
Constraint Handling Rules?Thom Fr�uhwirthECRC, Arabellastrasse 17, D-81925 Munich, Germanyemail: thom@ecrc.deAbstract. We are investigating the use of a class of logical formulas to de-�ne constraint theories and implement constraint solvers at the same time.The representation of constraint evaluation in a declarative formalism greatlyfacilitates the prototyping, extension, specialization and combination of con-straint solvers. In our approach, constraint evaluation is speci�ed using multi-headed guarded clauses called constraint handling rules (CHRs). CHRs de�nedeterminate conditional rewrite systems that express how conjunctions ofconstraints propagate and simplify.In this paper we concentrate on CHRs as an extension for constraint logicprogramming languages. Into such languages, the CHRs can be tightly inte-grated. They can make use of any hard-wired solvers already built into thehost language. Program clauses can be used to specify the non-deterministicbehavior of constraints, i.e. to introduce search by constraints. In this wayour approach merges the advantages of constraints (eager simpli�cation byCHRs) and predicates (lazy choices by clauses).1 IntroductionThe advent of constraints in logic programming is one of the rare cases where boththeoretical and practical aspects of a programming language have been improved.Constraint logic programming [JaLa87, VH89, VH91, F*92, JaMa94] combines theadvantages of logic programming and constraint handling. In logic programming,problems are stated in a declarative way using rules to de�ne relations (predicates).Problems are solved by the built-in logic programming engine (LPE) using chrono-logical backtrack search. In constraint solving, e�cient special-purpose algorithmsare employed to solve sub-problems involving distinguished relations referred to asconstraints.Constraint logic programming (CLP) can be characterized by the interaction ofa logic programming engine (LPE) with a constraint solver (CS). During programexecution, the LPE incrementally sends constraints to the CS. The CS tries to solvethe constraints. In the LPE the results from the CS cause a priori pruning of branchesin the search tree spawned by the program. Unsatis�ability of the constraints meansfailure of the current branch, and thus reduces the number of possible branches, i.e.choices, to be explored via backtracking.A practical problem remains: Constraint solving is usually `hard-wired' in a built-in constraint solver written in a low-level language. While e�cient, this approach? Part of this work is supported by ESPRIT Project 5291 CHIC. This paper is a revisedversion of the technical report [Fru92].

makes it hard to modify a CS or build a CS over a new domain, let alone reason aboutit. As the behavior of the CS can neither be inspected by the user nor explained bythe computer, debugging of real life constraint logic programs is hard. It has beendemanded for a long time that \constraint solvers must be completely changeableby users" (p. 276 in [CAL88]). The lack of declarativeness and exibility becomes amajor obstacle if one wants to{ build a new CS,{ extend the CS with new constraints,{ specialize the CS for a particular application,{ combine constraint solvers.Our proposal to overcome this problem is a high-level language especially de-signed for writing constraint solvers, called constraint handling rules (CHRs) [Fru92,Fru93a, Fru93b, Fru94, B*94, FrHa95]. With CHRs, one can introduce user-de�nedconstraints into a given high-level host language. In this extended abstract the hostlanguage is Prolog, a CLP language with equality over Herbrand terms as the onlybuilt-in constraint. We claim that using our logic based language allows for reasoningabout, inspection and modi�cation of a CS.CHRs de�ne simpli�cation of and propagation over user-de�ned constraints. Sim-pli�cation replaces constraints by simpler constraints while preserving logical equiv-alence, e.g.X>Y,Y>X <=> false.Propagation adds new constraints which are logically redundant but may causefurther simpli�cation, e.g.X>Y,Y>Z ==> X>Z.When repeatedly applied by a constraint handling engine (CHE) the constraints areincrementally solved as in a CS, e.g.A>B,B>C,C>A results in false.CHIP was the �rst CLP language to introduce constructs (demons, forward rules,conditionals) [VH89] for user-de�ned constraint handling (like constraint solving,simpli�cation, propagation). These various constructs have been generalized intoCHRs. CHRs are based on guarded rules, as can be found in concurrent logic pro-gramming languages [Sha89], in the Swedish branch of the Andorra family [HaJa90],Saraswats cc-framework of concurrent constraint programming [Sar93], and in the`Guarded Rules' of [Smo91]. However all these languages (except CHIP) lack featuresessential to de�ne non-trivial constraint handling, namely for handling conjunctionsof constraints and de�ning constraint propagation. CHRs provide these two featuresusing multi-headed rules and propagation rules.In the next section, we introduce constraint handling rules by example. Then wegive the syntax, semantics and describe an implementation of CHRs. In section 4,we give extensive examples of the use of CHRs for writing constraint solvers. Lastbut not least we discuss related work in more detail.

