
Overview

Constraint Handling Rules
The Story So Far

Thom Frühwirth

Faculty of Computer Science
University of Ulm, Germany

PPDP’06 Venice

July 2006

Images are subject to copyright of the respective owners

Citations may be not recent and incomplete for space reasons

Thom Frühwirth Constraint Handling Rules

Overview

Introduction

Rules’ Renaissance

Business Rules

Semantic Web

Data Mining

Verification/Security

Overview

The CHR Language, Properties, Analysis

Small Example Programs, Constraint Solvers

Classical Applications, Trends, Projects

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Part I

The CHR Language

1 The CHR Language

2 Operational Properties

3 Program Analysis

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Example Partial Order Constraint

X≤Y ⇔ X=Y | true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
|| [built-in solver]

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Syntax and Declarative Semantics

Declarative Semantics

Simplification rule: H ⇔ C | B ∀x̄ (C → (H ↔ ∃ȳ B))

Propagation rule: H ⇒ C | B ∀x̄ (C → (H → ∃ȳ B))

Constraint Theory for Built-Ins

Head H: non-empty conjunction of CHR constraints

Guard C : conjunction of built-in constraints

Body B: conjunction of CHR and built-in constraints (goal)

Soundness and Completeness based on logical equivalence of states in a
computation.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).
Initial goal (query) 7→∗ result (answer).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to procedure
calls, CHR constraints evaluated depth-first from left to right and rules
applied top-down in program text order. Active vs. Partner constraint.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).
Initial goal (query) 7→∗ result (answer).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to procedure
calls, CHR constraints evaluated depth-first from left to right and rules
applied top-down in program text order. Active vs. Partner constraint.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).
Initial goal (query) 7→∗ result (answer).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to procedure
calls, CHR constraints evaluated depth-first from left to right and rules
applied top-down in program text order. Active vs. Partner constraint.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).
Initial goal (query) 7→∗ result (answer).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to procedure
calls, CHR constraints evaluated depth-first from left to right and rules
applied top-down in program text order. Active vs. Partner constraint.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Anytime Algorithm - Approximation

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Anytime Algorithm - Approximation

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Anytime Algorithm - Approximation

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Online Algorithm - Incremental

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7−→ G ′

then G ∧ C 7−→ G ′ ∧ C

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓

. . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Online Algorithm - Incremental

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7−→ G ′

then G ∧ C 7−→ G ′ ∧ C

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓

. . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Online Algorithm - Incremental

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7−→ G ′

then G ∧ C 7−→ G ′ ∧ C

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓

. . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Online Algorithm - Incremental

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7−→ G ′

then G ∧ C 7−→ G ′ ∧ C

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓

. . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Weak Parallelism

Rules can be applied in parallel to different parts of the problem.

If A 7−→ B
and C 7−→ D
then A ∧ C 7−→ B ∧ D

A≤B ∧ B≤C ∧ C≤D ∧ D≤A
↓ ↓

A≤B ∧ B≤C ∧ A≤C ∧ C≤D ∧ D≤A ∧ C≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Weak Parallelism

Rules can be applied in parallel to different parts of the problem.

If A 7−→ B
and C 7−→ D
then A ∧ C 7−→ B ∧ D

A≤B ∧ B≤C ∧ C≤D ∧ D≤A
↓ ↓

A≤B ∧ B≤C ∧ A≤C ∧ C≤D ∧ D≤A ∧ C≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Weak Parallelism

Rules can be applied in parallel to different parts of the problem.

If A 7−→ B
and C 7−→ D
then A ∧ C 7−→ B ∧ D

A≤B ∧ B≤C ∧ C≤D ∧ D≤A
↓ ↓

A≤B ∧ B≤C ∧ A≤C ∧ C≤D ∧ D≤A ∧ C≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Weak Parallelism

Rules can be applied in parallel to different parts of the problem.

If A 7−→ B
and C 7−→ D
then A ∧ C 7−→ B ∧ D

A≤B ∧ B≤C ∧ C≤D ∧ D≤A
↓ ↓

A≤B ∧ B≤C ∧ A≤C ∧ C≤D ∧ D≤A ∧ C≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Strong Parallelism

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps.

Rules can be applied in parallel to overlapping parts of a goal, if overlap
is not removed.

