
ARTS/DExVal Derivation of Meaningful Experiments for Validation

- Prof. A. Haeberer, PUC-Rio
- Prof. M. Wirsing, LMU Munich
- Dr. A. Ciarlini, PUC-Rio
- Dr. T. Fruehwirth, LMU Munich

ARTS

• Formal basis for software development, funded partially by Siemens, Brazil

Validation and Testing

- Critical
- Expensive
- Revealing maximum number of bugs
- Meaningful experiments

Model Checking

- Verification of properties
- Modal temporal logic
- Prop. holds or there is a counterexample
- Approximation
 - Infinite state machines \rightarrow Finite state machines
 - Continuous variables \rightarrow Discrete variables
 - State explosion

The Goal

- Verification and derivation of properties of concurrent transition systems
- Continuous variables and non-linear expressions
- Expressiveness: variables at different times

The Approach

- Symbolical execution
- Constraint Logic Programming
- User descriptions → all paths and corresponding derived properties
- E.g. Constraints on output → constraints on input

Hybrid Automata

- Continuous activities
- Discrete transitions
- Components
 - Variables
 - States: name, invariant and iteration
 - Transitions: source and target states, guarded actions, events

Hybrid System

- Timed hybrid automata
 - Synchronization: machine clock
 - Modifications according to last state
- Coordination: sharing of variables and events
- Simultaneous modifications
- Variable modified by only one automaton

Constraint Logic Programming

- Logic programming
 - Declarative rules defining relations
 - Search for all solutions using backtracking
 - Non-deterministic
- Constraint solving
 - Efficient algorithms
 - Solving sets of distinguished relations
 - Deterministic

Constraint Logic Programming

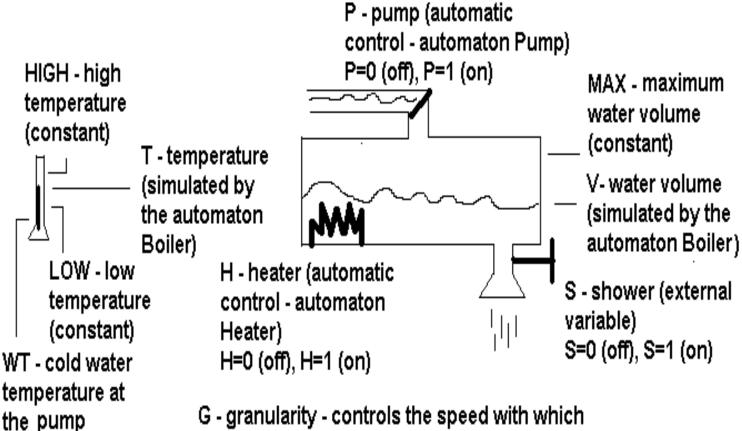
- LP + CS:
 - Expressiveness and efficiency
 - LP sends constraints to CS
 - Constraints solved in parallel
 - Inconsistency \rightarrow cut branch
 - Ex:
 - X+Y<5 and Y>0
 - $X=6 \rightarrow fail$

DExVal Tool

- Input:
 - Automata
 - Initial and final states (not mandatory)
 - Properties:Values or ranges(input, intermediate and output)
- Output: Paths and corresponding constraints relating selected variables
- Using output for testing $OUT>100 \rightarrow 10<IN<20$ $OUT\leq 100 \rightarrow (IN\leq 10) \lor (IN\geq 20)$ Better testing IN=1,10,15,20,30 than IN=12,13,14,15,16