2 CHRs by ExampleWe de�ne a user-de�ned constraint for less-than-or-equal, =<. In Prolog, the built-inpredicate =< can only be evaluated if the arguments are known, while the user-de�nedconstraint =< will also handle variable arguments.% Constraint Declaration(1a) constraints =</2.(1b) label with X=<Y if ground(X).(1b) label with X=<Y if ground(Y).% Constraint Labeling(2a) X=<Y :- leq(X,Y).(2b) leq(0,Y).(2c) leq(s(X),s(Y)) :- leq(X,Y).% Constraint Handling(3a) X=<Y <=> X=Y | true. % reflexivity(3b) X=<Y,Y=<X <=> X=Y. % identity(3c) X=<Y,Y=<Z ==> X=<Z. % transitivityThe CHRs of (3) specify how =< simpli�es and propagates as a constraint. Theyimplement reexivity, identity and transitivity in a straightforward way. CHR (3a)states that X=<X is logically true. Hence, whenever we see the constraint X=<X wecan simplify it to true. Similarly, CHR (3b) means that if we �nd X=<Y as well asX=<Y in the current constraint, we can replace it by the logically equivalent X=Y.CHRs (3a) and (3b) are called simpli�cation CHRs. CHR (3a) detects satis�ability ofa constraint, and CHR (3b) solves a conjunction of constraints returning an equalityconstraint. CHR (3c) states that the conjunction X=<Y,Y=<Z implies X=<Z. Opera-tionally, we add logical consequences as a redundant constraint. This kind of CHRis called propagation CHR.Redundancy produced by propagation CHRs is useful, as the following exam-ple shows. Given the query A=<B,C=<A,B=<C. The �rst two constraints cause CHR(3c) to �re and add C=<B to the constraint goal. This new constraint together withB=<C matches the head of CHR (3b). So the two constraints are replaced by B=C.The equality is applied to the rest of the constraint goal, A=<B,C=<A, resulting inA=<B,B=<A where B=C. CHR (3b) applies, resulting in A=B. The constraint goal con-tains no more inequalities, the simpli�cation stops. The constraint solver we builthas solved A=<B,C=<A,B=<C and produced the answer A=B,B=C::- A=<B,C=<A,B=<C.% C=<A,A=<B propagates C=<B by 3c.% C=<B,B=<C simplifies to B=C by 3b.% B=<A,A=<B simplifies to A=B by 3b.A=B,B=C.Note that CHRs (3b) and (3c) have multiple head atoms, a feature that is essential

in solving conjunctions of constraints. With single-headed CHRs alone, unsatis�a-bility of a conjunction of constraints (e.g. A<B,B<A) could never be detected andglobal constraint satisfaction (e.g. A=<B,C=<A,C=<B reduces to A=B,A=C) could notbe achieved.If no simpli�cation and propagation is possible anymore, a constraint is chosenfor automatic labeling. The labeling declaration (1b) and (1c) state that we maylabel using X=<Y if either X or Y are ground. Labeling is performed by using theCLP clauses of the constraint as labeling routine. In clause (2a), labeling using =<relies on a predicate leq which is de�ned by the two CLP clauses (2b) and (2c).For example, the query 4=<A,A=<3 propagates 4=<3 by CHR (3c). Then no moresimpli�cation is possible. 4=<3 is a constraint available for labeling. Executing itslabeling routine produces a failure and so we know that 4=<A,A=<3 is unsatis�able.A similar example is::- s(s(0))=<A,A=<s(s(s(0))).% s(s(0))=<A,A=<s(s(s(0))) propagates s(s(0))=<s(s(s(0))).% Labeling using s(s(0))=<s(s(s(0))) succeeds.% Labeling using s(s(0))=<A succeeds with A=s(s(X)).% Labeling using A=<s(s(s(0))) succeeds with X=0.A=s(s(0)).% On backtracking A=<s(s(s(0))) succeeds with X=s(0).A=s(s(s(0))).% On backtracking A=<s(s(s(0))) fails.false.When CHRs are integrated into a logic programming language, we can regard anypredicate as a labeling routine of a constraint and add some CHRs for it. Seen thisway, CHRs are lemmas that allow us to express the determinate information con-tained in a predicate. As a result, predicates and constraints are just alternate views.CHRs de�ne \shortcuts" which allow us to arrive at an answer without backtrack-ing and quicker than by executing the predicate. To see the power of such lemmasconsiderappend(X,[],L) <=> X=L,list(L).A recursion on the list X in the usual de�nition of append is replaced by a simpleuni�cation X=L and a type check list(L).3 Syntax, Semantics and ImplementationIn this paper we assume that constraint handling rules extend a given constraint logicprogramming language. The syntax and semantics given here reect this choice. Itshould be stressed, however, that the host language for CHRs need not be a CLPlanguage. Indeed, work has been done at DFKI in the context of LISP [Her93]. Thissection follows [FrHa95].