If A ∧ E 7−→ B ∧ E
and C ∧ E 7−→ D ∧ E
then A ∧ C ∧ E 7−→ B ∧ D ∧ E

A≤B ∧ B≤C ∧ C≤A
↓ ↓

A≤B ∧ A≤C ∧ B≤C ∧ C≤A ∧ B≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Concurrency - Strong Parallelism

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps.

Rules can be applied in parallel to overlapping parts of a goal, if overlap
is not removed.

If A ∧ E 7−→ B ∧ E
and C ∧ E 7−→ D ∧ E
then A ∧ C ∧ E 7−→ B ∧ D ∧ E

A≤B ∧ B≤C ∧ C≤A
↓ ↓

A≤B ∧ A≤C ∧ B≤C ∧ C≤A ∧ B≤A
↓

. . . A=C . . .

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Optimal Time and Space Complexity

c Jon Sneyers, K.U. Leuven

The CHR Machine
Sublanguage of CHR.
Can be mapped to Turing machines and
vice versa.
CHR is Turing-complete.
Can be mapped to RAM machines and
vice versa.
Every algorithm can be implemented in
CHR with best known time and space
complexity.
[Sneyers,Schrijvers,Demoen, CHR’05]
Practical Evidence: Union-Find, Shortest
Paths, Fibonacci Heap Algorithms.

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

CHR Program Analysis

Prove that... [Abdennadher,Frühwirth]

Termination
Every computation starting from any goal ends. [LNAI 1865, 2000]

Complexity
Worst-case time complexity follows from structure of rules. [KR’02]

Consistency and Correctness
Logical reading of the rules is consistent and follows from a specification.
[Constraints Journal 2000]

Decidable Confluence
The answer of a query is always the same, no matter which of the applicable
rules are applied. [CP’96, CP’97, Constraints Journal 2000]

Completion
Non-confluent programs made confluent by adding rules. [CP’98]

Decidable Operational Equivalence
Two programs have the same results for any given query. [CP’99]

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H ⇔ C | B or H ⇒ C | B

Minimal State: H ∧ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H ⇔ C | B or H ⇒ C | B

Minimal State: H ∧ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H ⇔ C | B or H ⇒ C | B

Minimal State: H ∧ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Confluence

Given a goal, every computation leads to the same result no matter what
rules are applied.
A decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)

Start from overlapping minimal states

A≤A ∧ A≤A
reflexivity

xxqqqqqqqqqq antisymmetry

&&MMMMMMMMMM

A≤A

reflexivity &&MMMMMMMMMMM A=A

built-inxxqqqqqqqqqqq

true

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Confluence

Given a goal, every computation leads to the same result no matter what
rules are applied.
A decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)

Start from overlapping minimal states

A≤A ∧ A≤A
reflexivity

xxqqqqqqqqqq antisymmetry

&&MMMMMMMMMM

A≤A

reflexivity &&MMMMMMMMMMM A=A

built-inxxqqqqqqqqqqq

true

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Confluence

Given a goal, every computation leads to the same result no matter what
rules are applied.
A decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)

Start from overlapping minimal states

A≤A ∧ A≤A
reflexivity

xxqqqqqqqqqq antisymmetry

&&MMMMMMMMMM

A≤A

reflexivity &&MMMMMMMMMMM A=A

built-inxxqqqqqqqqqqq

true

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

A≤B ∧ B≤A ∧ B<A

antisymmetry
zzttttttttt

inconsistency
$$IIIIIIIII

A=B ∧ B<A

��

B≤A ∧ false

��
A=B ∧ A<A false

X<X ⇔ false (irreflexivity)

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

A≤B ∧ B≤A ∧ B<A

antisymmetry
zzttttttttt

inconsistency
$$IIIIIIIII

A=B ∧ B<A

��

B≤A ∧ false

��
A=B ∧ A<A false

X<X ⇔ false (irreflexivity)

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

A≤B ∧ B≤A ∧ B<A

antisymmetry
zzttttttttt

inconsistency
$$IIIIIIIII

A=B ∧ B<A

��

B≤A ∧ false

��
A=B ∧ A<A false

X<X ⇔ false (irreflexivity)

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

A≤B ∧ B≤A ∧ B<A

antisymmetry
zzttttttttt

inconsistency
$$IIIIIIIII

A=B ∧ B<A

��

B≤A ∧ false

��
A=B ∧ A<A false

X<X ⇔ false (irreflexivity)

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Operational Equivalence

Given a goal and two programs, computations in both programs leads to
the same result.
A decidable, sufficient and necessary condition for operational equivalence
of terminating CHR programs through joinability of minimal states.

