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The Holy Grail

Constraint Programming represents one of the
closest approaches computer science has yet made
to the Holy Grail of programming: the user states
the problem, the computer solves it.

Eugene C. Freuder, Inaugural issue of the Constraints

Journal, 1997.
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Constraint Reasoning

The Idea

Combination Lock Example
0 1 2 3 4 5 6 7 8 9
Greater or equal 5.
Prime number.

Declarative problem representation by
variables and constraints:
x ∈ {0, 1, . . . , 9} ∧ x ≥ 5 ∧ prime(x)

Constraint propagation and simplification
reduce search space:
x ∈ {0, 1, . . . , 9} ∧ x ≥ 5 → x ∈ {5, 6, 7, 8, 9}
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Constraint Reasoning Everywhere

Combination

Simplification

Contradiction Redundancy
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Terminology

Language is first-order logic with equality.

Constraint:
Conjunction of atomic constraints (predicates)
E.g., 4X + 3Y = 10 ∧ 2X − Y = 0

Constraint Problem (Query):
A given, initial constraint

Constraint Solution (Answer):
A valuation for the variables in a given constraint problem that
satisfies all constraints of the problem. E.g., X = 1 ∧ Y = 2

In general, a normal/solved form of, e.g., the problem
4X + 3Y + Z = 10 ∧ 2X − Y = 0 simplifies into
Y + Z = 10 ∧ 2X − Y = 0
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Mortgage

D: Amount of Loan, Debt, Principal
T: Duration of loan in months
I: Interest rate per month
R: Rate of payments per month
S: Balance of debt after T months

mortgage(D, T, I, R, S) <=>
T = 0,
D = S
;

T > 0,
T1 = T - 1,
D1 = D + D*I - R,
mortgage(D1, T1, I, R, S).
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Mortgage II

mortgage(D, T, I, R, S) <=>
T = 0, D = S
;

T > 0, T1 = T - 1, D1 = D + D*I - R,
mortgage(D1, T1, I, R, S).

mortgage(100000,360,0.01,1025,S) yields S=12625.90.

mortgage(D,360,0.01,1025,0) yields D=99648.79.

mortgage(100000,T,0.01,1025,S), S=<0 yields
T=374, S=-807.96.

mortgage(D,360,0.01,R,0) yields R=0.0102861198*D.
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Advantages of Constraint Logic Programming

Theoretical
Logical Foundation – First-Order Logic

Conceptual
Sound Modeling

Practical
Efficient Algorithms/Implementations
Combination of different Solvers
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Early Commercial Applications (in the 90s)

Lufthansa: Short-term staff planning.

Hongkong Container Harbor: Resource planning.

Renault: Short-term production planning.

Nokia: Software configuration for mobile phones.

Airbus: Cabin layout.

Siemens: Circuit verification.

Caisse d’epargne: Portfolio management.

In Decision Support Systems for Planning and Configuration, for
Design and Analysis.
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Constraint Reasoning and Programming

Generic Framework for

Modeling

with partial information
with infinite information

Reasoning

with new information

Solving

combinatorial problems
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Early History of Constraint Programming

60s, 70s Constraint networks in artificial intelligence.
70s Logic programming (Prolog).
80s Constraint logic programming.
80s Concurrent logic programming.
90s Concurrent constraint programming.
90s Commercial applications.
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Constraint Reasoning Algorithms

Adaption and combination of existing efficient algorithms from

Mathematics

Operations research
Graph theory
Algebra

Computer Science

Finite automata
Automatic proving

Economics

Linguistics
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Application Domains

Modeling

Executable Specifications

Solving Combinatorial Problems
Scheduling, Planning, Timetabling
Configuration, Layout, Placement, Design
Analysis: Simulation, Verification, Diagnosis
of software, hardware and industrial processes.
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Application Domains II

Artificial Intelligence

Machine Vision
Natural Language Understanding
Temporal and Spatial Reasoning
Theorem Proving
Qualitative Reasoning
Robotics
Agents
Bioinformatics
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Applications in Research

Computer Science: Program Analysis, Robotics, Agents

Molecular Biology, Biochemestry, Bioinformatics:
Protein Folding, Genomic Sequencing

Economics: Scheduling

Linguistics: Parsing

Medicine: Diagnosis Support

Physics: System Modeling

Geography: Geo-Information-Systems
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Crypto-Arithmetic Problem

S E N D
+ M O R E
= M O N E Y

solve(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] in 0..9,

S6=0, M 6=0,

alldifferent([S,E,N,D,M,O,R,Y]),

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y,

labeling([S,E,N,D,M,O,R,Y]).

