔ n≤X ∧X≤m

• X in [k1, . . . , kl] ↔ X=k1 ∨ . . . ∨X=kl

13

Allowed atomic constraints
Linear equations and inequations:

C ::= true false X in n..m X in [k1, . . . , kl] X�Y X+Y =Z

where n, m, k1, . . . , kl(l ≥ 0) are integers, � ∈ {=, <, >,≤,≥, 6=}, and X, Y
and Z are pairwise distinct variables.

The theory is Presburger arithmetic extended to accommodate the addi-
tional constraints and negative numbers. It is mentioned here for completeness,
its knowledge is not necessary to understand the constraint system. Presburger
arithmetic is complete and decidable, it axiomatizes the linear fragment of arith-
metic over natural numbers with + and =. (Linearity means that there is no
multiplication between variables.) The theory only refers to the numbers 0 and
1, which are in the signature. The interpretation will map arithmetic expressions
to the integers, which form the constraint domain.

The domain constraint X in D means that the variable X takes its value
from the given finite domain D. More precisely, X in [k1, . . . , kl] denotes an
enumeration domain constraint, where the possible values of X are explicitly
enumerated. X in n..m denotes an interval domain constraint, where the val-
ues of X must be in the given interval n..m (bounds included). According to
the constraint theory, a domain constraint with the empty domain, X in [] or
X in n..m (n > m), is unsatisfiable.

The difference between an interval domain and an enumeration domain is
in their algorithmic use. In the former, constraint simplification is performed
only on the interval bounds, while in the latter each element in the enumera-
tion is considered. For example, from X in [1, 2, 3] ∧ X 6=2 we can derive the
tighter domain constraint X in [1, 3], while from X in 1..3∧X 6=2 no constraint
propagation is possible, since proper intervals cannot have “holes”. Thus, enu-
meration domains allow more simplification (tighter domains). On the other
hand, they are only tractable for sufficiently small enumerations.

The allowed atomic constraints are in flat normal form and integers are not
allowed in the place of variables. A determined variable (X=v) is expressed by
a domain constraint X in [v] or X in v..v.

Any linear polynomial equation with rational coefficients can be expressed
as a conjunction of allowed constraints. First, the coefficients of the polynomial
are multiplied with a number such that they all become integers. Then the
multiplications are rewritten as sums, e.g., 3X becomes X + X + X. Then,
the resulting expression is flattened. For example, X+X+Y >5 is flattened
into W>F ∧ X+V =W ∧ X+Y =V ∧ F in [5]. While therefore our allowed
constraints are of sufficient expressibility, in practice one will use coefficients
and linear polynomials in allowed constraints to improve representation and
propagation. It is easy to extend the constraint solver given below in this way.
(Since the number of constraints and variables changes then, the complexity
formula changes accordingly).

14

4.1 Arc Consistency and Bounds Consistency

Arc consistency is a classical local consistency algorithm from constraint net-
works in artificial intelligence that originally was restricted to enumeration do-
main constraints and binary constraints.

In an arc-consistent atomic constraint, every value of every domain takes
part in a solution of the constraint. To achieve arc consistency, it suffices to
find and remove those values that do not participate in any solution. A conjunc-
tion of constraints can be made arc consistent by making each atomic constraint
arc consistent. Obviously, this approach describes a local consistency algorithm
(Section 2.3.2), because we consider sub-problems of one atomic constraint to-
gether with the domain constraints of its variables.

The worst case time complexity of arc consistency is O(cdn) for arbitrary
n-ary constraints [MM88], where c is the number of constraints and d is the size
of the largest domain.

For interval domains, a weaker but analogous form of arc consistency proves
useful. We just require that all interval bounds participate in a solution of
the constraint. A conjunction of constraints is bounds consistent if each atomic
constraint in it is bounds consistent. Constraints can be made bounds consistent
by tightening their interval domains.

Note that local consistency does not imply global consistency. For example,
the inconsistent constraint X in D ∧ Y in D ∧ X 6=Y ∧ X=Y is arc and
bounds consistent for all domains D with more than one value.

4.2 Local Propagation Constraint Solver

For simplicity, we start with the bounds consistency algorithm for interval con-
straints [vHDT92, Ben95]. The implementation is based on interval arithmetic.