3.1 SyntaxA CLP+CH program is a �nite set of clauses from the CLP language and fromthe language of CHRs. Clauses are built from atoms of the form p(t1; :::tn) wherep is a predicate symbol of arity n (n � 0) and t1; :::tn is a n-tuple of terms. Aterm is a variable, e.g. X, or of the form f(t1; :::tn) where f is a function symbolof arity n (n � 0) applied to a n-tuple of terms. Function symbols of arity 0 arealso called constants. Predicate and function symbols start with lowercase letterswhile variables start with uppercase letters. In�x notation may be used for speci�cpredicate symbols (e.g. X = Y) and functions symbols (e.g. �X + Y). There aretwo classes of distinguished atoms, built-in constraints and user-de�ned constraints.In most CLP languages there is a built-in constraint for syntactic equality overHerbrand terms, =, performing uni�cation. The built-in constraint true, which isalways satis�ed, can be seen as an abbreviation for 1=1. false (short for 1=2) is thebuilt-in constraint representing inconsistency.A CLP clause is of the formH:- B1; : : :Bn: (n � 0)where the head H is an atom but not a built-in constraint, the body B1; : : :Bn is aconjunction of literals called goals. The empty body (n = 0) of a CLP clause maybe denoted by the built-in constraint true. A query is a CLP clause without head.There are two kinds of CHRs2. A simpli�cation CHR is of the formH1; : : :Hi <=> G1; : : :Gj j B1; : : :Bk.A propagation CHR is of the formH1; : : :Hi ==> G1; : : :Gj j B1; : : :Bk.A labeling declaration for a user-de�ned constraint H is of the formlabel with H if G1; : : :Gjwhere (i > 0; j � 0; k � 0) and the multi-head H1; : : :Hi is a conjunction of user-de�ned constraints and the guard G1; : : :Gj is a conjunction of literals which neitherare, nor depend on, user-de�ned constraints.3.2 Declarative SemanticsDeclaratively, CLP programs are interpreted as formulas in �rst order logic. Ex-tending a CLP language with CHRs preserves its declarative semantics. A CLP+CHprogram P is a conjunction of universally quanti�ed clauses. A predicate de�nitionfor p is the set of all clauses in a program with the same predicate p in the head.A CLP clause is an implicationH B1 ^ : : :Bn.2 A third, hybrid kind as well as options and more declarations are described in [B*94].

Since we assume that a predicate de�nition de�nes a predicate completely, westrengthen the above using Clark's completion. Let H1:- B11; : : :Bn1; : : : ;Hs :-B1s; : : :Bns; (1 � s) be the clauses of the predicate de�nition for p. Then theirlogical reading is:H $ (H = H1 ^B11 ^ : : :Bn1) _ : : :_ (H = Hs ^B1s ^ : : :Bns)H is of the form p(X1; : : : ; Xr) where X1; : : : ; Xr are di�erent variables.A simpli�cation CHR is a logical equivalence provided the guard is true in thecurrent context(G1 ^ : : :Gj)! (H1 ^ : : :Hi $ B1 ^ : : :Bk).A propagation CHR is an implication provided the guard is true(G1 ^ : : :Gj)! (H1 ^ : : :Hi ! B1 ^ : : :Bk).Procedurally, a CHR can �re if its guard allows it. A �ring simpli�cation CHRreplaces the head constraint by the body, a �ring propagation CHR adds the bodyto the head constraints.3.3 Operational SemanticsThe operational semantics of CLP+CH can be described by a transition system.A computation state is a tuple< Gs;CU ; CB >,where Gs is a set of goals, CU and CB are constraint stores for user-de�ned andbuilt-in constraints respectively. A constraint store is a set of constraints. A set ofatoms represents a conjunction of atoms.The initial state consists of a query Gs and empty constraint stores,< Gs; fg; fg>.A �nal state is either failed (due to an inconsistent built-in constraint store repre-sented by the unsatis�able constraint false),< Gs;CU ; ffalseg>,or successful (no goals left to solve),< fg; CU; CB >.The union of the constraint stores in a successful �nal state is called conditionalanswer for the query Gs, written answer(Gs).The built-in constraint solver (CS) works on built-in constraints in CB and Gs,the user-de�ned CS on user-de�ned constraints in CU and Gs using CHRs, and thelogic programming engine (LPE) on goals in Gs and CU using CLP clauses. Thefollowing computation steps are possible to get from one computation state to thenext.

Solve< fCg [Gs;CU ; CB > 7�! < Gs;CU ; C0B >if (C ^ CB)$ C0BThe built-in CS updates the constraint store CB if a new constraint C was found inGs. To update the constraint store means to produce a new constraint store C 0B thatis logically equivalent to the conjunction of the new constraint and the old constraintstore.We will write H =set H0 to denote equality between the sets H and H0, i.e.H = fA1; : : : ; Ang and there is a permutation of H0, perm(H0) = fB1; : : : ; Bng,such that Ai = Bi for all 1 � i � n.Introduce< fHg [Gs;CU ; CB > 7�! < Gs; fHg [CU ; CB >if H is a user-de�ned constraintSimplify< Gs;H0 [CU ; CB > 7�! < Gs [B;CU ; CB >if (H <=> G j B) 2 P and CB ! (H =set H0) ^ answer(G)Propagate< Gs;H0 [CU ; CB > 7�! < Gs [B;H0 [CU ; CB >if (H ==> G j B) 2 P and CB ! (H =set H0) ^ answer(G)The constraint handling engine (CHE) applies CHRs to user-de�ned constraints inGsand CU whenever all user-de�ned constraints needed in the multi-head are presentand the guard is satis�ed. A guard G is satis�ed if its local execution does not involveuser-de�ned constraints and the result answer(G) is entailed (implied) by the built-in constraint store CB. Equality is entailed between two terms if they match. Tointroduce a user-de�ned constraint means to take it from the goal literals Gs andput it into the user-de�ned constraint store CU . To simplify user-de�ned constraintsH0 means to replace them by B if H0 matches the head H of a simpli�cation CHR H<=> G | B and the guard G is satis�ed. To propagate from user-de�ned constraintsH0 means to add B to Gs if H 0 matches the head H of a propagation CHR H ==>G | B and G is satis�ed.Unfold< fH0g [Gs;CU ; CB > 7�! < Gs [B;CU ; fH = H0g [CB >if (H :- B) 2 P .The logic programming engine (LPE) unfolds goals in Gs. To unfold an atomic goalH0 means to look for a clause H: � B and to replace the H0 by (H = H0) and B. Asthere are usually several clauses for a goal, unfolding is nondeterministic and thus agoal can be solved in di�erent ways using di�erent clauses. There can be CLP clausesfor user-de�ned constraints. Thus they can be unfolded as well. This unfolding iscalled (built-in) labeling. Details can be found in [B*94].Label< Gs; fH 0g [CU ; CB > 7�! < Gs [B;CU ; fH = H0g [CB >if (H :- B) 2 P and (label with H 00 if G)2 P and CB ! (H 0 = H00) ^answer(G)

