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Abstract. Constraint Handling Rules (CHR) is a declarative concurrent
committed-choice constraint logic programming language consisting of
guarded rules that transform multisets of relations called constraints
until no more change occurs. As an introduction to CHR as a general-
purpose programming language we present some small programs using
different programming styles and discuss their properties.

1 Introduction

Constraint Handling Rules (CHR) [Frü98, FA03, AFE05, SF05, Frü08] has not
only cut its niche as a special-purpose language for writing constraint solvers,
but also has been employed more and more as a general-purpose language in
computational logic, reasoning and beyond. This is because CHR can embed
many rule-based formalisms and implement algorithms in a declarative yet ef-
fective way.

CHR was motivated by the inference rules that are traditionally used in com-
puter science to define logical relationships and arbitrary fixpoint computations.
Like automated theorem proving, CHR uses formulae to derive new information,
but only in a restricted syntax (e.g., no negation) and in a directional way (e.g.,
no contrapositives) that makes the difference between the art of proof search
and an efficient programming language.

CHR adapts concepts from term rewriting systems (TRS) [BN98] for pro-
gram analysis, for properties such as confluence [AFM99] and termination (e.g.
[Frü00]). Other influences for the design of CHR were the General Abstract
Model for Multiset Manipulation (GAMMA) [BCM88] and, of course, produc-
tion rule systems like OPS5 [BFKM85], but also integrity constraints and event-
condition-action rules found in relational databases and in deductive databases.

Implementations of CHR are abundant now. CHR does not necessarily impose
itself as a new programming language, but as a language extension that blends
in with the syntax of its host language, be it Prolog, Lisp, Haskell, C or Java.
In the host language, CHR constraints can be posted; in the CHR rules, host
language statements can be included.

The example programs here illustrate different programming styles in CHR.
This paper is based on some example programs of the author’s upcoming book
on CHR [Frü08].
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2 Preliminaries

A CHR program P is a finite set of rules consisting of constraints. (We do not
discuss declarations for CHR constraints here since they are implementation-
specific.) There are three kinds of rules:

Simplification rule: Name @ H ⇔ G B
[Name ’@’] H ’<=>’ [G ’|’] B.

Propagation rule: Name @ H ⇒ G B
[Name ’@’] H ’==>’ [G ’|’] B.

Simpagation rule: Name @ H1\H2 ⇔ G B
[Name ’@’] H1 ’\’ H2 ’==>’ [G ’|’] B.

Name is an optional, unique identifier of a rule, the (multi-)head (lhs, left hand
side) H (or H1 and H2) is a non-empty conjunction of CHR constraints, the
optional guard G is a conjunction of built-in constraints, and the body (rhs, right
hand side) B is a goal. A goal is a conjunction of built-in and CHR constraints.
If the guard is omitted from a rule, it means the same as “true ”.

Built-in constraints are predefined by the host language, while CHR con-
straints are defined by CHR rules.

Declaratively, a CHR rule logically relates head and body provided the guard
is true. A simplification rule means that the head is true if and only if the
body is true. A propagation rule means that the body is true if the head is
true. A simpagation rule Head1 \ Head2 <=> Body is logically equivalent to
the simplification rule Head1, Head2 <=> Head1, Body.

Basically, rules are applied to an initial conjunction of constraints (syntacti-
cally, a goal) until exhaustion (saturation), i.e. until no more change happens. An
initial goal is called query. The intermediate goals of a computation are stored
in the so-called (constraint) store. A final goal (store), to which no more rule is
applicable, is called answer (constraint) or result (of the computation).

We describe here (sequential) implementations according to the refined opera-
tional semantics [DSdlBH04] of CHR. Parallel or experimental implementations
may apply the rules in different ways, but of course still respect the standard
abstract operational semantics [Abd97].

A CHR constraint is both code and data. Every time a CHR constraint is
posted (added, called, executed, asserted, imposed) as part of a goal, it checks
itself the applicability of the rules it appears in. Such a constraint is called
(currently) active. One tries and applies rules in the order they are written in
the program, i.e. top-down and from left to right.

An active constraint is code which is evaluated like a procedure call. If, at
the moment, no rule is applicable that removes it, the active constraint becomes
passive data in the constraint store. It is called (currently) passive (delayed,
suspended, spleeping, waiting).