4.2.1 Interval Domains

In the solver, in, le, eq, ne, and add are CHR constraints, the inequalities <,
>, =<, >=, and \= are built-in arithmetic constraints, and min, max, +, and - are
built-in arithmetic functions. Intervals of integers are closed under computations
involving only these functions. The rules for local consistency affect the interval
constraints (in) only, the other constraints remain unaffected.

inconsistency @ X in A..B <=> A>B | false.
intersection @ X in A..B, X in C..D <=>

X in max(A,C)..min(B,D).

The inconsistency rule detects inconsistency due to an empty interval. The
intersection rule intersects two intervals for the same variable.

Here are some sample rules for inequalities:

le @ X le Y, X in A..B, Y in C..D <=> B>D |
X le Y, X in A..D, Y in C..D.

15

le @ X le Y, X in A..B, Y in C..D <=> C<A |
X le Y, X in A..B, Y in A..D.

eq @ X eq Y, X in A..B, Y in C..D <=> A\=C |
X eq Y, X in max(A,C)..B, Y in max(C,A)..D.

eq @ X eq Y, X in A..B, Y in C..D <=> B\=D |
X eq Y, X in A..min(B,D), Y in C..min(D,B).

ne @ X ne Y, X in A..B, Y in C..D <=> A=C,C=D |
X ne Y, X in (A+1)..B, Y in C..D.

...

X le Y means that X is less than or equal to Y. Hence, X cannot be larger
than the upper bound D of Y. Therefore, if the upper bound B of X is larger
than D, we can replace B by D without removing any solutions. Analogously, one
can reason on the lower bounds to tighten the interval for Y. The eq constraint
enforces the intersection of the intervals associated with its variables provided
the bounds are not yet the same. The ne constraint can only cause a domain
tightening if one of the intervals denotes a unique value that happens to be the
bound of the other interval.

Example 4.1 Here is a sample computation involving le:
U in 2..3, V in 1..2, U le V

7→le V in 1..2, U le V, U in 2..2
7→le U le V, U in 2..2, V in 2..2.

Finally, X+Y =Z is represented as add(X,Y,Z) in the rule:

add @ add(X,Y,Z), X in A..B, Y in C..D, Z in E..F <=>
not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D) |
add(X,Y,Z),
X in max(A,E-D)..min(B,F-C),
Y in max(C,E-B)..min(D,F-A),
Z in max(E,A+C)..min(F,B+D).

For addition, we use interval addition and subtraction to compute the interval
of one variable from the intervals of the other two variables. Note that when
an interval is subtracted, its bounds have to be interchanged. This is because
−(n..m) = (−m..−n). These computed intervals are intersected with the exist-
ing intervals using min and max. The guard ensures that at least one interval
becomes smaller whenever the rule is applied. The built-in prefix operator not
negates its argument, a conjunction of built-in constraints. Here these built-in
constraints describe when addition is bounds consistent.

Example 4.2 Here is an example computation involving add:
U in 1..3, V in 2..4, W in 0..4, add(U,V,W) 7→add

add(U,V,W), U in 1..2, V in 2..3, W in 3..4

16

Termination. The rules inconsistency and intersection remove one in-
terval constraint each. We assume that the remaining rules deal with non-empty
intervals only. This can be enforced by additional guard constraints on the in-
terval bounds which have been omitted from the code for readability. We can
use the inequalities in the guards of the rules to show that in each rule, at least
one interval in the body is strictly smaller than the corresponding interval in
the head, while the other intervals remain unaffected.

Complexity. Given a constraint problem, let w = m−n+1 be the maximum
width (size) of an interval constraint X in n..m, v be the number of different
variables and c be the number of constraints. Since each rule application makes
at least one interval smaller, the worst number of rule applications is O(vw), it
is not dependent on the number of constraints. There may be up to O(c) rule
tries. Each rule try and each rule application take constant time if the arithmetic
built-ins take constant time (which is the case for bounded numbers). So the
worst case time complexity is O(cvw).

4.2.2 Enumeration Domains

The rules for enumeration domains are similar to the ones for interval domains.
Instead of interval arithmetic, we have to perform arithmetic operations on
enumerations, i.e., sets of values, by performing the operations on each possible
tuple of values.