S=9, E in 4..7, N in 5..8, M=1, O=0, [D,R,Y] in 2..8
With Search: S=9, E=5, N=6, D=7, M=1, O=0, R=8, Y=2
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Thom Frühwirth Constraint Programming with CHR



Constraint Reasoning
Constraint Programming

Background
More Examples

Crypto-Arithmetic Problem

S E N D
+ M O R E
= M O N E Y

solve(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] in 0..9,

S6=0, M 6=0,

alldifferent([S,E,N,D,M,O,R,Y]),

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y,

labeling([S,E,N,D,M,O,R,Y]).

S=9, E in 4..7, N in 5..8, M=1, O=0, [D,R,Y] in 2..8
With Search: S=9, E=5, N=6, D=7, M=1, O=0, R=8, Y=2
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n-Queens Problem

Place n queens q1, . . . , qn on an n×n chess board,
such that they do not attack each other.

1
2
3
4

q1 q2 q3 q4

q1, . . . , qn ∈ {1, . . . , n}

∀ i 6=j . qi 6=qj ∧ |qi − qj |6=|i − j |

no two queens on same row, column or diagonal

each row and each column with exactly one queen
each diagonal at most one queen

qi : row position of the queen in the i-th column
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n-Queens Problem II

Place n queens q1, . . . , qn on an n×n chess board,
such that they do not attack each other.

1
2
3
4

q1 q2 q3 q4

q1, . . . , qn ∈ {1, . . . , n}

∀ i 6=j . qi 6=qj ∧ |qi − qj |6=|i − j |

solve(N,Qs) <=> makedomains(N,Qs), queens(Qs), enum(Qs).
queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).
safe(X,[Y|Qs],N) <=> noattack(X,Y,N), safe(X,Qs,N+1).
noattack(X,Y,N) <=> X ne Y, X+N ne Y, Y+N ne X.
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n-Queens Problem III

solve(4,[Q1,Q2,Q3,Q4])

makedomains produces
Q1 in [1,2,3,4], Q2 in [1,2,3,4]
Q3 in [1,2,3,4], Q4 in [1,2,3,4]

safe adds noattack producing ne constraints

enum called for labeling

[Q1,Q2,Q3,Q4] = [2,4,1,3], [Q1,Q2,Q3,Q4] = [3,1,4,2]

1
2
3
4

•
•

•
•

q1 q2 q3 q4

1
2
3
4

•
•

•
•

q1 q2 q3 q4
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Part II

CHR...

Transcribed as CHR, means horse, but also
to speed, to propagate, to be famous
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CHR...

5 Constraint Handling Rules (CHR)
Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

6 Program Analysis
Termination and Complexity
Confluence
Completion
Operational Equivalence

7 Constraint Solvers
Boolean Constraints
Linear Polynomial Equations
Syntactic Unification
Finite Domains
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Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

Constraint Handling Rules (CHR)

Concurrent committed-choice guarded rules with ask and tell constraints
for computational logic and more... (100+ applications)

theorem proving with constraints

combining forward and backward chaining

manipulating attributed variables

combining deduction and abduction

bottom-up evaluation with integrity constr.

top-down evaluation with tabulation

production rule systems

event-condition-action (ECA) rules

simplification and propagation of constraints

15+ Implementations: Prolog, Java, Haskell,...
Extensions: Disjunction/Search, Dynamic and Soft Constraints,
Probabilistic Rules, Program Transformation, Literate Programming.
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Constraint Handling Rules (CHR)

Concurrent committed-choice guarded rules with ask and tell constraints
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Application

66CHR-Constraints

CHR Solver

6Built-in Constr.