Passive constraints may be woken (reconsidered, resumed, re-executed) to
become active code if the environment (context) changes, concretely if their
arguments get more constrained. This is the case if a variable occurring in the
constraint gets more constrained by a built-in constraint.
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There are several computational phases when a CHR rule is tried (for ap-
plication) and finally applied (executed, triggered) (then it fires). These phases
correspond to the constituents of a rule, read from left to right:

Head Matching. For each rule, one of its head constraints is matched against the
active constraint. Matching succeeds if the constraint is an instance of the head,
i.e., the head serves as a pattern. If matching succeeded and the rule has more
than one head constraint, the constraint store is searched for partner constraints
that match the other head constraints. Head constraints are searched from left to
right, except that in simpagation rules, the constraints to be removed are tried
before the head constraints to be kept (this is done for efficiency reasons). If the
matching succeeds, the guard is checked. If there are several head constraints that
match the active constraint, the rule is tried for each such matching. Otherwise
the next rule is tried.

Guard Checking. A guard is a precondition on the applicability of a rule. The
guard is basically a test that either succeeds or fails. If the guard succeeds, the
rule applies, one commits to it and it fires. Otherwise the next rule is tried.

Body Execution. If the firing rule is a simplification rule, the matched constraints
are removed from the store and the body of the rule is executed by executing
the constraints in the body from left to right. Similarly for a firing simpagation
rule, except that the constraints that matched the head part preceding ’\’ are
kept. If the firing rule is a propagation rule the body of the rule is executed
without removing any constraints. It is remembered that the propagation rule
fired, so it will not fire again with the same constraints. When the currently
active constraint has not been removed, the next rule is tried. According to rule
type, we say that CHR constraints matching some constraint in the head of the
rule are either kept or removed constraints.

3 Multiset Transformation

The following simple algorithms are similar to the ones found in other rule-
based approaches, namely production rule systems and the GAMMA model of
computation, but in CHR the programs are more concise.

The General Abstract Model for Multiset Manipulation (GAMMA) framework
employs a chemical metaphor. States in a computation are chemical solutions
where floating molecules interact freely according to reaction rules. Reactions can
be performed in parallel provided they involve disjoint sets of molecules. This is re-
ferred to as logical parallelism or declarative concurrency. We can model molecules
as CHR constraints.

These programs consist essentially of one constraint for representing active
data. Pairs of such constraints are rewritten by a single simplification rule. Often,
the rule can be written more compactly as a simpagation rule where one of the
constraints (the catalyst) is kept and the other is removed and possibly replaced
by an updated one. Optimizing CHR compilers will compile this to an efficient
in-place update instead of removing and adding constraints.
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3.1 Minimum

We compute the minimum of a multiset of numbers ni, given as a computation
of the query min(n1), min(n2),..., min(nk). We interpret min(ni) to mean
that the number ni is potentially the minimum, that it is a candidate for the
minimum value.

min(N) \ min(M) <=> N=<M | true.

The simpagation rule takes two min candidates and removes the one with the
larger value. It keeps going until only one, the smallest value, remains as single
min constraint. The program illustrates the use of multi-headed rules instead of
explicit loops or recursion for iteration over data. This keeps the code extremely
compact and easy to analyse. The rule corresponds to the intuitive algorithm
that when we are to find the minimum from a given a list of numbers, we just
cross out larger numbers until one, the minimum, remains.

For example, this computation is possible (where constraints involved in a
rule application are underlined)

min(1), min(0), min(2), min(1)
min(0), min(2), min(1)
min(0), min(1)
min(0)

Program Properties. We used the rule application order of the refined semantics
of CHR implementations, where computation in a query proceeds from left to
right. In the abstract semantics, any order of rule applications is allowed, for
example also:

min(1), min(0), min(2), min(1)
min(1), min(0), min(1)
min(0), min(1)
min(0)

In the two examples above, the answer is the same. Actually, it is easy to
see that the answer will always be the same, i.e. the minimum value, no matter
in which order the rules are applied to which pair of constraints. We call this
property confluence.

The rules can even be applied in parallel to different parts of the query.

min(1), min(0), min(2), min(1)
min(0), min(1)
min(0)

Obviously we arrive at the answer in less computation steps.
The program is obviously terminating, because the rule removes a CHR con-

straint and does not introduce new ones. Therefore the number of rule appli-
cations is one less than the number of min constraints. We can apply a rule in
constant time. Given any two min constraints, we can always apply the rule -
either in one pairing order or in the other. Therefore the complexity of this little
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program is linear in the number of min constraints, i.e. linear in the size of the
initial goal.