Note that any constraint solver written with CHRswill be determinate, incremen-tal and concurrent. By \determinate" we mean that the user-de�ned CS commitsto every constraint simpli�cation it makes. Otherwise we would not gain anything,as the CS would have to backtrack to undo choices like in a Prolog program. By\incremental" we mean that constraints can be added to the constraint store one ata time using the \introduce"-transition. Then CHRs may �re and simplify the user-de�ned constraint store. The rules can be applied concurrently, even using chaoticiteration (i.e. the same constraint can be simpli�ed by di�erent rules at the sametime), because logically correct CHRs can only replace constraints by equivalent onesor add redundant constraints.3.4 ImplementationThe operational semantics are still far from the actual workings of an e�cient imple-mentation. At the moment, there exist two implementations, one prototype in LISP[Her93], and one fully developed compiler in a Prolog extension.The compiler for CHRs together with a manual is available as a library of ECLiPSe[B*94], ECRC's advanced constraint logic programming platform, utilizing its delay-mechanism and built-in meta-predicates to create, inspect and manipulate delayedgoals. All ECLiPSe documentation is available by anonymous ftp from ftp.ecrc.de,directory /pub/eclipse/doc. In such a sequential implementation, the transitions aretried in the textual order given before. To reect the complexity of a program in thenumber of CHRs, at most two head constraints are allowed in a rule. A rule withmore head constraints can be rewritten into several two-headed rules. This restric-tion also makes complexity for search of the head constraints of a CHR linear in thenumber of constraints on average (quadratic in the worst case) by using partitioningand indexing methods. Termination of a propagation CHR is achieved by never �ringit a second time with the same pair of head constraints.The CHRs library includes a debugger and a visual tracing toolkit as well asa full color demo using geometric constraints in a real-life application for wirelesstelecommunication. About 20 constraint solvers currently come with the release - forbooleans, �nite domains (similar to CHIP [VH89]), also over arbitrary ground terms,reals and pairs, incremental path consistency, temporal reasoning (quantitative andqualitative constraints over time points and intervals [Fru94]), for solving linearpolynomials over the reals (similar to CLP(R) [J*92]) and rationals, for lists, sets,trees, terms and last but not least for terminological reasoning [FrHa95]. The averagenumber of rules in a constraint solver is as low as 24. Typically it took only afew days to produce a reasonable prototype solver, since the usual formalisms todescribe a constraint theory, i.e. inference rules, rewrite rules, sequents, �rst-orderaxioms, can be expressed as CHRs programs in a straightforward way. Thus onecan directly express how constraints simplify and propagate without worrying aboutimplementation details. Starting from this executable speci�cation, the rules thencan be re�ned and adapted to the speci�cs of the application.On a wide range of solvers and examples, the run-time penalty for our declar-ative and high-level approach turned out to be a constant factor in comparison todedicated built-in solvers (if available). Moreover, the slow-down is often within anorder of magnitude. On some examples (e.g. those involving �nite domains with the

element-constraint), our approach is faster, since we can exactly de�ne the amountof constraint simpli�cation and propagation that is needed. This means that forperformance and simplicity the solver can be kept as incomplete as the applicationallows it. Some solvers (e.g. disjunctive geometric constraints in the phone demo)would be very hard to recast in existing CLP languages.4 Examples4.1 BooleansThis example is taken from [F*92]. In the domain of boolean constraints, the behaviorof an and-gate may be informally described by rules such as{ If one input is 0 then the output is 0,{ If the output is 1 then both inputs are 1.We can de�ne the and-gate with constraint handling rules as:and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z1),and(X,Y,Z2) ==> Z1=Z2.The �rst rule says that the constraint goal and(X,Y,Z), when it is known thatthe �rst input argument X is 0, can be reduced to asserting that the output Z mustbe 0. Hence the query and(X,Y,Z),X=0 will result in X=0, Z=0. The last rule saysthat if a goal contains both and(X,Y,Z1) and and(X,Y,Z2) then a consequence isthat Z1 and Z2 must be the same.Consider the following predicate from the well-known full-adder circuit:add(I1,I2,I3,O1,O2):-xor(I1,I2,X1),and(I1,I2,A1),xor(X1,I3,O1),and(I3,X1,A2),or(A1,A2,O2).The query add(I1,I2,0,O1,1)will produce I1=1,I2=1,O1=0. The computationproceeds as follows: Because I3=0, the output A2 of the and-gate with input I3 mustbe 0. As O2=1 and A2=0, the other input A1 of the or-gate must be 1. Because A1is also the output of an and-gate, its inputs I1 and I2 must be both 1. Hence theoutput X1 of the �rst xor-gate must be 0, and therefore also the output O1 of thesecond xor-gate must be 0.