P1 min(X ,Y ,Z)⇔ X≤Y Z=X.
min(X ,Y ,Z)⇔ X>Y Z=Y .

P2 min(X ,Y ,Z)⇔ X<Y Z=X.
min(X ,Y ,Z)⇔ X≥Y Z=Y .

min(X ,Y ,Z) ∧ X≤Y

P1

��

min(X ,Y ,Z) ∧ X≤Y

P2

��
Z=X ∧ X≤Y

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Operational Equivalence

Given a goal and two programs, computations in both programs leads to
the same result.
A decidable, sufficient and necessary condition for operational equivalence
of terminating CHR programs through joinability of minimal states.

P1 min(X ,Y ,Z)⇔ X≤Y Z=X.
min(X ,Y ,Z)⇔ X>Y Z=Y .

P2 min(X ,Y ,Z)⇔ X<Y Z=X.
min(X ,Y ,Z)⇔ X≥Y Z=Y .

min(X ,Y ,Z) ∧ X≤Y

P1

��

min(X ,Y ,Z) ∧ X≤Y

P2

��
Z=X ∧ X≤Y

Thom Frühwirth Constraint Handling Rules

The CHR Language
Operational Properties

Program Analysis

Confluence and Completion
Operational Equivalence

Operational Equivalence

Given a goal and two programs, computations in both programs leads to
the same result.
A decidable, sufficient and necessary condition for operational equivalence
of terminating CHR programs through joinability of minimal states.

P1 min(X ,Y ,Z)⇔ X≤Y Z=X.
min(X ,Y ,Z)⇔ X>Y Z=Y .

P2 min(X ,Y ,Z)⇔ X<Y Z=X.
min(X ,Y ,Z)⇔ X≥Y Z=Y .

min(X ,Y ,Z) ∧ X≤Y

P1

��

min(X ,Y ,Z) ∧ X≤Y

P2

��
Z=X ∧ X≤Y

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Part II

Example Programs

4 Example Programs

5 Constraint Solvers

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Chemical Abstract Machine Style

One constraint. One Simpagation rule.

min(N) \ min(M) ⇔ N=<M | true.

gcd(N) \ gcd(M) ⇔ 0<N,N=<M | gcd(M-N).

fib(N) \ fib(M) ⇔ 0<N,M=<N | fib(M+N).

prime(I) \ prime(J) ⇔ J mod I = 0 | true.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Chemical Abstract Machine Style

One constraint. One Simpagation rule.

min(N) \ min(M) ⇔ N=<M | true.

gcd(N) \ gcd(M) ⇔ 0<N,N=<M | gcd(M-N).

fib(N) \ fib(M) ⇔ 0<N,M=<N | fib(M+N).

prime(I) \ prime(J) ⇔ J mod I = 0 | true.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Chemical Abstract Machine Style

One constraint. One Simpagation rule.

min(N) \ min(M) ⇔ N=<M | true.

gcd(N) \ gcd(M) ⇔ 0<N,N=<M | gcd(M-N).

fib(N) \ fib(M) ⇔ 0<N,M=<N | fib(M+N).

prime(I) \ prime(J) ⇔ J mod I = 0 | true.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Chemical Abstract Machine Style

One constraint. One Simpagation rule.

min(N) \ min(M) ⇔ N=<M | true.

gcd(N) \ gcd(M) ⇔ 0<N,N=<M | gcd(M-N).

fib(N) \ fib(M) ⇔ 0<N,M=<N | fib(M+N).

prime(I) \ prime(J) ⇔ J mod I = 0 | true.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Top-down Goal-Driven Evaluation

fib(0,M) ⇔ M = 1.
fib(1,M) ⇔ M = 1.
fib(N,M) ⇔ N≥2 | fib(N-1,M1) ∧ fib(N-2,M2) ∧ M = M1 + M2.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Top-down Goal-Driven Evaluation with Tabling (Memoisation)

fib(N,M1) ∧ fib(N,M2) ⇔ M1 = M2 ∧ fib(N,M1).