We can also stop the computation at any time and observe the current store
as intermediate answer. We can then continue by applying rules to this store
without the need to recompute from scratch and no need to remember anything
about how we arrived at the current store. If we stop again, we will observe
another intermediate answer that is closer to the final answer than the one
before. By closer we mean here that the store has less min constraints, i.e. less
candidates for the final minimum. The intermediate answers more and more
approximate the final answer. This property of a CHR program is called anytime
algorithm property. Note that by this description, an anytime algorithm is also
an approximation algorithm.

Now assume that while the program runs, we add a min constraint. It will
eventually participate in the computation in that the rule will be applied to it.
The answer will be correct, as if the newly added constraint had been there from
the beginning but ignored for some time. This property of a CHR program is
called incrementality or online algorithm property.

Guard Checking. So far we assumed that the min constraints contain given
values. In that case, the guard acts as a test that compares two such values. But
in general, under the abstract standard semantics, even though not necessarily
in a given CHR implementation, the guard is made out of built-in constraints
that hold if they are logically implied by the current store. While in current
practical implementations of CHR, a guard check will give an instantion error or
silently fail if unbound variables occur in it, the same guard check may succeed
under the abstract semantics. For example, the query min(A), min(B), A=<B
will reduce to min(A), A=<B, because we know that A=<B and that is exactly
what the guard asks for. Similarily, the query min(A), min(B), A<B will reduce
to min(A), A<B. Finally, the query min(A), min(A) will reduce to min(A). But
the query min(A), min(B) will not proceed, because we know nothing about
the relationship of the unknown values A and B.

Now consider what happens if we modify the program in that we strenghten
the guard. If we replace N=<M by N<M, multiple occurrences (duplicates) of the
final minimum constraint will no longer be removed. If we replace N=<M by N=M,
we will just remove duplicates. Both rules taken together have the same behavior
as our initial rule, provided we work with known values.

min(N) \ min(M) <=> N<M | true.
min(N) \ min(M) <=> N=M | true.

If values are only partially known, it turns out the the two rules are weaker
than the single initial rule. Consider the previous examples. Most of them still
work, but the query min(A), min(B), A=<B will not reduce at all, because the
built-in constraint A=<B is too weak to imply one of the guards of the two rules,
A<B or A=B. We say that these two programs are not operationally equivalent,
even though logically, they are. (The logical reading of rules as formulae is their
declarative semantics [Abd97].)
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Variations. If we want to use this rule for minimum in a larger program, we
may be faced with some pragmatical issues. We may want to compute several
minima from different sources and need to dinstinguish them. It suffices to add
an identifier to the min constraint and modify the minimum rule so that it refers
only to constraints with the same identifier:

min(Id,N) \ min(Id,M) <=> N=<M | true.

In general, this technique of adding an explicit identifier to each constraint can
be used to localize computations, i.e. to implement local constraint stores.

3.2 Prime Numbers Sieve of Erastosthenes

We implement the algorithm known as Sieve of Erastosthenes, but without any
particular sifting order. Given some numbers, the rule just removes multiples of
each of the numbers.

sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

We give the rule a conjunction of prime number candidates consisting of all
numbers from 2 up to N, i.e., prime(2),prime(3),prime(4),...prime(N). The
candidates react with each other such that each number absorbs multiples of
itself. When we give it all integers up to a given bound starting from 2, all
composite numbers will be removed after exhaustive application of the rule, so
that only prime numbers remain.

For example, this computation is possible

prime(7), prime(6), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(3), prime(2)

The sift rule is similar to the one for minimum in that it compares two num-
bers and removes one of them. But unlike minimum, the rule is not applicable
to arbitrary pairs of prime number candidates.

As before, the program has the desirable properties that are typical for CHR.
For example, the rule is obviously terminating, since it removes constraints with-
out adding new ones.

Generating Numbers. To generate the prime number candidates, we may use an
auxiliary CHR constraint upto1:

upto(1) <=> true.
upto(N) <=> N>1 | prime(N), upto(N-1).

To the same effect, we can use the prime constraint itself.

prime(N) ==> N>2 | prime(N-1).