Blackbox

15+ Implementations: Prolog, Java, Haskell,...
Extensions: Disjunction/Search, Dynamic and Soft Constraints,
Probabilistic Rules, Program Transformation, Literate Programming.
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Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

CHR in Numbers

Constraint Handling Rules:
Concurrent committed-choice guarded rules with ask and tell constraints
for computational logic and more...

1 language
2 semantics

3 kinds or rules
4 main implementors

5 host languages
15+ implementations

100+ projects use CHR
200+ citations of main paper

500+ references to CHR
1991 year of creation of CHR
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

CHR in Numbers

Constraint Handling Rules:
Concurrent committed-choice guarded rules with ask and tell constraints
for computational logic and more...

1 language
2 semantics

3 kinds or rules
4 main implementors

5 host languages
15+ implementations

100+ projects use CHR
200+ citations of main paper

500+ references to CHR
1991 year of creation of CHR
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Example Partial Order Constraint

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y≤Z ⇒ X≤Z (transitivity)

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓ (built-in solver)

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C
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Syntax and Declarative Semantics

Declarative Semantics

Simplification rule: H ⇔ C | B ∀x̄ (C → (H ↔ ∃ȳ B))

Propagation rule: H ⇒ C | B ∀x̄ (C → (H → ∃ȳ B))

Constraint Theory for Built-Ins

H: non-empty conjunction of CHR constraints

C : conjunction of built-in constraints

B: conjunction of CHR and built-in constraints
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Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C )
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C )
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C )
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C )
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

Anytime Algorithm

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓ (built-in solver)

A≤B ∧ B≤A ∧ A=C
↓ (antisymmetry)

A=B ∧ A=C
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Online Algorithm

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7−→ G ′

then G ∧ C 7−→ G ′ ∧ C

A≤B ∧ B≤C ∧ C≤A
↓ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A
↓ (antisymmetry)

A≤B ∧ B≤C ∧ A=C
↓

. . .
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Example Partial Order
Syntax and Declarative Semantics
Operational Semantics
Operational Properties

Concurrency

Rules can be applied in parallel to different parts of the problem.

If A 7−→ B
and C 7−→ D
then A ∧ C 7−→ B ∧ D

A≤B ∧ B≤C ∧ C≤D ∧ D≤A
↓ ↓

A≤B ∧ B≤C ∧ A≤C ∧ C≤D ∧ D≤A ∧ C≤A
↓

. . . A=C . . .
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CHR Program Analysis

Termination
Every computation starting from any goal ends. [LNAI 1865, 2000]

Consistency
Logical reading of the rules is consistent. [Constraints Journal 2000]

Confluence
The answer of a query is always the same, no matter which of the
applicable rules are applied. [CP’96, CP’97, Constraints Journal 2000]

Completion
Make non-confluent programs confluent by adding rules. [CP’98]

Operational Equivalence
Do two programs have the same behavior? [CP’99]

Complexity
Determine time complexity from structure of rules. [KR’02]
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Termination

A ranking || maps terms into natural numbers.
For all simplification rules

H1 ∧ . . . ∧ Hn ⇔ C | D ∧ B1 ∧ . . . ∧ Bm

it holds that
C ∧ D → |H1|+ . . . + |Hn| > |B1|+ . . . + |Bm|

For all propagation rules
H1 ∧ . . . ∧ Hn ⇒ C | D ∧ B1 ∧ . . . ∧ Bm

it holds that
C ∧ D → |Hi | > |Bj | for all i , j

Then the CHR program terminates for all queries whose ranking is
bounded from above.
[Frühwirth, KR’02]
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Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H ⇔ C | B or H ⇒ C | B

Minimal State: H ∧ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Termination and Complexity
Confluence
Completion
Operational Equivalence

Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H ⇔ C | B or H ⇒ C | B

Minimal State: H ∧ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).
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Confluence

Given a goal, every computation leads to the same result no matter what
rules are applied.
A decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

X≤X ⇔ true (reflexivity)
X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)

Start from overlapping minimal states

A≤A ∧ A≤A
reflexivity

xxqqqqqqqqqq antisymmetry

&&MMMMMMMMMM

A≤A

reflexivity &&MMMMMMMMMMM A=A

built-inxxqqqqqqqqqqq

true
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Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

A≤B ∧ B≤A ∧ B<A

antisymmetry
zzttttttttt

inconsistency
$$IIIIIIIII

A=B ∧ B<A

��

B≤A ∧ false

��
A=B ∧ A<A false

X<X ⇔ false (irreflexivity)
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Termination and Complexity
Confluence
Completion
Operational Equivalence

Operational Equivalence

Given a goal and two programs, computations in both programs leads to
the same result.
A decidable, sufficient and necessary condition for operational equivalence
of terminating CHR programs through joinability of minimal states.