In the exemplary rules below we assume that all domains are enumeration
domains. We also assume that the arithmetic functions max and min are also
applicable to lists of values. filter max removes all values from a list that are
larger than all values in another list.

inconsistency @ X in [] <=> false.
intersection @ X in L1, X in L2 <=>

intersection(L1,L2,L3), X in L3.

le @ X le Y, X in L1, Y in L2 <=> max(L1) > max(L2) |
filter_max(L1,L2,L3),
X le Y, X in L3, Y in L2.

...

Example 4.3 The constraint problem X le Y, X in [4,6,7], Y in [3,7]
leads to X le Y, X in [4,6,7], Y in [7]. The problem X le Y, X in
[2,3,4,5], Y in [1,2,3] leads to X le Y, X in [2,3], Y in [2,3]. The
problem X le Y, X in [2,3,4], Y in [0,1] leads to false.

The built-in constraint diff holds if its argument are lists with different
elements.

eq @ X eq Y, X in L1, Y in L2 <=> diff(L1,L2) |
intersection(L1,L2,L3),
X eq Y, X in L3, Y in L3.

17

The arguments for termination and complexity of this enumeration domain
solver are similar to the interval domain solver. The complexity changes. Instead
of the interval width w, we use the maximum size of an enumeration domain
denoted by d. Because operations on arbitrarily large enumeration domains
as performed by the built-in constraints may take up to O(d2), the overall
complexity is thus O(cvd3).

4.2.3 Search

To achieve satisfaction-completeness, search must be employed (Subsec-
tion 2.3.3). We implement the search routine analogous to the one for Boolean
constraints (Subsection 3.1.1).

enum([]) <=> true.
enum([X|Xs]) <=> indomain(X), enum(Xs).

For enumeration domains, each value in the enumeration domain is tried.
Note that X=v is expressed as the allowed constraint X in [V].

indomain(X), X in [V|L] <=> L=[_|_] |
(X in [V] ; X in L, indomain(X)).

The guard ensures termination. Calling indomain(X) in the second disjunct
ensures that subsequently, the next value for X from the list L will be tried.

For interval domains, search is usually done by splitting intervals in two
halves. This splitting is repeated until the bounds of the interval are the same.

indomain(X), X in A..B <=> A<B |
C is (A+B)//2,

(X in A..C ; X in (C+1)..B),
indomain(X).

The guard ensures termination. Note that indomain(X) is called outside of the
disjunction, because both interval halves can be split further in the future.

4.3 Application Example: Scheduling

Scheduling is concerned with planning of the temporal order of tasks (jobs) in
the presence of limited resources. A task may be a production step or lecture,
the resource may be a machine, electrical energy, or lecture room. Typically,
tasks compete for resources, because they are limited. The problem is to find a
schedule with an optimal value for a given objective function (measuring time
or use of other resources).

The classical job shop scheduling problem assumes that tasks have a fixed
duration and cannot be interrupted. Resources are machines that can process
at most one task at a time. The objective is to find a feasible schedule that
minimizes the overall production time that is needed to accomplish all the tasks.
This problem can be expressed as a finite-domain constraint problem. (Opti-
mization aspects are not discussed for lack of space.)

18

Each task Ti is associated with a constraint

Si + di = Ei,

where Si is the starting time of the task, di is its duration (usually known) and
Ei is its end time. These temporal variables range between 0 and a maximum
value.

There is a partial order between tasks which is expressed by precedence
constraints. Task Ti must terminate before task Tj starts:

Si + di ≤ Sj

Again this constraint can be easily expressed as allowed constraint of FD.
Finally, a capacity constraint (in the simplest case) expresses that two tasks

Ti and Tj cannot be processed at the same time

Si + di ≤ Sj ∨ Sj + dj ≤ Si

Since the disjunction should not be implemented by search (this would immedi-
ately lead to exponential complexity), the capacity constraint is often encoded
by a special finite-domain constraint, as e.g. in CHIP.

Additional constraints can model set-up times, release times, deadlines, as
well as renewable resources, and non-availability of resources at certain times.
These conditions are usually implemented as global constraints that can take an
arbitrary number of variables as argument, which results in better propagation.

5 Linear Polynomial Equations <
One motivation for introducing constraints in Prolog was the non-declarative
nature of the built-in predicates for arithmetic computations. Therefore, the
first CLP languages included constraint solvers for linear polynomial equations
and inequations over the real numbers (CLP(<) [JMSY92]) or rational numbers
(Prolog-III [Col90], CHIP [DVS+88]). The constraint system < relies on variable
elimination. Since this algorithm is complete, no search is necessary.

