Constraint Handling Rules - The Story So Far

Thom Friihwirth

University of Ulm, Germany

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract

Rule-based programming experiences renaissance due to its appli-
cations in areas such as Business Rules, Semantic Web, Computa-
tional Biology, Verification and Security. Executable rules are used
in declarative programming languages, in program transformation
and analysis, and for reasoning in artificial intelligence applica-
tions.

Constraint Handling Rules (CHR) [6, 8, 11] is a concurrent
committed-choice constraint logic programming language consist-
ing of guarded rules that transform multi-sets of atomic formulas
(constraints) into simpler ones until exhaustion. CHR was initially
developed for solving constraints, but has matured into a general-
purpose concurrent constraint language over the last decade, be-
cause it can embed many rule-based formalisms and describe algo-
rithms in a declarative way. The clean semantics of CHR facilitates
non-trivial program analysis and transformation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming; D.3.2 [Programming Languages]:
Language Classifications—Constraint and logic languages, Con-
straint Handling Rules; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Constraints

General Terms Algorithms, Languages, Theory

Keywords Constraint Programming, Constraint Solving, Compu-
tational Logic, Concurrency, Executable Specification, Rule-Based
Programming, Program Analysis, Applications

CHR in a Nutshell

CHR programs consist of two main kinds of rules: Simplifica-
tion rules replace constraints by simpler constraints while pre-
serving logical equivalence, e.g., X<Y,Y<X<X=Y. Propagation
rules add new constraints that are logically redundant but may
cause further simplification, e.g., X<Y,Y<Z=-X<Z. Together with
X<X&true, these three rules encode the axioms of a partial order
relation. The rules compute its transitive closure and replace < by
equality = whenever possible. For example, A<B,B<C,C<A will
be simplified into A=B, A=C.

Direct ancestors of CHR are logic programming, constraint
logic programming [9] and concurrent committed-choice logic pro-
gramming [10] languages. Like these languages, CHR has an op-
erational semantics and a declarative semantics that are closely

Copyright is held by the author/owner(s).

PPDP’06 July 10-12, 2006, Venice, Italy.
ACM 1-59593-388-3/06/0007.

related. Other influences were the chemical abstract machine [4],
term rewriting systems, and, of course, production rule systems.

CHR is appealing for computational logic, because logical
theories are usually specified by implications and logical equiva-
lences, corresponding to propagation and simplificiation rules. On
the meta-level, given the transformation rules for deduction in a
calculus, inference rules map to propagation rules and replacement
rules to simplification rules.

The use of CHR as a general purpose programming language
is justified by the following observation: Given a state transition
system, its transition rules can readily be expressed with simplifi-
cation rules. In this way, dynamics and changes (e.g., updates) can
be modelled, possibly triggered by events and handled by actions
(that are all represented by atomic constraints). In such applica-
tions, conjunctions of constraints are best regarded as interacting
collections of concurrent agents or processes. The standard declar-
ative semantics based on first order predicate logic is likely to break
down, but linear logic does the job [5].

Rule-based programming languages have the stigma of inef-
ficiency. The paper [12] introduces CHR machines, analogous to
RAM and Turing machines. It shows that these machines can sim-
ulate each other in polynomial time, thus establishing that CHR is
Turing-complete and, more importantly, that every algorithm can
be implemented in CHR with best known time and space com-
plexity, something that is not known to be possible in other pure
declarative programming languages like Prolog. These results hold
in practice, as optimal and elegant implementations of algorithms
like union-find, shortest paths and Fibonacci heaps have shown.

CHR libraries exist for most Prolog systems, several for Java
and Haskell. Standard constraint systems as well as novel ones
such as temporal, spatial, or description logic constraints have been
implemented, many programs are available online. Besides con-
straint solvers, applications of CHR can be found in computa-
tional logic', in agent programming, multi-set rewriting and pro-
duction rule systems. The several hundred publications [11] men-
tioning CHR cover such diverse applications as type system design
for Haskell, time tabling for universities, optimal sender placement,
computational linguistics, spatio-temporal reasoning, chip card ver-
ification, semantic web information integration, and decision sup-
port for cancer diagnosis.

One advantage of a declarative programming language is the
ease of program analysis. Techniques for termination and time
complexity, as well as confluence and operational equivalence of
CHR have been investigated.

Since CHR is Turing-complete, termination is undecidable.
For simplification rules, techniques from term rewriting can be
adapted, for propagation rules from deductive databases. Both
kinds of rules in one program can make termination proofs hard.
From a termination order, an upper bound for the time complex-

! Integrating deduction and abduction, bottom-up and top-down execution,
forward and backward chaining, tabulation and integrity constraints.



ity of simplification rules [7] can automatically be derived, but in
general problem-specific methods that account for compiler opti-
mizations are necessary.

Confluence of a program guarantees that any computation for
a goal results in the same final state no matter which of the appli-
cable rules are applied. Similar to term rewriting systems, there is

a decidable, sufficient and necessary condition for confluence of

terminating programs [1]. Any terminating and confluent program
has a consistent logical reading and will automatically implement
a concurrent any-time (approximation) and on-line (incremental)
algorithm, where rules can be applied in parallel to different parts
of the problem.

Surprisingly, there is also a decidable, sufficient and necessary
syntactic condition for operational equivalence of terminating and
confluent programs [2] (we do not know of any other programming
language in practical use with this property).

Some Simple Small CHR Programs
For details, consult the CHR website [11].