fib(0,M) ⇒ M = 1.
fib(1,M) ⇒ M = 1.
fib(N,M) ⇒ N≥2 | fib(N-1,M1) ∧ fib(N-2,M2) ∧ M = M1 + M2.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation

fib ⇔ fib(0,1) ∧ fib(1,1).
fib(N1,M1) ∧ fib(N2,M2) ⇒ N1=N2+1 |

N=N1+1 ∧ M=M1+M2 ∧ fib(N,M).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation with Termination

fib(Max) ⇒ fib(0,1) ∧ fib(1,1).
fib(Max) ∧ fib(N1,M1) ∧ fib(N2,M2) ⇒ Max>N1 ∧ N1=N2+1 |

N=N1+1 ∧ M=M1+M2 ∧ fib(N,M).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation, Two Results Only

fib(Max) ⇒ fib(0,1) ∧ fib(1,1).
fib(Max) ∧ fib(N1,M1) \ fib(N2,M2) ⇒ Max>N1 ∧ N1=N2+1 |

N=N1+1 ∧ M=M1+M2 ∧ fib(N,M).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y) ⇒ p(X ,Y).
e(X ,Z) ∧ p(Z ,Y) ⇒ p(X ,Y).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓↓

e(a, b)∧e(b, c)∧e(c , d)∧p(a, b)∧p(b, c)∧p(c , d)∧p(a, c)∧p(b, d)∧p(a, d)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Shortest Paths in a Graph

p(X ,Y ,N) \ p(X ,Y ,M) ⇔ N≤M | true.
e(X ,Y) ⇒ p(X ,Y , 1).

e(X ,Z) ∧ p(Z ,Y ,N) ⇒ p(X ,Y ,N+1).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b, 1) ∧ p(b, c , 1) ∧ p(c , d , 1)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Shortest Paths in a Graph

p(X ,Y ,N) \ p(X ,Y ,M) ⇔ N≤M | true.
e(X ,Y) ⇒ p(X ,Y , 1).

e(X ,Z) ∧ p(Z ,Y ,N) ⇒ p(X ,Y ,N+1).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b, 1) ∧ p(b, c , 1) ∧ p(c , d , 1)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Shortest Paths in a Graph

p(X ,Y ,N) \ p(X ,Y ,M) ⇔ N≤M | true.
e(X ,Y) ⇒ p(X ,Y , 1).

e(X ,Z) ∧ p(Z ,Y ,N) ⇒ p(X ,Y ,N+1).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b, 1) ∧ p(b, c , 1) ∧ p(c , d , 1)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Shortest Paths in a Graph

p(X ,Y ,N) \ p(X ,Y ,M) ⇔ N≤M | true.
e(X ,Y) ⇒ p(X ,Y , 1).

e(X ,Z) ∧ p(Z ,Y ,N) ⇒ p(X ,Y ,N+1).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b, 1) ∧ p(b, c , 1) ∧ p(c , d , 1)

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Dynamic Programming: Parsing

The Cocke-Younger-Kasami (CYK) Algorithm
for grammars in Chomsky normal form:
Grammar rules = A->T or A->B*C,
A, B, C nonterminal, T terminal symbol.

Word w = graph chain of terminal symbols.
Parse p= restricted transitive closure over word.

terminal @ A->T, w(T,I,J) ==> p(T,I,J).
nonterminal @ A->B*C, p(B,I,J), p(C,J,K) ==> p(A,I,K).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Sorting

One-rule sort related to merge sort and tree sort.
Query Arc X->Ai for each unique value Ai, X only on left of arc.
Answer Ordered chain of arcs X->A1, A1->A2,...

sort @ X->A \ X->B <=> A<B | A->B.

Query 0->2, 0->5, 0->1, 0->7.
Answer 0->1, 1->2, 2->5, 5->7.