P1 max(X ,Y ,Z )⇔ X<Y Z=Y .
max(X ,Y ,Z )⇔ X≥Y Z=X.

P2 max(X ,Y ,Z )⇔ X≤Y Z=Y .
max(X ,Y ,Z )⇔ X>Y Z=X.

max(X ,Y ,Z ) ∧ X≥Y

P1

��

max(X ,Y ,Z ) ∧ X≥Y

P2

��
Z=X ∧ X≥Y
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Boolean Constraints

Local consistency algorithm simplifies one atomic Boolean constraint at a
time into syntactic equalities.

and(X ,X ,Z )⇔ X=Z.
and(X ,Y , 1) ⇔ X=1 ∧ Y =1.
and(X , 1,Z ) ⇔ X=Z.
and(X , 0,Z ) ⇔ Z=0.
and(1,Y ,Z ) ⇔ Y =Z.
and(0,Y ,Z ) ⇔ Z=0.

imp(0,X ) ⇔ true.
imp(X , 0) ⇔ X=0.
imp(1,X ) ⇔ X=1.
imp(X , 1) ⇔ true.
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Solver Union and Cooperation by Completion

Bridge rules relate constraints from different programs for their
cooperation and communication.

and(X ,Y ,X ) ⇔ imp(X ,Y ).

Non-confluent: E.g.

and(X ,X ,X )

wwoooooo
))SSSSSS

true imp(X ,X )

Completion adds the rules:

imp(X ,X ) ⇔ true.
imp(X ,Y ) ∧ imp(X ,Y ) ⇔ imp(X ,Y ).
imp(X ,Y ) ∧ and(X ,Y ,Z ) ⇔ imp(X ,Y ) ∧ X=Z.
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Propositional Resolution

Boolean CSP in CNF: Conjunction of clauses
Clause: Disjunction of Literals
Literal: Positive or negative atomic proposition
Clause as ordered list of signed variables.
E.g., ¬x ∨ y ∨ z as cl([-x,+y,+z]).

empty_clause @ cl([]) ⇔ false.
tautology @ cl(L) ⇔ in(+X,L) ∧ in(-X,L) | true.

resolution @ cl(L1) ∧ cl(L2) ⇒
find(+X,L1,L3) ∧ find(-X,L2,L4) |
merge(L3,L4,L) ∧
cl(L).
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Linear Polynomial Equations

Equations of the form a1x1 + . . . + anxn + b = 0.
Solved form: leftmost variable occurs only once.
Reach solved normal form by variable elimination.

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧
A1*X+P1=0 ∧ P3=0.

B=0 ⇔ number(B) zero(B).

1*X+3*Y+5=0 ∧ 3*X+2*Y+8=0
compute((2*Y+8) - ((3*Y+5)/1)*3,P3) % P3=-7*Y+ -7
1*X+3*Y+5=0 ∧ -7*Y+ -7=0 % Y=-1
compute((1*X+5) - ((-7)/-7)*3,P3’) % P3’=1*X+2
1*X+2=0 ∧ -7*Y+ -7=0 % X=-2
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Boolean Constraints
Linear Polynomial Equations
Syntactic Unification

Linear Polynomial Equations

Equations of the form a1x1 + . . . + anxn + b = 0.
Solved form: leftmost variable occurs only once.
Reach solved normal form by variable elimination.

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧
A1*X+P1=0 ∧ P3=0.

B=0 ⇔ number(B) zero(B).