4.2 MaximumWe extend our solver for the inequality =< with a user-de�ned constraint over num-bers, max(X,Y,Z), which holds if Z is the maximum of X and Y.label with max(X,Y,Z) if ground(X),ground(Y).max(X,Y,Y):- X=<Y.max(X,Y,X):- Y=<X.max(X,X,Z) <=> X=Z.max(X,Y,X) <=> Y=<X.max(X,Y,Y) <=> X=<Y.max(X,Y,Z),X=<Y <=> Y=Z,X=<Y.max(X,Y,Z),Y=<X <=> X=Z,Y=<X.max(X,Y,Z) ==> X=<Z,Y=<Z. % invariant and approximationmax(X,Y,Z1),max(X,Y,Z2) ==> Z1=Z2. % functional dependencyIn the query max(A,B,C), max(A,C,D), the �rst constraint propagates A=<C,B=<C. The constraints A=<C, max(A,C,D) are simpli�ed into C=D, A=<C. The newconstraint goal is max(A,B,C), B=<C, C=D, A=<C. At this point, no more applica-tion of CHRs is possible. There is also no constraint that could be labeled. There-fore the conditional answer to our query max(A,B,C), max(A,C,D) is max(A,B,C),B=<C, C=D, A=<C.Let � be a built-in constraint, i.e. there is a built-in CS for inequalities (theuser-de�ned constraint =< is no longer needed). Then we can replace the CHRmax(X,Y,Z),X=<Y <=> Y=Z,X=<Ybymax(X,Y,Z) <=> X�Y | Y=Z.As a consequence, the �rst CHR becomes obsolete, as the built-in constraint X�Yin the guard naturally covers the case when X=Y. Contrast this with the user-de�nedconstraint =< in the head of the original CHR that clearly cannot match =. Now maxcan be de�ned by CHRs as follows.max(X,Y,Z) <=> X�Y | Y=Z.max(X,Y,Z) <=> Y�X | X=Z.max(X,Y,X) <=> Y�X.max(X,Y,Y) <=> X�Y.max(X,Y,Z) ==> X�Z,Y�Z.max(X,Y,Z1),max(X,Y,Z2) ==> Z1=Z2.However, the CS for max is not complete, i.e. there are satis�able or (worse) un-satis�able constraint goals which are neither simpli�able nor available for labeling.

For example, the query max(X,7,9) results in max(X,7,9),X�9, but it is not re-duced to X=9. In practice, a CS is often not complete for e�ciency reasons [JaMa94].If the application requires it, we can always add CHRs to cover the incomplete casesor modify the labeling declaration, while built-in constraint solvers cannot be aseasily adopted. In our example, new CHRs of the formmax(X,Y,Z) <=> Y<Z | X=Z.or an extended labeling declarationlabel with max(X,Y,Z) if ground(X),ground(Y).label with max(X,Y,Z) if ground(X),ground(Z).label with max(X,Y,Z) if ground(Y),ground(Z).will help.4.3 Temporal Time Point ConstraintsIn order to de�ne a constraint solver for temporal constraints over time points weexploit the natural relationship of these constraints with ordering constraints ingeneral. Therefore, we can start from the constraint solver for the less-than-or-equalconstraint =<. We extend the inequality to the form X+N=<Y, where N is a givenpositive number, meaning that the distance in time of the two time points X and Yis at least N.label with XN =< Y if ground(XN),ground(Y).XN=<Y :- XN � Y.X+N=<X <=> N=0.X+N=<Y,X+M=<Y <=> NM is max(N,M) | X+NM=<Y.X+N=<Y,Y+M=<X <=> N = 0, M = 0, X = Y.X+N=<Y,Y+M=<Z ==> NM is N+M | X+NM=<Z.In the labeling declaration the extension in syntax is reected by requiring the�rst argument to be ground, such that X+N can be evaluated. The four CHRs arestraightforward extensions of the ones for the simple inequality. Some auxiliary arith-metic computations with is are added to compute the distances for the resultinginequalities in the body. It is assumed that is delays if its right-hand side is notground.If we allow for negative N we can express maximal distances as well. The set ofCHRs however will be non-terminating. There is no termination order, because thereis no bound anymore on the minimal or maximal distances that could be computed.The termination problem is solved by introducing a new constraint =<* which standsfor derived inequalities (resulting from simpli�cation and propagation) as opposedto the initial ones written with =<.label with XN =< Y if ground(XN),ground(Y).