Of course, this rule must come before the sift rule. Otherwise a prime number
candidate may be removed before generating its predecessors.
1 For readability, we use arithmetic expressions like N-1 in arguments, while in Prolog,

one may explicitely have to compute the result using is/2.
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Both rule variants generate the prime candidates in descending order. Increas-
ing order is preferable, because smaller prime candidates increase the chance that
the sift rule is applicable. We can easily fix upto by exchanging the recursive
call with the generation of the prime:

upto(N) <=> N>1 | upto(N-1), prime(N).

We cannot fix the variation using prime itself this way.

Primes Sieve in CHR for Java. The following code implements the three rules
for primes in JCK, the first CHR implementation in Java. The syntax of CHR
rules was chosen to be similar to that of the host language Java. For example,
guards are not written between head and body of a rule, but as if expressions
before the head. The rule name comes last. This illustrates that the concrete
syntax of CHR is not fixed, but rather can be adapted to the host language.

handler primes { class java.lang.Integer; class IntUtil;

constraint prime(java.lang.Integer);
constraint upto(java.lang.Integer);

rules { variable java.lang.Integer N, M, I, J;

{upto(1)} <=> {true} ;
if (IntUtil.gt(N,1)) {upto(N)} <=>

{M=IntUtil.dec(N) && prime(N) && upto(M)};

if (IntUtil.modNull(J,I)){prime(I) &\& prime(J)} <=>
{true} sift;

}
}

A more recent implementation of CHR in Java, the K.U.Leuven JCHR sys-
tem, uses the more traditional Prolog-style concrete syntax of CHR, which eases
porting of code between Prolog and Java CHR systems.

handler primes {

constraint upto(int);
constraint prime(int);

rules { variable int N, I, J;

upto(1) <=> true.
upto(N) <=> IntUtil.gt(N,1)|prime(N), upto(intUtil.dec(N)).

sift @ prime(I) \ prime(J) <=> intUtil.modZero(J,I) | true.
}

}



8 T. Frühwirth

4 Procedural Algorithms

We now employ a more tradional style of programming, where constraints are
relations that resemble procedures as they are used in imperative programming
languages. Results of a computation are not returned as constraints, but as
values of variables that are bound. As we will already see with our first example
of Fibonacci numbers, CHR supports different programming styles and it is easy
to change between them.

4.1 Fibonacci

The n-th Fibonacci number is defined inductively as follows:

fib(0) = fib(1) = 1; fib(n) = fib(n−1) + fib(n−2) if n ≥ 2

When we implement this definition in CHR, we translate the functional notation
of fib into relational notation, and the equivalence becomes a simplification rule.

Top-Down Evaluation. The CHR constraint fib(N,M) holds if the N-th Fibonacci
number is M.

f0 @ fib(0,M) <=> M=1.
f1 @ fib(1,M) <=> M=1.
fn @ fib(N,M) <=> N>=2 | fib(N-1,M1), fib(N-2,M2), M is M1+M2.

The three rules are a direct translation of the definition. For example, the query
fib(8,A) yields A=89, the query fib(12,233) succeeds, the query fib(11,233)
fails, the query fib(N,233) delays.

As is well known, such a direct implementation has exponential time complex-
ity because of the double recursion that recomputes the same Fibonacci numbers
over and over again in different parts of the recursions.

Tabling and Memorization. We would like to store the results of Fibonacci num-
bers that we already have computed and look them up to avoid computing the
same Fibonacci number several times. Since CHR constraints are both opera-
tions and data, it is easy to change the rules accordingly. We just have to turn
the three simplification rules into propagation rules, so that the left hand side
constraints are kept. In this way the result of the computation will be kept in
the constraint store as data.

The rule for the look-up of already computed Fibonacci numbers has to come
first, so that it is applied before we compute in the usual way using the expensive
recursive definition.

mem @ fib(N,M1) \ fib(N,M2) <=> M1=M2.

f0 @ fib(0,M) ==> M=1.
f1 @ fib(1,M) ==> M=1.
fn @ fib(N,M) ==> N>=2 | fib(N-1,M1), fib(N-2,M2), M is M1+M2.



Welcome to Constraint Handling Rules 9

The rule mem for look-up enforces the functional dependency between input and
output of the Fibonacci relation, in other words it uses the fact the fib defines
a function. The query fib(8,A) now returns all Fibonacci numbers up to 8:
fib1(0,1), fib1(1,1), fib1(2,2), ..., fib1(7,21), fib1(8,34).