1*X+3*Y+5=0 ∧ 3*X+2*Y+8=0
compute((2*Y+8) - ((3*Y+5)/1)*3,P3) % P3=-7*Y+ -7
1*X+3*Y+5=0 ∧ -7*Y+ -7=0 % Y=-1
compute((1*X+5) - ((-7)/-7)*3,P3’) % P3’=1*X+2
1*X+2=0 ∧ -7*Y+ -7=0 % X=-2

Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Boolean Constraints
Linear Polynomial Equations
Syntactic Unification

Linear Polynomial Equations

Equations of the form a1x1 + . . . + anxn + b = 0.
Solved form: leftmost variable occurs only once.
Reach solved normal form by variable elimination.

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ∧
A1*X+P1=0 ∧ P3=0.

B=0 ⇔ number(B) zero(B).

1*X+3*Y+5=0 ∧ 3*X+2*Y+8=0
compute((2*Y+8) - ((3*Y+5)/1)*3,P3) % P3=-7*Y+ -7
1*X+3*Y+5=0 ∧ -7*Y+ -7=0 % Y=-1
compute((1*X+5) - ((-7)/-7)*3,P3’) % P3’=1*X+2
1*X+2=0 ∧ -7*Y+ -7=0 % X=-2
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Fourier’s Algorithm

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
canon(P2-(P1/A1)*A2,P3) ∧
P3≥0.

B≥0 ⇔ number(B) non_negative(B).
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Solver Cooperation, Combination of Algorithms

Gaussian Elimination for =

A1*X+P1=0 ∧ XP=0 ⇔
find(A2*X,XP,P2)
canon(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3=0.

Fouriers Algorithm for ≥

A1*X+P1≥0 ∧ XP≥0 ⇒
find(A2*X,XP,P2) ∧ opposite_sign(A1,A2)
canon(P2-(P1/A1)*A2,P3) ∧ P3≥0.

Bridge Rule for = and ≥

A1*X+P1=0 ∧ XP≥0 ⇔
find(A2*X,XP,P2)
canon(P2-(P1/A1)*A2,P3) ∧ A1*X+P1=0 ∧ P3≥0.
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Syntactic Unification

Rational tree (possibly infinite) tree with finite set of subtrees, e.g.
X = f (X ).
Solved normal form X1=t1 ∧ . . . ∧ Xn=tn (n ≥ 0)
where Xi is different to Xj and tj , if i ≤ j

reflexivity @ X=X ⇔ var(X) | true.
orientation @ T=X ⇔ var(X) ∧ X@<T | X=T.
decomposition @ T1=T2 ⇔ nonvar(T1) ∧ nonvar(T2) |

same_functor(T1,T2) ∧
same_args(T1,T2).

confrontation @ X=T1 ∧ X=T2 ⇔ var(X)∧ X@<T1∧ T1@=<T2 |
X=T1 ∧ T1=T2.
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Constraint Solvers

Boolean Constraints
Linear Polynomial Equations
Syntactic Unification

Syntactic Unification II

reflexivity @ X=X ⇔ var(X) | true.
orientation @ T=X ⇔ var(X) ∧ X@<T | X=T.
decomposition @ T1=T2 ⇔ nonvar(T1) ∧ nonvar(T2) |

same_functor(T1,T2) ∧
same_args(T1,T2).

confrontation @ X=T1 ∧ X=T2 ⇔ var(X)∧ X@<T1∧ T1@=<T2 |
X=T1 ∧ T1=T2.

h(Y,f(a),g(X,a))=h(f(U),Y,g(h(Y),U))
7→decomposition 7→∗ Y=f(U) ∧ f(a)=Y ∧ g(X,a)=g(h(Y),U)
7→orientation Y=f(U) ∧ Y=f(a) ∧ g(X,a)=g(h(Y),U)
7→∗ Y=f(U) ∧ U=a ∧ X=h(Y) ∧ U=a
7→confrontation Y=f(U) ∧ U=a ∧ X=h(Y) ∧ a=a
7→decomposition 7→∗ Y=f(U) ∧ U=a ∧ X=h(Y)
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Thom Frühwirth Constraint Programming with CHR