XN=<Y :- XN � Y.label with XN =<* Y if ground(XN),ground(Y).XN=<*Y :- XN � Y.X+N=<Y ==> X+N=<*Y.X+N=<*X <=> N=<0.X+N=<*Y,X+M=<*Y <=> NM is max(N,M) | X+NM=<*Y.X+N=<*Y,Y+M=<*X <=> N=0,M=0 | X = Y.X+N=<*Y,Y+M=< Z ==> NM is N+M | X+NM=<*Z.The derived inequality constraint of course has the same labeling declarationand predicate speci�cation as the original inequality. The original CHRs are turnedinto CHRs for the derived inequality. However, there is one exception, which is thecrucial detail causing termination. In the last CHR performing transitive closure,one constraint must be not a derived but an original constraint. This also eliminatesredundant inequalities that have been produced by the transitive closure before.To get the simpli�cations started, we have to give some initial derived constraints.This is done by the �rst CHR, which produces a derived inequality for each initialinequality.In temporal reasoning applications, usually both minimal and maximal distanceof two time points are given. Hence it is a good idea to merge the two constraintsX+N=<Y,Y+M=<X (N positive and M negative) into a single constraint N=<Y-X=<(-M)(by abuse of the relational notation), where Y is the starting point and X is the endpoint of the interval Y-X. This is exactly the notation and meaning used in [DMP91].label with X =< Y =< Z if ground(X),ground(Y),ground(Y).X =< Y =< Z:- X � Y, Y � Z.label with X =<* Y =<* Z if ground(X),ground(Y),ground(Y).X =<* Y =<* Z:- X � Y, Y � Z.A=<X-Y=<B ==> A=<*X-Y=<*B.A=<*X-X=<*B <=> A=<0=<B.A=<*X-Y=<*B <=> A=0,B=0 | X = Y.A=<*X-Y=<*B,C=<*X-Y=<*D <=>AC is max(A,C), BD is min(B,D) | AC=<*X-Y=<*BD.A=<*X-Y=<*B,C=< Y-Z=< D ==> AC is A+C, BD is B+D | AC=<*X-Z=<*BD.A=<*X-Y=<*B,C=< Z-Y=< D ==> AC is A-D, BD is B-C | AC=<*X-Z=<*BD.Above, the CHRs have been extended correspondingly. The only interesting thingto note is that the last CHR about transitivity had to be split into two cases. Thereason is that we rewrote X+N=<Y, Y+M=<X into N=<Y-X=<(-M) only, but not into

M=<X-Y=<(-N), as the second formulation would have caused redundant computa-tions for all CHRs except the one for transitivity.The above CHRs will produce derived inequality constraints for every pair of timepoints (provided they are connected). Again this means redundant information andhence redundant computation, as we can compute all relations when knowing thedistances from one given reference point to all other time points. We will specify thereference point X with a dummy constraint start(X). For this optimization only the�rst CHR has to be restricted fromA=<X-Y=<B ==> A=<*X-Y=<*B.toA=<X-Y=<B,start(X) ==> A=<*X-Y=<*B.The resulting set of CHRs de�nes and implements a specialized constraint solverfor temporal constraints on time points. Its behaviour has been tailored to temporalconstraints starting from inequality constraints. Further optimizations are possible,for example using a dynamic shortest-path algorithm. If further speed-up is needed,once the prototype has been established and \tuned" as required, it can be reworkedin a low-level language. For more on temporal reasoning with constraints, see [Fru94].5 ReasoningWhen seen as logical formulae, the logical correctness of CHRs with respect to aconstraint theory can be established by using techniques from automated theoremproving. It is also useful to view CHRs as conditional rewrite systems. In this waywe can establish that they are canonical, i.e. terminating and conuent by adoptingwell-known techniques such as termination proofs and unfailing completion. If wecan prove a set of CHRs both canonical and correct we can be sure that the CHRsindeed implement a \well-behaved" constraint solver.Briey, termination [Der87] is proved by giving an ordering on atoms showingthat the body of a rule is always smaller than the head of the rule. Such an orderingin addition introduces an intuitive notion of a \simpler" constraint, so that wealso support the intuition that constraints get indeed simpli�ed. When combiningconstraint solvers that share constraints, nonterminating simpli�cation steps mayarise even if each solver is terminating. E.g. one solver de�nes less-than in terms ofgreater-than and the other de�nes greater-than in terms of less-than.The notion of conuence [Kir89] is important for combining constraint solversas well as for concurrent applications of CHRs. Concurrent CHRs are not applied ina �xed order. As correct CHRs are logical consequences of the program, any resultof a simpli�cation or propagation step will have the same meaning, however it isnot guaranteed anymore that the result is syntactically the same. In particular, asolver may be complete with one order of applications but incomplete with anotherone. Syntactically di�erent constraint evaluations may also arise if combined solversshare constraints, depending on which solver comes �rst.