The effect of memorization is dramatic: while the original rules have expo-
nential complexity, the new version has only linear complexity, because each
Fibonacci number is only computed once. When executed from left to right, the
second recursive call is just a lookup using the mem rule. Actually, the mem rule
does more than just looking up computed results, it in effect merges two compu-
tations that must have the same result into one, even if both computations are
still ongoing. To see this, consider a query fib(N,A) with N>=2, where the N-th
Fibonacci number is computed for the first time. The constraint fib(N,A) will
thus try the mem rule in vain and finally the recursive rule fn will apply. Since it
is a propagation rule, the constraint fib(N,A) will not be removed.

If the N-th Fibonacci number is called again, say with fib(N,B), then the
constraint fib(N,B) will try the mem rule, and there it will first try to match the
constraint to the right of \ under the refined semantics. This succeeds and the old
fib(N,A) is found as a partner constraint. The rule applies, the new fib(N,B)
will be removed and instead the variables for the result will be equated using A=B.

Bottom-Up Evaluation. Another way of computing the Fibonacci numbers ef-
ficiently is by using only data and compute larger numbers from smaller ones.
Basically, the idea is to reverse head and body of the rules.

fn @ fib(N1,M1), fib(N2,M2) ==> N2=:=N1+1 | fib(N2+1,M1+M2).

Since reversing the rules f0 and f1 gives ill-formed CHR rules (they do not have
a head), we added the first two Fibonacci numbers in the query, fib(0,1),
fib(1,1). Of course, the resulting computation is infinite, and in order to ob-
serve the results, we have to add a rule in front such as:

fib(N,M) ==> write(fib(N,M)).

Note that if we are only interested in the Fibonacci numbers, we could drop the
first arguments of fib.

The computation can be made finite by introducing an upper bound Max. The
query fib upto(Max) will produce all Fibonacci numbers up to Max. The con-
straint fib upto(Max) is also used to introduce the first two Fibonacci numbers.

f01@ fib_upto(Max) ==> fib(0,1), fib(1,1).
fn @ fib_upto(Max), fib(N1,M1), fib(N2,M2) ==>

Max>N2, N2=:=N1+1 | fib(N2+1,M1+M2).

A version that is faster than any discussed so far can be achieved with a tiny
change in the previous program: we turn the propagation rule into a simpagation
rule that only keeps the (last) two Fibonacci numbers (we do not need more
information to compute the next one).

fn @ fib_upto(Max), fib(N2,M2) \ fib(N1,M1) <=>
Max>N2, N2=:=N1+1 | fib(N2+1,M1+M2).
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We have exchanged the order of the two fib constraints in the head so that the
simpagation rule removes the smaller Fibonacci number.

Procedural Style Version. Since we now keep only the two last Fibonacci num-
bers, we can merge the three constraints of the head of the fn rule into one
constraint, and the same for the three constraints that will be present after the
rule has been applied (the two kept constraints from the head and the new one
from the body). The resulting code is the most efficient:

f01@ fib_upto(Max) <=> fib(Max,1,1,1).
fn @ fib(Max,N,M1,M2) <=> Max>N | fib(Max,N+1,M2,M1+M2).

4.2 Newton’s Method for Square Roots

Newton iteration is an approximation method for the value of polynomial ex-
pressions relying on derivates. We would like to compute the square root. As
can be computed by Newton’s method, the approximations for square roots are
related by the formula Gi+1 = (Gi+X/Gi)/2.

Since CHR programs already implement anytime, i.e. approximation algo-
rithms, the implementation in CHR is straightforward. We assume that the
answer is returned as a CHR constraint. sqrt(X,G) means that the square root
of X is approximated by G. This rule computes the next approximation.

sqrt(X,G) <=> abs(G*G/X-1)>0 | sqrt(X,(G+X/G)/2).

The query is just sqrt(GivenNumber,Guess). Both numbers must be positive,
and if no guess is known, we may take 1. The guard stops its application if
the approximation is exact. Since this is unlikely in practice when floating point
numbers are used and also to improve efficiency by avoiding iterations, we replace
0 in the guard by a sufficiently small positive number ε.