Constraint Handling Rules (CHR)
Program Analysis

Constraint Solvers

Boolean Constraints
Linear Polynomial Equations
Syntactic Unification

Syntactic Unification II

reflexivity @ X=X ⇔ var(X) | true.
orientation @ T=X ⇔ var(X) ∧ X@<T | X=T.
decomposition @ T1=T2 ⇔ nonvar(T1) ∧ nonvar(T2) |

same_functor(T1,T2) ∧
same_args(T1,T2).

confrontation @ X=T1 ∧ X=T2 ⇔ var(X)∧ X@<T1∧ T1@=<T2 |
X=T1 ∧ T1=T2.

h(Y,f(a),g(X,a))=h(f(U),Y,g(h(Y),U))
7→decomposition 7→∗ Y=f(U) ∧ f(a)=Y ∧ g(X,a)=g(h(Y),U)
7→orientation Y=f(U) ∧ Y=f(a) ∧ g(X,a)=g(h(Y),U)
7→∗ Y=f(U) ∧ U=a ∧ X=h(Y) ∧ U=a
7→confrontation Y=f(U) ∧ U=a ∧ X=h(Y) ∧ a=a
7→decomposition 7→∗ Y=f(U) ∧ U=a ∧ X=h(Y)
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Thom Frühwirth Constraint Programming with CHR



Language Issues
Classical Applications

Trends in Applications
Application Projects

Part III

...Around the World

8 Language Issues

9 Classical Applications

10 Trends in Applications

11 Application Projects
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...Around the World
8 Language Issues

Implementations
More Semantics
Program Generation and Transformation
Language Extensions

9 Classical Applications
10 Trends in Applications

Reasoning Services
Spatio-Temporal Reasoning
Agents and Actions
Logical Algorithms
Types and Security
Testing and Verification
Semantic Web
Computational Linguistics

11 Application Projects
JMMSolve Java Memory Machine
Lung Cancer Diagnosis
Cuypers Multimedia Web Presentation
Manifico Business Rules for Optimization
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Implementations
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Public Domain Implementations

SWI Prolog (new, free), XSB Prolog (tabling), hProlog (on request),
Tom Schrijvers, K.U.Leuven, 2004

HAL, ToyCHR (any Prolog), Gregory Duck, Melbourne, 2004

SICStus Prolog (reference, free trial), Christian Holzbaur, Vienna,
1998
YAP Prolog (free port), Vitor Santos Costa, 2000

ECLiPSe Prolog (2), Sepia Prolog (older), Pascal Brisset, Toulouse,
1994; Kish Shen, IC-Parc, London, 1998

Haskell (2), Gregory Duck, Jeremy Wazny, Melbourne, 2004; Martin
Sulzmann, Singapore

Java Constraint Kit (JCK) (pre-release), Slim Abdennadher, Cairo,
2002
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Thom Frühwirth Constraint Programming with CHR



Language Issues
Classical Applications

Trends in Applications
Application Projects

Implementations
More Semantics
Program Generation and Transformation
Language Extensions

Some Implementation Papers

Tom Schrijvers, David S. Warren, CHR and Tabled Execution,
20th ICLP 2004. Best Technical Paper Award.

Gregory J. Duck, Christian Holzbaur, Maria Garcia de la Banda,
Peter J. Stuckey, Optimizing Compilation of CHR in HAL,
TPLP CHR Special Issue 2005.
Extending Arbitrary Solvers with CHR,
5th ACM SIGPLAN PPDP’03.

Armin Wolf, Adaptive Constraint Handling with CHR in Java, CP
2001, LNCS 2239.
Intelligent Search Strategies Based on Adaptive CHR, TPLP CHR
Special Issue 2005.

Christian Holzbaur, Thom Frühwirth, A Prolog CHR Compiler and
Runtime System, Applied Artificial Intelligence Vol 14(4), 2000.

Slim Abdennadher et. al. JCK: A Java Constraint Kit,
ENTCS Vol 64, 2000.
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Hard Core CHR People

Slim Abdennadher Tom Schrijvers Peter Stuckey

Christian Holzbaur Armin Wolf
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More Semantics

The Refined Operational Semantics of CHR, Gregory J. Duck, Peter
J. Stuckey, Maria Garcia de la Banda, Christian Holzbaur, ICLP’04.
Textual rule order. Left-to-right execution of queries.