Complexity: Given n values/arcs.
Each value can move O(n) times to the left.
Quadratic worst-case time complexity.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Sorting

One-rule sort related to merge sort and tree sort.
Arc 0=>Ai for each unique value Ai, left side is level (log of chain length).

sort @ X->A \ X->B <=> A<B | A->B.

level@ N=>A , N=>B <=> A<B | N+1=>A, A->B.

Query 0=>2, 0=>5, 0=>1, 0=>7.
Answer 2=>1, 1->2, 2->5, 5->7.

Complexity: Optimal log-linear worst-case time complexity.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Example Rule Generation

Intensional definition of minimum:

min(A,B,C) ← A≤B, C=A.

min(A,B,C) ← B≤A, C=B.

Derived constraint handling rules:

min(A,B,C)⇒ C≤A ∧ C≤B.

min(A,B,C)⇔ C 6=B | C=A.

min(A,B,C)⇔ C 6=A | C=B.

min(A,B,C)⇔ B≤A | C=B.

min(A,B,C)⇔ A≤B | C=A.

[Abdennadher,Rigotti, TPLP 2005] [Apt,Brand,Monfroy]

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Linear Polynomial Equations

Equations of the form a1x1 + . . . + anxn + b = 0.
Solved form: leftmost variable occurs only once.
Reach solved normal form by Gaussian-style variable elimination.

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧
A1*X+P1=0 ∧ P3=0.

B=0 ⇔ number(B) zero(B).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Fourier’s Algorithm

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ∧
P3≥0.

B≥0 ⇔ number(B) non_negative(B).

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Combination of Gauss’ and Fouriers Algorithms

Gaussian Elimination for =

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3=0.

Fouriers Algorithm for ≥

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ∧ P3≥0.

Bridge Rule for = and ≥

A1*X+P1=0 ∧ XP≥0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3≥0.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Combination of Gauss’ and Fouriers Algorithms

Gaussian Elimination for =

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3=0.

Fouriers Algorithm for ≥

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ∧ P3≥0.

Bridge Rule for = and ≥

A1*X+P1=0 ∧ XP≥0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3≥0.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Combination of Gauss’ and Fouriers Algorithms

Gaussian Elimination for =

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3=0.

Fouriers Algorithm for ≥

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ∧ P3≥0.

Bridge Rule for = and ≥

A1*X+P1=0 ∧ XP≥0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3≥0.

Thom Frühwirth Constraint Handling Rules

Example Programs
Constraint Solvers

Minimum
Linear Polynomial Equations
Fourier’s Algorithm
Syntactic Unification of Rational Trees

Syntactic Unification

Rational tree (in)finite tree with finite set of subtrees, e.g. X = f (X).
Solved normal form X1=t1 ∧ . . . ∧ Xn=tn (n ≥ 0),
where Xi is different to Xj and tj for all i ≤ j .

reflexivity @ X=X ⇔ isvar(X) | true.
orientation @ T=X ⇔ isvar(X) ∧ X≺T | X=T.
decomposition @ T1=T2 ⇔ notvar(T1) ∧ notvar(T2) |

same_functor(T1,T2) ∧
same_args(T1,T2).

confrontation @ X=T1 ∧ X=T2 ⇔ isvar(X)∧ X≺T1∧ T1�T2 |
X=T1 ∧ T1=T2.

Direct implementation of Clark’s equality theory.
Quadratic time complexity possible.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Part III

Applications

6 Classical Applications

7 Trends in Applications

8 Application Projects

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

POPULAR - Planning Cordless Communication

T. Frühwirth, P. Brisset
Optimal Placement of Base Stations
in Wireless Indoor Communication
Networks, IEEE Intelligent Systems
Magazine 15(1), 2000.

Voted Among Most Innovative
Telecom Applications of the Year by
IEEE Expert Magazine, Winner of
CP98 Telecom Application Award.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

MRA - The Munich Rent Advisor

T. Frühwirth,
S. Abdennadher
The Munich Rent Advisor,
Journal of Theory and
Practice of Logic
Programming, 2000.

Most Popular
Constraint-Based Internet
Application.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

University Course Timetabling

S. Abdennadher, M. Saft, S. Will
Classroom Assignment using
Constraint Logic Programming,
PACLP 2000.

Operational at University of
Munich. Room-Allocation for
1000 Lectures a Week.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Reasoning Services

Constraint Abduction, M. Sulzmann, J. Wazny, P. J. Stuckey, CHR 2005.