Since the quality of approximation is often in the eye of the beholder, we
may implement a more interesting, demand-driven version of the algorithm. An
approximation step is performed lazily, only on demand, which is expressed by
the constraint improve(Expression).

improve(sqrt(X)), sqrt(X,G) <=> sqrt(X,(G+X/G)/2).

Of course the constraint improve can be extended with a counter or combined
with a check for the quality of the approximation.

5 Graph-Based Algorithms

5.1 Transitive Closure

Transitive closure is an essential operation that occurs in many algorithms, e.g.
for graphs, in automated reasoning and inside constraint solvers. The transitive
closure R+ of a binary relation R is the smallest transitive relation that contains
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R. The relation xR+y holds iff there exists a finite sequence of elements xi such
that xRx1, x1Rx2, . . . , xn−1Rxn, xnRy holds.

For example, if R is the parent relation, then its transitive closure R+ is the
ancestor relation. If R is the relation of cities connected by direct trains, then
its transitive closure also contains cities reachable by changing trains.

We can depict the relation R as a directed graph, where there is a directed
edge (arc) from node (vertex) x to node y iff xRy holds. The transitive closure
then corresponds to all paths in the graph. The length of the path is the number
of edges in the path.

We implement the relation xRy as edge constraint e(X,Y) and its transitive
closure xR+y as path constraint p(X,Y).

e(X,Y) ==> p(X,Y).
e(X,Y), p(Y,Z) ==> p(X,Z).

The implementation in CHR uses two propagation rules that compute the tran-
sitive closure bottom-up. In the first rule, for each edge, a corresponding path is
added. The rule reads: If there is an edge from X to Y then there is also a path
from X to Y. The second rule extends an existing path with an edge in front. It
reads: If there is an edge from X to Y and a path from Y to Z then there is also
a path from X to Z.

For example, the query e(1,2), e(2,3), e(2,4) adds the path constraints
p(1,4),p(2,4),p(1,3),p(2,3),p(1,2). Query e(1,2), e(2,3), e(1,3) will
compute p(1,3) twice, because there are two ways to go from node 1 to node 3,
directly or via node 2.

Termination. The program does not terminate with a cyclic graph. Consider the
query e(1,1), where infinitely many paths p(1,1) are generated by the second
propagation rule. There are various compiler optimizations and options that
avoid the repeated generation of the same constraint in this context, but here
we are interested in a source-level solution that works in any implementation
that follows the refined semantics.

Duplicate Removal. Termination can be restored easily by removing duplicate
path constraints before they can be used. In other words, we would like to enforce
a set-based semantics for path constraints. This is ensures termination, since in
a given finite graph, there can only be a finite number of different paths. This
simpagation rule removes duplicates:

p(X,Y) \ p(X,Y) <=> true.

The rule must come first in the program.

Single-Source Paths. We may specialize the transitive closure rules so that only
paths that reach a given single target node are computed. We simply add the
target node as a constraint:

target(Y), e(X,Y) ==> p(X,Y).
target(Z), e(X,Y), p(Y,Z) ==> p(X,Z).
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However, this does not work if we want to fix the source node in the same
way:

source(X), e(X,Y) ==> p(X,Y).
source(X), e(X,Y), p(Y,Z) ==> p(X,Z).

The reason is that in the second rule we need a path from Y to Z to be extended,
but we only produce paths starting in X. If we exchange the edge and path
constraints in the second rule so that we add an edge at the end of an existing
path, then we can add a restriction to a source node as simply as before:

source(X), e(X,Y) ==> p(X,Y).
source(X), p(X,Y), e(Y,Z) ==> p(X,Z).

Shortest Path Lengths. Let us add an argument to the path constraint that holds
the length of the path. When we adapt the duplicate removal rule, we keep the
shorter path. This also ensures termination. The path propagated from an edge
has length 1. A path of length n extended by an edge has length n + 1.

p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.
e(X,Y) ==> p(X,Y,1).
e(X,Y), p(Y,Z,N) ==> p(X,Z,N+1).

For example, the query e(X,X) reduces to p(X,X,1). For the query e(X,Y),
e(Y,Z), e(X,Z), the answer is
e(X,Y), e(Y,Z), e(X,Z), p(X,Z,1), p(Y,Z,1), p(X,Y,1).