Constraint System <

Domain
The set < of real numbers

Signature

• Function symbols.

– The real numbers 0 and 1

– Unary prefix operators + and −

19

– Binary infix operators + and ∗

• Constraint symbols.

– Nullary symbols true, false
– Binary symbols =, <,≤, >,≥, 6=

Constraint theory
The linear existential fragment of Tarski’s axiomatic theory of real closed fields
for elementary geometry.

Allowed atomic constraints
Linear equations and inequations:

C ::= true false a1 ∗X1 + . . . + an ∗Xn + b � 0,

where n ≥ 0, ai, b ∈ <, the coefficients ai 6= 0, the variables X1, . . . , Xn are
totally ordered in strictly descending order, and � ∈ {=, <,≤, >,≥, 6=}. The
l.h.s. of the equation is called the (linear) polynomial.

Tarski’s theory of real closed fields covers linear and non-linear polynomials.
It is mentioned here for completeness, its knowledge is not necessary to under-
stand the constraint system. The theory only refers to the real numbers 0 and
1, which are in the signature. The interpretation will map arithmetic expres-
sions to the real numbers, which form the domain. The theory is complete and
decidable, but intractable. However, the linear existential fragment is decidable
in polynomial time.

5.1 Variable Elimination Constraint Solver

Typically, in constraint solvers, incremental variants of classical variable elimina-
tion algorithms [Imb95] like Gaussian elimination for equations and Dantzig’s
Simplex algorithm for equations and inequations are implemented. Gaussian
elimination has cubic complexity in the number of different variables in a prob-
lem. The Simplex algorithm has exponential worst case complexity but is poly-
nomial on average.

To illustrate the principle of variable elimination, we first consider equations
only. A conjunction of equations is in solved form if the left-most variable of
each equation does not appear in any other equation. We compute the solved
form by eliminating multiple occurrences of variables.

• Choose an equation a1 ∗X1 + . . . + an ∗Xn + b = 0.

• Make its left-most variable explicit: X1 = −(a2∗X2+. . .+an∗Xn+b)/a1.

• Replace all other occurrences of X1 by −(a2 ∗X2 + . . . + an ∗Xn + b)/a1.

• Simplify the resulting equations into allowed constraints (this is always
possible).

20

• Repeat until solved.

Actually, since constraints should be processed incrementally, we cannot
eliminate a variable in all other equations at once, but rather consider the other
equations one by one. Also, we do not need to make a variable explicit, but
keep the original equation.

eliminate @ A1*X+P1 eq 0, PX eq 0 <=>
find(A2*X,PX,P2) |
normalize(A2*(-P1/A1)+P2,P3),
A1*X+P1 eq 0, P3 eq 0.

empty @ B eq 0 <=> number(B) | zero(B).

The eliminate rule performs variable elimination. It takes any pair of equations
with a common occurrence of a variable, X. In the first equation, the variable
appears left-most. This equation is used to eliminate the occurrence of the
variable in the second equation. The first equation is left unchanged.

In the guard, the built-in find(A2*X,PX,P2) tries to find the expression
A2*X in the polynom PX, where X is the common variable. The polynom P2 is
PX with A2*X removed. The built-in normalize(E,P) normalizes an arithmetic
expression E into a linear polynomial P.

The empty rule says that if the polynomial contains no more variables, then
the number B must be zero.

The solver is satisfaction-complete since it produces the solved form. (If
a set of equations is not in solved form, then one of the rules of the solver is
applicable.)

Example 5.1 The two equations

1*X+3*Y+5 eq 0, 3*X+2*Y+8 eq 0

match the eliminate rule, the variable X in the second equation is removed via

normalize(3*(-(3*Y+5)/1) + (2*Y+8), P3).

The resulting equations are

1*X+3*Y+5 eq 0, -7*Y+ -7= 0

The eliminate rule is now applicable to the equations in reversed order, i.e. Y
is removed from the first equation via

normalize(3*(-(-7)/-7) + (1*X+5), P3)

The final result is:

1*X+2 eq 0, -7*Y+ -7= 0

So X is determined to be -2 and Y is -1.