...System for Generation and Confirmation of Hypotheses,
Alberti, Chesani, Gavanelli, Lamma, W(C)LP 2005.
Interpreting Abduction in CLP, M. Gavanelli et. al., AGP’03.

HYPROLOG:...Assumptions and Abduction,
H. Christiansen, V. Dahl, LNCS 3668, ICLP 2005.
An Experimental CLP Platform for Integrity Constraints and Abduction,
S. Abdennadher, H. Christiansen, FQAS2000, LNCS.
CHR∨: A Flexible Query Language,
S. Abdennadher, H. Schütz, FQAS’98, LNCS.

• DemoII: Meta-Logic Programming System, Henning Christiansen.
• Terminological Logic Decision Algorithm, Liviu Badea, Bucharest, Romania.
• Description Logic Constraint System, Philip Hanschke, DFKI Kaiserslautern.
• Ordered Resolution Theorem Prover, A. Frisch, Univ. of York, UK.

• PROTEIN+ Theorem Prover, F.Stolzenburg, P. Baumgartner, Univ. Koblenz.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Spatio-Temporal Reasoning

M. T. Escrig, F. Toledo,
Universidad Jaume I, Castellun, Spain.
Qualitative Spatial Reasoning: Theory and Practice,
Application to Robot Navigation, IOS Press, 1998.
Qualitative Spatial Reasoning on 3D Orientation Point
Objects, QR2002.
Integrates orientation, distance, cardinal directions over
points as well as extended objects.

• Spatio-Temporal Annotated CLP - A. Raffaeta, Univ. Venice.
• Diagrammatic Reasoning - B. Meyer, Monash Melbourne.
• RCC Reasoning - B. Bennet, A.G. Cohn, Leeds UK.
• PMON logic for dynamical temporal systems - E. Sandewall, Linkoeping Univ.

• GRF Temporal Reasoning - G. Dondossola, E. Ratto, CISE Milano.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Types and Security

Chameleon Project, Martin Sulzmann, Peter J. Stuckey.

A Theory of Overloading, ACM TOPLAS, 2005.
Improving type error diagnosis, Haskell’04, ACM.
Sound and Decidable Type Inference for Functional
Dependencies, ESOP’04, LNCS 2968.
Enforcing Security Policies using Overloading
Resolution, Melbourne TR 2001.

• Constraint-Based Polymorphic Type Inference for Functional and Logic Pro-

grams, T. Schrijvers, M. Bruynooghe, IFL 2005.

• TypeTool - A Type Inference Visualization Tool, S. Alves, M. Florido, WF(C)LP

2004; Type Inference with CHR, WF(C)LP 2001.

• Subtyping Constraints in Quasi-lattices, E. Coquery, F. Fages, LNCS 2914,

2003; TCLP tool for Type Checking; Type System for CHR, CHR 2005.

• Typed Interfaces to Compose CHR Programs, G. Ringwelski, H. Schlenker.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Testing and Verification

Model Based Testing for Real:
The Inhouse Card Case Study,
A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel,
TU Munich,
Journal on Software Tools for Technology Transfer
(STTT) 5:2-3, Springer 2004.

• Automatic Generation of Test Data - J. Harm, University Rostock, Germany.

• Executable Z-Specifications - P. Stuckey, Ph. Dart, University Melbourne.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Agents and Actions

FLUX: A Logic Programming Method for Reasoning Agents,
Michael Thielscher, TPLP CHR Special Issue 2005.
Fluent Calculus, Reasoning about Actions, Robotics.

Specification and Verification of Agent Interaction...
Alberti, Chesani, Gavanelli, Lamma, Mello, Torroni, ACM SAC 2004.
Social integrity constraints on agent behaviour.

• Multi Agent Systems Using Constrains Handling
Rules, IC-AI 2002 - B. Bauer, M. Berger, Siemens
Munich, Germany - S. Hainzer, Uni Linz, Austria.

• PMON logic for dynamical temporal systems with

actions and change - M. Bjgareland, E. Sandewall,

Linkoeping University, Sweden.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Types and Security
Testing and Verification
Agents and Actions
Semantic Web

Semantic Web

COIN Context Interchange Project,
Stuart E. Madnick, MIT Cambridge.
Reasoning About Temporal Context Using
Ontology and Abductive CLP,
PPSWR 2004 LNCS 3208.