A set of CHRs is conuent, if each possible order of applications starting from anyconstraint goal leads to the same resulting constraint goal. A set of CHRs is locallyconuent if any two constraint goals resulting from one application of a CHR tothe initial constraint goal can be simpli�ed into the same constraint goal. It is well-known from rewrite systems that local conuence and termination imply conuence.Furthermore, in a conuent set of CHRs, any constraint goal has a unique normalform, provided it exists. This means that the answer to a query will always be themost simple one3.6 Related Work6.1 Constraint Logic Programming LanguagesIn the constraint logic programming CHIP [VH89], the general technique of prop-agation is employed over �nite domains. The idea is to prune large search trees byenforcing local consistency of built-in and user-de�ned constraints. These techniquesare orthogonal to our approach and thus can be integrated. Demons are essentiallysingle-headed simpli�cation CHRs without guards. However, labeling routines for aconstraint are not possible. One version of CHIP also included forward rules [Gr89],which correspond to CHRs without guards. In practice, demons and forward ruleshave been proven useful in CHIP applications in the boolean domain for circuitdesign and veri�cation. Their potential to de�ne constraint solvers in general wasnot realised, maybe because of their limitations. [Gr89] also gives a detailed accountof the semantics of forward rules and therefore CHRs without guards. In this sense,CHRs can be seen as an extension of the work on demons and forward rules in CHIP.6.2 Combined and Extended LanguagesIn the following we relate our approach to other work on combining deterministicand nondeterministic computations into one logic programming language.Amalgamating pure Prolog with single headed simpli�cation CHRs results ina language of the family cc(#;!;))4 of the cc framework proposed by Saraswat[Sar89, Sar93]. A close study of [Sar89] reveals that he proposes a special Tell oper-ation called \inform" that could be used to simulate propagation CHRs. CHRs nat-urally �t the ask-and-tell interpretation of constraint logic programming introducedby Saraswat and applied by [VH91]. The constraint goal is viewed as constraint storefor user-de�ned constraints. They are matched by the heads of CHRs and the guardsask if certain constraints hold in the built-in constraint store.Guarded Rules [Smo91] correspond to single headed simpli�cation CHRs. How-ever, they are only used as \shortcuts" (lemmas) for predicates, not as de�nitions foruser-written constraints. There are only built-in constraints. Interestingly, Smolkade�nes the built-in constraint system as a terminating and determinate reductionsystem. Hence it could be implemented by simpli�cation CHRs.3 It can, however, contain redundant constraints and introduce new variables.4 # means Ask in addition Tell is supported, ! is the commit operator for don't carenondeterminism used and) is the commit operator for don't know nondeterminismable to describe pure Prolog.

The Andorra Model of D.H.D. Warren for parallel computation has inspired arapid development of numerous languages and language schemes. The Andorra Ker-nel Language (AKL) [JaHa91] is a guarded language with built-in constraints basedon an instance of the Kernel Andorra Prolog control framework. AKL combines don'tcare nondeterminism and don't know nondeterministism with the help of di�erentguard operators. There are three kinds of guard operators, namely cut, commit andwait. In our approach, a logic programming language amalgamated with CHRs in-herits the the commit operator of the CHRs as well as the guard operators of the hostlanguage (e.g. cut in the case of Prolog). Like most logic programming languages,AKL itself does not support two of the essential features for de�ning simpli�cationof user-de�ned constraints: propagation rules and multiple head atoms.6.3 Multiple Head AtomsAccording to [Coh88] at the very beginning of the development of Prolog in the early70's by Colmerauer and Kowalski, experiments were performed with clauses havingmultiple head atoms. More recently, clauses with multiple head atoms were proposedto model parallelism and distributed processing as well as objects, e.g. [AnPa90].The similarity with CHRs is merely syntactical. Rules about distribution or objectscannot be regarded as specifying constraint handling. These rules are supposed tomodel the distribution and change of objects, while CHRs model equivalence andimplication of constraints.In committed choice languages, multiple head atoms have been considered onlyrarely. In his thesis, Saraswat remarks on multiple head atoms that \the notion seemsto be very powerful" and that \extensive further investigations seems warranted"([Sar89], p. 314). He motivates so-called joint reductions of multiple atoms as analo-gous to production rules of expert system languages like OPS5. The examples givensuggest the use of joint reductions to model objects in a spirit similar to what isworked out in [AnPa90].Multi-headed simpli�cation CHRs are su�cient to simulate the parallel machinefor multiset transformation proposed in [BCL88]. This machine is based on the chem-ical reaction metaphor as means to describe highly parallel computations for a widespectrum of applications. Following [BCL88], we can implement the sieve of Eratos-thenes to compute primes simply as:primes(1) <=> true.primes(N) <=> N>1 | M is N-1, prime(N),primes(M).prime(I),prime(J) <=> 0 is J mod I | prime(I). % J is multiple of IThe answer to the query primes(n) will be a conjunction of prime(pi) where eachpi is a prime (2 � pi � n).7 ConclusionsConstraint handling rules (CHRs) are a language extension for writing user-de�nedconstraints. Basically, CHRs are multi-headed guarded clauses. CHRs support rapid

prototyping of built-in constraint solvers by providing executable speci�cations andimplementations. They support specialization, modi�cation and combination of con-straint solvers.By amalgamating a logic programming language with CHRs, a exible, exten-sible constraint logic programming language results. It merges the advantages ofconstraints (simpli�cation via CHRs) and predicates (choices via de�nite clauses).The result is a tight integration of the logic programming component and user-de�ned constraint solvers. In this way, a logical reconstruction for constraint solvingin logic programming is achieved.CHRs have been implemented as a library of ECLiPSe, ECRC's constraint logicprogramming platform and as a prototype in LISP at DFKI, Germany. CHRs havebeen used to encode a wide range of constraint solvers, including new domainssuch as terminological and temporal reasoning. Although intended as a language forconstraint simpli�cation,CHRs could also serve as a powerful programming languageon their own.We believe that our approach has the potential to provide a comprehensive frame-work for constraints, because CHRs make it possible{ to add constraint solvers for any required domain of computation.{ to build and costumize constraint solvers for particular applications.{ to generate constraint solvers semi-automatically from constraint theories.{ to debug constraint systems.AcknowledgementsPascal Brisset implemented the CHRs library of ECliPSe. Thanks to Alex, Jesper,Mark, Thierry and Volker, my colleagues at ECRC, who discussed these ideas withme. Thanks to Francesca Rossi and Gert Smolka as well as anonymous referees, whocommented in detail on this paper in its various technical report versions.References[AnPa90] Andreoli J.-M. and Pareschi R., Linear Objects: Logical Processes with Built-InInheritance, Seventh Intl Conf on Logic Programming MIT Press 1990, pp. 495-510.[B*94] P. Brisset et al., ECLiPSe 3.4 Extensions User Manual, ECRC Munich, Germany,July 1994.[BCL88] Banatre J.-P., Coutant A. and Le Metayer D., A Parallel Machine for MultisetTransformation and its Programming Style, Future Generation Computer Systems4:133-144, 1988.[CAL88] Aiba A. et al, Constraint Logic Programming Language CAL, Int Conf on FifthGeneration Computer Systems, 1988, Ohmsha Publishers, Tokyo, pp. 263-276.[Coh88] J. Cohen, A View of the Origins and Development of Prolog, CACM 31(1):26-36,Jan. 1988.[DMP91] R. Dechter, I. Meiri and J. Pearl, Temporal Constraint Networks, Journal ofArti�cial Intelligence 49:61-95, 1991.[Der87] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation,3(1+2):69-116, 1987.