The solver can be extended by a rule to detect determined variables:

determine @ A*X+B eq 0 <=> number(B) | X is -B/A.

The built-in V is E computes the result of the arithmetic expression E and
equates it with the variable V.

21

Termination. The solver terminates, because the variables in each polyno-
mial equation are ordered in strictly descending order. Hence, in the eliminate
rule, the left-most, i.e., largest, variable of an equation is replaced by several
strictly smaller ones.

Complexity. Consider a problem with c equations and v different variables.
Since each constraint can contain at most all v variables, there can be at most
cv occurrences of variables in any state of the computation. Each rule appli-
cation either removes a variable or an equation. There are at most O(cv) rule
applications, provided a removed variable will never be re-introduced into the
equation. In an incremental setting this is achieved by first removing variables
from a newly arrived equation and only then use the new equation for removing
variables in the old equations. This behavior is implicit in most CHR implemen-
tations, because they prefer removal of new constraints. For a new constraint,
there are O(c) rule tries in the worst case. Trying to apply the eliminate rule
to given constraints has complexity O(v), the empty rule takes constant time.
Hence, the overall complexity is O(c2v2), i.e., quadratic in the maximal size of
the problem.

Inequations. We can extend our solver to inequations. As in the Simplex
algorithm, an inequation is flattened into an equation and a simple inequation
on a single new variable, which is called slack variable. For example, P≥0 is
rewritten into P=S ∧ S≥0. In general, P � 0 is rewritten into P=S ∧ S � 0,
where � ∈ {<,≤, >,≥, 6=}.

However, the given rules do not suffice to detect inconsistency between equa-
tions consisting only of slack variables. For example, the conjunction of con-
straints 3∗S1+4∗S2+0=0∧S1≥0∧S2>0 is inconsistent. To achieve satisfaction-
completeness, one can add rules that either enforce a more strict solved form (as
in CHIP), or do more variable elimination on such equations (as in CLP(<)).

5.2 Application Example: Finance

The calculation of a mortgage is one of the classic examples of CLP. The scenario
is that one takes a loan and pays back a certain amount for a certain number
of months at a certain interest rate. The mortgage calculation can be concisely
expressed by a recursive rule in CHR∨, where

• D: Amount of Loan, Debt, Principal

• T: Duration of loan in months

• I: Interest rate per month

• R: Rate of payments per month

• S: Balance of debt after T months

22

mortgage(D, T, I, R, S) <=>
T eq 0,
D eq S
;

T gt 0,
T1 eq T - 1,
D1 eq D + D*I - R,
mortgage(D1, T1, I, R, S).

The base case is that we do not pay back any more, i.e., T eq 0. Then the cur-
rent debt is the final balance, i.e., D eq S. Otherwise T gt 0, and we calculate
the remaining debt D1 in the next month (T1 eq T-1) taking into account the
repayment R and the interest rate I.

The constraint problem mortgage(100000,360,0.01,1025,S) results in
S=12625.90 (rounded). This demonstrates the effect of accumulation of in-
terest: even though we have paid back 360 times 1025 (= 369000) over time,
there is still a final debt of 12625.90.

With the same rule, we can also compute what initial loan we
can pay back completely under the conditions above: the problem
mortgage(D,360,0.01,1025,0) results in D=99648.79, only a slightly lower
amount.

But how much longer would we have to pay for the original loan
of 100000? The problem mortgage(100000,T,0.01,1025,0) is unsatisfi-
able. This is because the repayment does not exactly add up to the
loan with the accumulated interest. The problem -1025 lt S, S le 0,
mortgage(100000,T,0.01,1025,S) results in T=374, S=-807.96, so the re-
payment in the final, 374th month is not the full rate, it is just 1025− 807.96.

We may also be interested in the general relationship between initial loan
and monthly rate of repayment under our initial conditions: The problem
mortgage(D,360,0.01,R,0) results in R eq 0.0102861198*D, i.e., the monthly
repayment is just above the 1% interest rate of the loan.

However, if the interest rate I is left unknown, the equation D1 eq D + D*I
- R will be non-linear after one recursion step, since D1, the new D, is not known.
Proceeding with the recursion will thus not determine D1 and D, the equation
remains non-linear.