Semantic Web Reasoning for Ontology-Based Integration of Resources,
Liviu Badea, Doina Tilivea and Anca Hotaran, PPSWR 2004 LNCS 3208.

• S. Bressan, C.H. Goh, S. Madnick, M. Siegel et. al.
Context Knowledge Representation and Reasoning in the Context Interchange
System, Applied Intelligence, Vol 13:2, 2000;

Context Interchange...for the intelligent integration of information, ACM

Transactions on Information Systems, 1999.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Java Memory Machine

JMM by Vijay Saraswat, IBM TJ Watson Research and Penn State Univ.
Implementation JMMSolve by Tom Schrijvers, K.U. Leuven, Belgium

Conditional Read
Xr = (Cond)?Xw1:Xi

ite(true,Xr,Xw1,Xi) <=> Xr = Xw1.
ite(false,Xr,Xw1,Xi) <=> Xr = Xi.
ite(Cond,Xr,X,X) <=> Xr = X.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Lung Cancer Diagnosis

Veronica Dahl, Simon Fraser University, Vancouver, Canada.
Lung cancer is leading cause of cancer death, very low survival rate.
Use bio-markers indicating gene mutations to diagnose lung cancer.

Concept Formation Rules (CFR) in CHR.
Retractable constraints.

age(X,A),history(X,smoker),
serum_data(X,marker_type) <=>
marker(X,marker_type,P,B),
probability(P,X,B) |
possible_lung_cancer(yes,X).

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Multimedia Transformation Engine for Web Presentations

Joost Geurts, University of Amsterdam.
Automatic generation of interactive, time-based and media centric
WWW presentations from semi-structured multimedia databases.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Business Rules for Optimization

MANIFICO - Francois Fages, Claude Kirchner, Hassan Ait-Kaci,...France

Business Rule: defines or constrains behavior or structure of business.
“A car must be available to be assigned to a rental agreement”.

DERBY EU Car Rent Case in CHR, O. Bouissou.

reservation(Renter,Group,From,To),
available(car(Id,Group,...),From) <=>...

rentagreement(Renter,Id,From,To).

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Finally...

Google “Constraint Handling Rules” for the CHR website

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Finally...

Google “Constraint Handling Rules” for the CHR website

Transcribed as CHR, means

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Finally...

Google “Constraint Handling Rules” for the CHR website

Transcribed as CHR, means
to speed, to propagate, to be famous

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Summary Constraint Handling Rules (CHR)

Essential pure declarative relational language

Constraint programming language for Computational Logic

Multi-headed guarded committed-choice rules
transform multi-set of constraints until exhaustion

Ideal for concise executable specifications and rapid prototyping

Any algorithm implementable with optimal time+space complexity

Any-time (approximation), on-line (incrementality), concurrent
algorithms for free.

Logical and operational semantics coincide strongly

High-level supports program analysis and transformation:
Confluence/completion, termination/time complexity, correctness...

Language extension: Implemenations in most Prologs, Java, Haskell

100s of applications from types, time tabling to cancer diagnosis

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Conclusions

CHR - From computational logic to logical computations.

High-level abstract approach
Pros: conciseness, properties, analysis...
Cons: Learning, constant time factor overhead.
Try it yourself and find out!

Active research area, many topics, open-ended...

implementation: CHR in Java,

environment: confluence checker, debugging,

analysis: termination and complexity,

automatic rule generation,

classical algorithms revisited,

semantics: linear logic.

application: software engineering UML.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Conclusions

CHR - From computational logic to logical computations.

High-level abstract approach
Pros: conciseness, properties, analysis...
Cons: Learning, constant time factor overhead.
Try it yourself and find out!

Mailing List CHR@LISTSERV.CC.KULEUVEN.AC.BE
Constraint Handling Rules discussion and announcements

http://www.cs.kuleuven.ac.be/~dtai/projects/CHR/
Download. News. Examples. Top Authors. Research Topics. Projects.
Applications. 600 Papers. WebCHR Online.