Examples of Properties

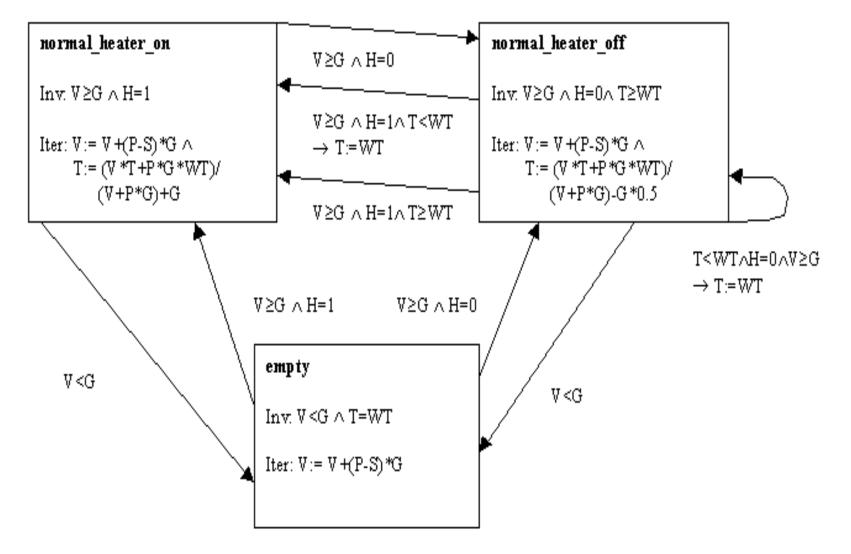
- Since X>Y, Z=1
- For all states, X has a higher value than its value in the previous state
- If, at some time, X>Y, then at most 5 clocks later Z=1
- Obs: Existential and universal quantification


Implementation

- Preparation stage
 - Data structure \rightarrow variables' history
 - Translation of descriptions into constraints
- Symbolic execution
 - search for paths
 - addition of new constraints corresponding to invariants, iterations and transitions

Implementation

- Production of answers
 - Projection on selected variables
 - Printing
 - States at each clock
 - Remaining constraints resulting from execution and projection


Boiler Example

the water volume and temperature vary (constant)

(constant)

Boiler Automaton

Initial temperature for taking a shower without turning on the heater

INPUT:

CONSTRAINTS:	<pre>heater:1=0, pump:1=1, water_volume:1=10.0, shower:1=1, all(X_shower:Y=1) = all(X_heater:Y=0)</pre>		
	<pre>all(X,shower:X=1), all(X,heater:X=0)</pre>		
INITIAL STATES:	pump_on, heater_maintain,		
	boiler_normal_heater_off		
FINAL STATES:	(not specified)		
CLOCKS:	5		
PROJECT:	temperature:1 (i.e. initial temperature)		

OUTPUT:

Clock	Pump	Heater	Boiler
1	on	maintain	normal_heater_off
2	on	maintain	normal_heater_off
3	on	maintain	normal_heater_off
4	on	maintain	normal_heater_off
5	on	maintain	normal_heater_off
temperature:1 > 47.18			

Behaviour of the shower for the continuous increase of the water level

```
INPUT:
CONSTRAINTS: heater:1=0, pump:1=1, temperature:1=30.0,
water_volume:1=6.0,
all(X,water_volume:(X+1)>water_volume:X) (increase water)
INITIAL STATES: pump_on, heater_maintain,
boiler_normal_heater_off
FINAL STATES: (not specified)
CLOCKS: 5
PROJECT: shower:X, water_volume:X (i.e. at all clocks)
```

```
OUTPUT:
```

Clock	Pump	Heater	Boiler
1	on	maintain	normal_heater_off
2	on	turning_on	normal_heater_on
3	on	maintain	normal_heater_on
4	on	maintain	normal_heater_on
5	on	maintain	normal_heater_on

```
shower:[1..4]=0, shower:5=Var,
water_volume:1=6.0, water_volume:2=8.0, water_volume:3=10.0,
water_volume:4=12.0, water_volume:5=14.0
```

Summary

- We are concerned with validation and testing
- Meaningful experiments
- Derivation of properties
- Symbolic execution
- DExVal tool based on CLP

Future work

- Integration with ARTS' graphical interface
- Tailoring the behaviour of the constraint solver:
 - Non-linear constraints
 - Non-determinism: disjunction and existential quantification
- Meaningful experiments:
 - Methodology
 - Real applications