6 Rational Trees RT

Syntactic equality of first order terms is an essential constraint system for (con-
straint) logic programming, since terms are the universal data structure and
equalities can be used to build, access, and take apart terms. (We therefore
omit a special section on application examples.)

In early Prolog implementations, the occur-check was omitted from syntactic
equality for efficiency reasons. The result was a unification algorithm that could
go into an infinite loop. In Prolog II, an algorithm for properly handling the

23

resulting infinite terms was introduced [Col82]. This class of infinite terms is
called rational trees.

A rational tree is a (possibly infinite) tree which has a finite set of subtrees.
For example, the infinite tree f(f(f(. . .))) only contains itself. It has a finite
representation as a directed (possibly cyclic) graph or as an equality constraint,
e.g., X=f(X).

Constraint System RT

Domain
Herbrand universe

Signature

• Infinitely many function symbols.

• Constraint symbols.

– Nullary symbols true, false

– Binary symbol =

Constraint theory
Clark’s Equality Theory
Reflexivity: ∀(true → x=x)
Symmetry: ∀(x=y → y=x)
Transitivity: ∀(x=y ∧ y=z → x=z)
Compatibility: ∀(x1=y1 ∧ . . . ∧ xn=yn → f(x1, . . . , xn)=f(y1, . . . , yn))
Decomposition: ∀(f(x1, . . . , xn)=f(y1, . . . , yn) → x1=y1 ∧ . . . ∧ xn=yn)
Contradiction: ∀(f(x1, . . . , xn)=g(y1, . . . , ym) → false) if f 6= g or n 6= m

Allowed atomic constraints

C ::= true false s=t

where s and t are terms over the signature Σ.

The associated domain is the Herbrand universe, i.e. all terms that can
be built out of the function symbols in the signature. The constraint theory
is decidable, but not complete. For example, ∃X, Y (X=f(X) ∧ Y =f(Y) ∧
¬X=Y) does not follow from the theory, nor does its negation. One more
axiom concerning implied equalities is needed for a complete theory [Mah88].

Let Xi be variables and tj be arbitrary terms (1 ≤ i, j ≤ n). A conjunction
of equations is solved (in solved normal form) if it is of the form

X1=t2 ∧X2=t3 ∧ . . . ∧Xn−1=tn (n ≥ 0),

where Xi 6= Xj and Xi 6= tj for all (1 ≤ i < j ≤ n).

24

In words, if a variable occurs on the l.h.s of an equation, it does not occur as
the l.h.s. or r.h.s. of any subsequent equation.

For example, the equation f(X, b)=f(a, Y), the equations X=t ∧X=s and
X=Y ∧ Y =X are all not in solved form, while X=Z ∧ Y =Z ∧ Z=t is solved.
The solved form is not unique, e.g., X=Y and Y =X are logically equivalent
but syntactically different solved forms, as are X=f(X) and X=f(f(X)).

From the solved form we can read off the most general unifier of the given
set of initial equations by interpreting each equation Xi=ti as a substitution
that replaces Xi by ti.

6.1 Variable Elimination Constraint Solver

The following algorithm to solve equations over rational trees is similar to the
one in [Col82], but unlike this and most other algorithms for unification, it does
not rely on substitutions (that can cause exponential blow-up of the size of
terms).

The implementation relies on a total order on terms, expressed by the built-
in constraint X@<Y. In that order, terms of smaller size are smaller. The size
of a term is the number of occurrences of function symbols in the term. For
different variables x and y, either x@<y or y@<x, they cannot be the same in
the order. The built-in constraint X@=<Y holds if Y@<X does not hold. (With
the total order @<, the conditions for the solved normal form can be restated as
Xi@<Xi+1 and Xi@<ti+1, since @< is transitive and implies 6=.)

We need some more auxiliary built-ins to be independent of the representa-
tion of terms in the implementation: var(X) tests if X is a variable, nonvar(X)
tests if X is not a variable. same functor(T1,T2) tests if T1 and T2 have
the same function symbol and the same arity. args2list(T1,L1) holds if
L1 is the list of arguments of the term T1. The auxiliary CHR constraint
same args(L1,L2) pairwise equates the elements of the two lists using eq.

reflexivity @ X eq X <=> var(X) | true.

orientation @ T eq X <=> var(X),X@<T | X eq T.

decomposition @ T1 eq T2 <=> nonvar(T1),nonvar(T2) |
same_functor(T1,T2),
args2list(T1,L1),args2list(T2,L2),
same_args(L1,L2).

confrontation @ X eq T1, X eq T2 <=> var(X),X@<T1,T1@=<T2 |
X eq T1, T1 eq T2.