Chemical Abstract Machine Programming Style

Compute minimum of a set of min candidates
min(I), min(J) < J>=I | min(I).

Compute primes, given prime(2),...,prime(n)
prime(I), prime(J) < J mod I=:=0 | prime(I).

Sort array by swapping positions
a(I,v), a(J,W) & I>J, VW | a(I,w), a(J,V).

These three simplificaiton rules have guards (preconditions on the
applicability of a rule): J>=I, J mod I=:=0, and I>J,V<W.

Minimum Constraint - The minimum of X and Y is Z

min(X,Y,Z) < X=<Y | Z=X.
min(X,Y,2) & Y=<X | Z=Y.
min(X,Y,Z) & Z<X | Y=Z.
min(X,Y,Z) < Z<Y | X=Z.
min(X,Y,Z) = Z=<X, Z=<Y.

Also computes backwards, e.g. min(A,2,2) yields 2=<A thanks
to the last rule, a propagation rule (which adds the right hand side
without removing the left hand side). Such rules can be automati-
cally generated from specifications [3].

Fibonacci Variations - M is the Nth Fibonacci number

Top-down Evaluation

£fi(0,M) & M=1. fi(1,M) & M=1.
fi(N,M) & N>=2 | £fi(N-1,M1),fi(N-2,M2), M=M1+M2.
Matching is used on left hand sides of rules.

Top-down Evaluation with Tabling (in first rule)

fi(N,M1), fi(N,M2) < M1=M2, fi(N,M1).

£fi(0,M) = M=1. fi(1,M) = M=1.
fi(N,M) = N>=2 | fi(N-1,M1),fi(N-2,M2), M=M1+M2.
Turned simplification into propagation and merge duplicates.

Bottom-up Evaluation (finite version left as excercise)

fib & £i(0,1), fi(1,1).

fi(N1,M1), fi(N2,M2) = N2=Ni+1 | £fi(N2+1,M1+M2).
Basically, original simplification rules have been reversed.

Dynamic Program: Parsing with CYK Logical Algorithm

Grammar rules are in Chomsky normal form A->T or A->Bx*C.

Word is a +-separated sequence of terminal symbols.

terminal @ A->T, word(T+R) = parses(U,T+R,R).

non-term @ A->B*C, parses(B,I,J),parses(C,J,K) =
parses(A,I,K).

substring@ word(T+R) = word(R).

Solving Linear Polynomial Equations and Inequations

Gaussian-like Concurrent Incremental Variable Elimination
Equations of the form A1*X1+A2%X2+...An*Xn+B=0.
Solved form: leftmost variable occurs only once.
Polynom for X computed from 1st equation replaces X in 2nd.
A1xX+P1=0, XP=0 &
find (A2+X,XP,P2) |
compute (P2-(P1/A1)*A2,P3),
A1xX+P1=0, P3=0.
B=0 < number(B) | zero(B).
find: removing A2*X from polynom XP is polynom P1.
compute normalizes expression into linear polynom.

Fourier’s Algorithm for inequations is quite similar
A1*X+P1>0, XP>0 =
find (A2*X,XP,P2), opposite_sign(A1,A2) |
compute (P2-(P1/A1)*A2,P3),
P3>0.
B>0 < number(B) | non_negative(B).

References

[1] S. Abdennadher. Operational semantics and confluence of constraint
propagation rules. In 3rd Intl. Conf. on Principles and Practice of
Constraint Programming, LNCS 1330. Springer, 1997.

[2] S. Abdennadher and T. Frithwirth. Operational equivalence of
constraint handling rules. In Fifth Intl. Conf. on Principles and
Practice of Constraint Programming, LNCS 1713. Springer, 1999.

[3] S. Abdennadher and C. Rigotti. Automatic generation of chr
constraint solvers. Theory Pract. Log. Program., 5(4-5):403-418,
2005.

[4] J.-P. Banatre, A. Coutant, and D. L. Metayer. A parallel machine for
multiset transformation and its programming style. Future Generation
Computer Systems, 4:133—144, 1988.

[5] H. Betz and T. Frithwirth. A linear-logic semantics for constraint
handling rules. In /1th Intl. Conf. on Principles and Practice of
Constraint Programming CP 2005, LNCS 3709. Springer, 2005.

T. Frithwirth. Theory and practice of constraint handling rules,
Special issue on constraint logic programming. Journal of Logic
Programming, 37(1-3):95-138, 1998.

T. Frithwirth. As Time Goes By: Automatic Complexity Analysis of

Simplification Rules. In 8th Intl. Conf. on Principles of Knowledge
Representation and Reasoning, Toulouse, France, 2002.

[8] T. Frithwirth and S. Abdennadher. Essentials of Constraint
Programming. Springer, 2003.

[6

—

[7

—

[9] K. Marriott and P. J. Stuckey. Programming with Constraints: An
Introduction. MIT Press, Cambridge, Mass., 1998.

[10] V. Saraswat. Concurrent Constraint Programming. MIT Press,
Cambridge, Mass., 1993.

[11] T. Schrijvers and T. Frithwirth. CHR Website, www.cs.kuleuven.
ac.be/"dtai/projects/CHR/, 2006.

[12] J. Sneyers, T. Schrijvers, and B. Demoen. The Computational Power
and Complexity of Constraint Handling Rules. In Second Workshop
on Constraint Handling Rules, Sitges, Spain, October 2005.