[Fru92] T. Fr�uhwirth, Constraint Simpli�cation Rules, Technical Report ECRC-92-18,ECRC Munich, Germany, July 1992 (revised version of Internal Report ECRC-LP-63, October 1991), available by anonymous ftp from ftp.ecrc.de, directorypub/ECRC tech reports/reports, �le ECRC-92-18.ps.Z,[F*92] T. Fr�uhwirth, A. Herold, V. K�uchenho�, T. Le Provost, P. Lim, E. Monfroy andM. Wallace. Constraint Logic Programming - An Informal Introduction, Chapter inLogic Programming in Action, Springer LNCS 636, September 1992. Also TechnicalReport ECRC-93-05, ECRC Munich, Germany, February 1993.[Fru93a] T. Fr�uhwirth, Entailment Simpli�cation and Constraint Constructors for User-De�ned Constraints,Workshop on Constraint Logic Programming, Marseille, France,March 1993.[Fru93b] T. Fr�uhwirth, User-De�ned Constraint Handling, Abstract, ICLP 93, Budapest,Hungary, MIT Press, June 1993.[Fru94] T. Fr�uhwirth, Temporal Reasoning with Constraint Handling Rules, TechnicalReport ECRC-94-05, ECRC Munich, Germany, February 1994 (�rst published asCORE-93-08, January 1993), available by anonymous ftp from ftp.ecrc.de, directorypub/ECRC tech reports/reports, �le ECRC-94-05.ps.Z.[FrHa95] T. Fr�uhwirth and P. Hanschke, Terminological Reasoning with Constraint Han-dling Rules, Chapter in Principles and Practice of Constraint Programming (P. VanHentenryck and V.J. Saraswat, Eds.), MIT Press, to appear. Revised version ofTechnical Report ECRC-94-06, ECRC Munich, Germany, February 1994, availableby anonymous ftp from ftp.ecrc.de, directory pub/ECRC tech reports/reports, �leECRC-94-06.ps.Z.[Gr89] T. Graf, Raisonnement sur les contraintes en programmation en logique, Ph.D.Thesis, Version of June 1989 Universite de Nice, France, September 1989 (in French).[HaJa90] S. Haridi and S. Janson, Kernel Andorra Prolog and its Computation Model,Seventh International Conference on Logic Programming, MIT Press, 1990, pp. 31-46.[Her93] Eine homogene Implementierungsebene fuer einen hybriden Wissensrepraesenta-tionsformalismus, Master Thesis, in German, University of Kaiserslautern, Germany,April 1993.[J*92] J. Ja�ar et al., The CLP(R) Language and System, ACM Transactions on Program-ming Languages and Systems, Vol.14:3, July 1992, pp. 339-395.[JaHa91] S. Janson and S. Haradi, Programming Paradigms of the Andorra Kernel Lan-guage, Draft of March 13, 1991, accepted at ILPS 91 in San Diego, Swedish Instituteof Computer Science, Kista, Sweden.[JaLa87] J. Ja�ar and J.-L. Lassez, Constraint Logic Programming, ACM 14th POPL 87,Munich, Germany, January 1987, pp. 111-119.[JaMa94] J. Ja�ar and M. J. Maher, Constraint Logic Programming: A Survey, Journal ofLogic Programming, 1994:19,20:503-581.[Kir89] C. Kirchner and H. Kirchner, Rewriting: Theory and Applications, Working paperfor a D.E.A. lecture at the University of Nancy I, France, 1989.[Sar89] V. A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Disserta-tion, Carnegie Mellon Univ., Draft of Jan. 1989.[Sar93] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cambridge,1993.[Sha89] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACM Com-puting Surveys, 21(3):413-510, September 1989.[Smo91] G. Smolka, Residuation and Guarded Rules for Constraint Logic Programming,Digital Equipment Paris Research Laboratory Research Report, France, June 1991.

[VH89] P. Van Hentenryck, Constraint satisfaction in Logic Programming, MIT Press,Cambridge, 1989.[VH91] P. van Hentenryck, Constraint Logic Programming, The Knowledge EngineeringReview, Vol 6:3, 1991, pp 151-194.

This article was processed using the LaTEX macro package with LLNCS style