It is easy to see that the logical readings of the rules reflexivity and
orientation are consequences of the corresponding axioms Reflexivity and
Symmetry in the constraint theory. The rule decomposition implements the
axioms Compatibility, Decomposition, and Contradiction (Clash). When there
is a clash, same functor will fail. The rule confrontation is a consequence

25

of Transitivity and Symmetry. The rule was chosen over transitivity for effi-
ciency (it does not increase the number of equations). It performs a limited
amount of variable elimination by only considering l.h.s. of equations. Note the
relationship with the eliminate rule in the constraint solver for < (Section 5).

The solver is satisfaction-complete. If no more rule of the solver is appli-
cable, the final conjunction of equations is in solved form. This can be proven
by contradiction: if the equations were not solved, one of the rules would be
applicable.

Example 6.1 We equate two terms. The constraints that are rewritten by
a transition are underlined. For readability, we do not show the intermediate
states involving the auxiliary CHR constraint same args.

h(Y,f(a),g(X,a)) eq h(f(U),Y,g(h(Y),U)))
7→decomposition 7→∗ Y eq f(U), f(a) eq Y, g(X,a) eq g(h(Y),U)
7→orientation Y eq f(U), Y eq f(a), g(X,a) eq g(h(Y),U)
7→decomposition 7→∗ Y eq f(U), Y eq f(a), X eq h(Y), a eq U
7→orientation Y eq f(U), Y eq f(a), X eq h(Y), U eq a
7→confrontation Y eq f(U), f(U) eq f(a), X eq h(Y), U eq a
7→decomposition 7→∗ Y eq f(U), U eq a, X eq h(Y), U eq a
7→confrontation Y eq f(U), U eq a, X eq h(Y), a eq a
7→decomposition 7→∗ Y eq f(U), U eq a, X eq h(Y)

Example 6.2 Here is a simple example involving infinite rational trees.

X eq f(X), X eq f(f(X))
7→confrontation X eq f(X), f(X) eq f(f(X))
7→decomposition 7→∗ X eq f(X), X eq f(X)
7→confrontation X eq f(X), f(X) eq f(X)
7→decomposition 7→∗ X eq f(X), X eq X
7→reflexivity X eq f(X)

i.e., the second constraint is redundant.

Termination. The solver terminates, the proof of [Col82] can be adapted. It
is based on the following observations.

• The solver only produces equations between given terms or their subterms.

• The reflexivity rule removes an equation.

• The orientation is applicable at most once to an equation.

• The decomposition rule leads to equations between smaller terms.

• The confrontation rule does not change the first equation and replaces
the second equation X eq T2 by T1 eq T2. The guard of the rule ensures

26

that T1 is between X and T2 in the order @<. With repeated applications
of the rule to the second equation, the current T1 gets closer from below to
T2, but can never exceed it. Since there is only a finite number of equations
and terms up to a given size in any given problem, the confrontation
rule cannot be applied infinitely often.

Complexity. The built-in constraints can be implemented such that they take
constant time. Due to the confrontation rule, the complexity of the solver is
worse than linear. The intricate interaction between the decomposition rule
and the confrontation rule in the case of infinite terms makes it hard to
determine the exact worst case time complexity of the solver. We conjecture
that it is quadratic in the number of function symbols and variables.

Classical and Optimal Algorithms. In 1930, Herbrand gave an informal
description of a unification algorithm. Robinson rediscovered a similar algorithm
when he introduced the resolution procedure for first-order logic in 1965. Since
the late 70s, there are quasi-linear time algorithms for unification. They can
be considered as extensions of the union-find algorithm from constants to trees.
Indeed, the CHR implementation of union-find [SF05] can be combined with
the constraint solver rules given here to give a time-optimal algorithm.

7 Conclusions

In this compact overview, we introduced the most common constraint systems
used in constraint programming languages and algorithms to solve them. We
described constraints for Booleans, finite enumeration and interval domains,
linear polynomial equations and rational trees.