These rules can be easily generalized to compute shortest distances: replace
1 by the additional distance D given in the edge constraint e:

p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.
e(X,Y,D) ==> p(X,Y,D).
e(X,Y,D), p(Y,Z,N) ==> p(X,Z,N+D).

5.2 Ordered Merging and Sorting

We use a binary CHR constraint written in infix notation, A --> B, to represent
a directed edge (arc) from node A to node B. We use a chain of such arcs to
represent a sequence of values that are stored in the nodes, e.g. 0-->2, 2-->5.

Ordered Merging. We assume ordered chains with nodes in ascending order. So
A-->B means that A=<B. We also say that B is the immediate successor of A.

The following one-rule program performs an ordered merge of two chains by
zipping them together, provided they start with the same (smallest) node.

A --> B \ A --> C <=> A<B,B<C | B --> C.

Consider two arcs to which the rule applies. For example, consider the query
0-->2, 0-->5. It will result in 0-->2, 2-->5 after one rule application. Basi-
cally we add the arc B-->C to represent B<C. Thus the arc A-->C now becomes
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redundant due to transitivity and is removed. This rule in a sense undoes tran-
sitive closure. It flattens out a branch in a graph.

The code basically works like a zipper. In the rule, A denotes the current
position where there is a branch. During computation, all nodes up to A have
already been merged, now the successors of A in the two chains are examined.
The arc from A to B, the smaller of the two successor nodes of A, is kept, since B
must be the immediate successor of A. The second arc is replaced by an arc from
B to C. If the first chain is not finished yet, the new branch will be at B now.
The rule applies again and again until there is no more branch left by using up
at least one chain. (The chains can have different length.)

For example, the query 0-->2, 2-->5, 0-->3, 3-->7 will produce the an-
swer 0-->2, 2-->3, 3-->5, 5-->7. (Note that the constraints in the answer
may not necessarily be sorted in that way.)

Termination and Correctness. Applying the rule will not change the number of
arcs and the set of involved nodes, i.e. values. The nodes on the right of an arc
will not change, too. Only a node on the left may be replaced by a larger node.
Since the only rule replaces smaller node values by strictly larger ones without
changing anything else and there is only a finite number of values, the program
terminates. The application of the rule keeps the invariant that the two graphs
are ordered chains.

We can prove correctness by contradiction: If there is an arc whose right node
value is not the immediate successor of the left node value, then the chain is not
ordered or disconnected. During computation the chains will share a longer and
longer common prefix. If no rule is applicable, the two chains have been merged,
there is only one chain, so that chain must be ordered, too.

Duplicate Removal. Note that duplicate values are ignored by the rule due to its
guard, as they occur as arcs of the form A-->A. Also duplicate arcs of the form
A-->B, A-->B are ignored. To remove duplicate values and duplicate arcs, we
may add the two rules:

A --> A <=> true.
A --> B \ A --> B <=> true.

The rule for duplicate arcs can be made redundant when we slightly generalize
its guard of our initial merge rule:

A --> B \ A --> C <=> A<B, B=<C | B --> C.

Concretely, from A-->B, A-->B, where A<B, the sorting rules produces A-->B,
B-->B. The arc B-->B will be removed by the rule for duplicate arcs.

Sorting. We can now perform an ordered merge of two chains that are in as-
cending order. But the merge rule also works with more than two chains. It
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will actually merge them simultaneously. Based on this observation, we can im-
plement a merge sort algorithm. If we want to sort n values, we take n one
length chains starting with the same smallest (dummy) value (in the example it
is 0). Applied repeatedly to a left node, the merge rule will find its immediate
successor. As before, the answer is a single, ordered chain of arcs.

In its generality, the code turns a certain type of ordered tree into an ordered
chain. Actually, any graph of ordered arcs where all nodes can be reached from
a single root node can be sorted. There are no duplicate nodes on the right of
an arc, i.e., no right branches. The branches are on the left nodes of an arc, and
they are removed by our sorting rule.

Our one-rule sorting program has quadratic complexity when the complier
optimisation of indexing is used, an optimal lin-log complexity version is also
possible with just one additional rule.

6 Conclusions

We have introduced CHR by presenting some small programs written in different
programming styles. We also discussed the properties of these programs.
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[Frü00] Frühwirth, T.: Proving Termination of Constraint Solver Programs. In:
Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS
1999. LNCS, vol. 1865, pp. 298–317. Springer, Heidelberg (2000)
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