TPLP journal special issue on CHR, vol. 4+5, September 2005.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

CHR Presentations at Sitges Conferences 2005

SAT Oct. 1
BeyondFD 16:05 A Constraint Solver for Sequences, N. Kosmatov.

SUN Oct. 2
CP 14:05 CHR Tutorial, T. Frühwirth.
ICLP 17:00 Hyprolog, H. Christiansen.

MON Oct. 3
ICLP 14:45 Guard Optimization, J. Sneyer et. al.
ICLP 14:45 Parallel Union-Find, T. Frühwirth.

TUE Oct. 4
CP 10:30 Linear Logic Semantics, H. Betz.
CP Implication/Universal Quantification Constr., M. Thielscher.

WED, Oct. 5
CHR 2005 9:00 Full-day workshop.
CSLP’05 11.45 Extracting Selected Phrases..., V. Dahl, Ph. Blache.
WCB’05 16:40 RNA Secondary Structure Design, M. Bavarian, V. Dahl.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

References

Google “constraint handling rules”

Essentials of Constraint
Programming
Thom Frühwirth,
Slim Abdennadher

Springer, 2003.

Constraint-Programmierung
Lehrbuch
Thom Frühwirth,
Slim Abdennadher

Springer, 1997.

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Lexicographic Order Constraint Solver

[] lex [] <=> true.
[X|L1] lex [Y|L2] <=> X<Y | true.

[X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

[X|L1] lex [Y|L2] ==> X=<Y.

[X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
[X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[|] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

Executable specification: short, concise
using recursive decomposition and propagation

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Lexicographic Order Constraint Solver

[] lex [] <=> true.
[X|L1] lex [Y|L2] <=> X<Y | true.

[X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

[X|L1] lex [Y|L2] ==> X=<Y.

[X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
[X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[|] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

Incremental and concurrent: by nature of CHR
Efficient: Optimal linear worst-case time complexity

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Lexicographic Order Constraint Solver

[] lex [] <=> true.
[X|L1] lex [Y|L2] <=> X<Y | true.

[X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

[X|L1] lex [Y|L2] ==> X=<Y.

[X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
[X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[|] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

Independent of underlying constraint system
Complete: propagates as much as possible

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Lexicographic Order Constraint Solver

[] lex [] <=> true.
[X|L1] lex [Y|L2] <=> X<Y | true.

[X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

[X|L1] lex [Y|L2] ==> X=<Y.

[X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
[X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[|] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

Confluence: proven by CHR confluence checker
Correctness: logical reading consequence of specification

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Basic Union-Find

[Schrijvers,Frühwirth, TPLP Programming Pearl 2006]

make @ make(X) <=> root(X).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> PX \ find(X,R) <=> find(PX,R).

findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

link @ link(X,Y), root(X), root(Y) <=> Y -> X, root(X).

Thom Frühwirth Constraint Handling Rules

Classical Applications
Trends in Applications

Application Projects

JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
Union-Find Algorithm

Optimal Union-Find

[Schrijvers,Frühwirth, TPLP Programming Pearl 2006]

make @ make(X) <=> root(X,0).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> PX , find(X,R) <=> find(PX,R), X -> R.

findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

linkLeft @ link(X,Y), root(X,RX), root(Y,RY) <=> RX >= RY |

Y -> X, root(X,max(RX,RY+1)).

linkRight@ link(X,Y), root(Y,RY), root(X,RX) <=> RY >= RX |

X -> Y, root(Y,max(RY,RX+1)).

Thom Frühwirth Constraint Handling Rules

	Overview
	The CHR Language
	Example Partial Order
	Syntax and Declarative Semantics
	Operational Semantics

	Operational Properties
	Program Analysis
	Confluence and Completion
	Operational Equivalence

	Example Programs
	Constraint Solvers
	Minimum
	Linear Polynomial Equations
	Fourier's Algorithm
	Syntactic Unification of Rational Trees

	Classical Applications
	Trends in Applications
	Reasoning Services
	Spatio-Temporal Reasoning
	Types and Security
	Testing and Verification
	Agents and Actions
	Semantic Web

	Application Projects
	JMMSolve Java Memory Machine
	Lung Cancer Diagnosis
	Cuypers Multimedia Web Presentation
	Manifico Business Rules for Optimization
	Union-Find Algorithm