For each constraint system, we gave its allowed constraints, its constraint
theory, an algorithm to implement it, discussed the algorithm’s termination and
worst-case time complexity, and an example of a typical application. Algorithms
were presented as efficiently executable logical inference rules of the Constraint
Handling Rules (CHR) language.

References

[Apt03] K. Apt. Principles of Constraint Programming. Cambridge Univer-
sity Press, Cambridge, UK, 2003.

[Ben95] F. Benhamou. Interval constraint logic programming. In A. Podel-
ski, editor, Constraint Programming: Basics and Trends, LNCS 910,
Berlin, Heidelberg, New York, 1995. Springer.

[CD96] P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal
of Logic Programming, 27(3):185–226, 1996.

27

[Col82] A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-
A. Tärnlund, editors, Logic Programming, pages 231–251. Academic
Press, London, 1982.

[Col90] A. Colmerauer. An introduction to Prolog III. In J. W. Lloyd,
editor, Computational Logic: Symposium Proceedings, pages 37–79.
Springer, Berlin, Heidelberg, New York, 1990.

[Dum95] E. Dumbill. Application of resolution and backtracking to the solu-
tion of constraint satisfaction problems, project report, 1995.

[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf,
and F. Berthier. The constraint logic programming language chip.
In International Conference on Fifth Generation Computer Systems,
pages 693–702. Institute for New Generation Computer Technology,
1988.

[FA03] T. Frühwirth and S. Abdennadher. Essentials of Constraint Pro-
gramming. Springer, 2003.

[Frü98] T. Frühwirth. Theory and practice of constraint handling rules, Spe-
cial issue on constraint logic programming. Journal of Logic Pro-
gramming, 37(1–3):95–138, 1998.

[Frü02] T. Frühwirth. As time goes by: Automatic complexity analysis of
simplification rules. In 8th International Conference on Principles of
Knowledge Representation and Reasoning, Toulouse, France, 2002.

[Frü04] T. Frühwirth. CHR web-pages, www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr.html, 2004.

[HS88] M. Höhfeld and G. Smolka. Definite relations over constraint lan-
guages. LILOG Report 53, IWBS, IBM Deutschland, Stuttgart,
Germany, October 1988.

[HS03] W. Harvey and P. J. Stuckey. Improving linear constraint propa-
gation by changing constraint representation. Constraints Journal,
8(2):173–207, 2003.

[Imb95] J.-L. J. Imbert. Linear constraint solving in clp-languages. In
A. Podelski, editor, Constraint Programming: Basics and Trends,
LNCS 910, Berlin, Heidelberg, New York, 1995. Springer.

[JM94] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.
The Journal of Logic Programming, 19 & 20:503–581, 1994.

[JMSY92] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The clp(<)
language and system. ACM Transactions on Programming Languages
and Systems, 14(3):339–395, 1992.

28

[Mah88] M. J. Maher. Complete axiomatizations of the algebras of finite, ra-
tional, and infinite trees. In 3rd Annual IEEE Symposium on Logic in
Computer Science LICS’88, pages 348–357, Los Alamitos, California,
1988. IEEE Computer Society Press.

[MM88] R. Mohr and G. Masini. Good old discrete relaxation. In 8th Eu-
ropean Conference on Artificial Intelligence, pages 651–656, Munich,
Germany, 1988.

[MS98] K. Marriott and P. J. Stuckey. Programming with Constraints: An
Introduction. MIT Press, Cambridge, Mass., 1998.

[MSSA93] S. Menju, K. Sakai, Y. Sato, and A. Aiba. A study on boolean
constraint solvers. In F. Benhamou and A. Colmerauer, editors,
Constraint Logic Programming: Selected Research, pages 253–268.
MIT Press, Cambridge, Mass., 1993.

[SF05] T. Schrijvers and T. Frühwirth. Optimal union-find in constraint
handling rules. Theory and Practice of Logic Programming (TPLP),
to appear 2005.

[vHDT92] P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-
consistency algorithm and its specializations. Artificial Intelligence,
57:291–321, 1992.

[vHSD95] P. van Hentenryck, V. A. Saraswat, and Y. Deville. Constraint pro-
cessing in cc(FD). In A. Podelski, editor, Constraint Programming:
Basics and Trends, LNCS 910, Berlin, Heidelberg, New York, 1995.
Springer.

29