A Linear Logic Semantics for CHR, Hariolf Betz, Master Thesis,
Ulm, 2005. Model change: dynamic resources, actions and states.
switch(on), light( ) <=> light(on).
switch(off), light( ) <=> light(off).
Logical Algorithms, e.g. Union-Find.

A Compositional Semantics for CHR, Maurizio Gabbrielli, Maria
Chiaria Meo, CILC 2004. Multiple heads are challenging.
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Program Generation

Automatic Generation of CHR Constraint Solvers, Slim
Abdennadher, Christophe Rigotti, TPLP CHR Special Issue 2005.

Schedulers and Redundancy for a Class of Constraint Propagation
Rules, Sebastian Brand, Krzysztof Apt, TPLP CHR Special Issue
2005.

Automatic Rule Generation, Eric Monfroy, Valparaiso, Chile.
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Program Transformation

Specialization of Concurrent Guarded Multi-Set Transformation
Rules, T. Frühwirth, LOPSTR 2004.
Multiple heads make partial evaluation hard.

Integration and Optimization of Rule-Based Constraint Solvers,
S. Abdennadher, T. Frühwirth, LOPSTR 2003, LNCS 3018.
Are termination and confluence modular?

Source-to-Source Transformation for a Class of Expressive Rules,
T. Frühwirth, C. Holzbaur, AGP 2003.
To implement extensions and optimizations.
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Soft Constraints

Soft Constraint Propagation and Solving in CHR, S. Bistarelli, T.
Frühwirth, M. Marte, F. Rossi, Computational Intelligence 20(2), 2004.
Semi-ring constraint algorithms easy in CHR.

E.g. Fuzzy Constraints:
X≤Y:A, Y≤Z:B ==> X≤Z:A*B

E≤F:0.5, F≤G:0.3 7→
E≤F:0.5, F≤G:0.3, E≤G:0.6
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Randomized Algorithms

Probabilistic Constraint Handling Rules, T. Frühwirth, A. Di Pierro, H.
Wiklicky, WFLP 2002, ENTCS. CHR with randomized rule choice.

Random walk
walked to(0) <=> true
walked to(N) <=>0.5 walked to(N+1)
walked to(N) <=>0.5 walked to(N-1)
Probabilistic termination.
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POPULAR - Planning Cordless Communication

T. Frühwirth, P. Brisset
Optimal Placement of Base Stations
in Wireless Indoor Communication
Networks, IEEE Intelligent Systems
Magazine 15(1), 2000.

Voted Among Most Innovative
Telecom Applications of the Year by
IEEE Expert Magazine, Winner of
CP98 Telecom Application Award.
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MRA - The Munich Rent Advisor

T. Frühwirth,
S. Abdennadher
The Munich Rent Advisor,
Journal of Theory and
Practice of Logic
Programming, 2000.

Most Popular
Constraint-Based Internet
Application.
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University Course Timetabling

S. Abdennadher, M. Saft, S. Will
Classroom Assignment using
Constraint Logic Programming,
PACLP 2000.

Operational at University of
Munich. Room-Allocation for
1000 Lectures a Week.
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Reasoning Services

...System for Generation and Confirmation of Hypotheses,
Alberti, Chesani, Gavanelli, Lamma, W(C)LP 2005.
Extensions of Fung/Kowalksi IFF proof procedure
Interpreting abduction in CLP,M. Gavanelli et. al., AGP’03.

An Experimental CLP Platform for Integrity Constraints and Abduction,
S. Abdennadher, H. Christiansen, FQAS2000, LNCS.
CHR∨: A Flexible Query Language,
S. Abdennadher, H. Schütz, FQAS’98, LNCS.
CHR + disjunction = abduction, bottom-up/top-down evalution...

DemoII: Meta-Logic Programming System, Henning Christiansen.
Terminological Logic Decision Algorithm, Liviu Badea, Bucharest, Romania.
Description Logic Constraint System, Philip Hanschke, DFKI Kaiserslautern.
Ordered Resolution Theorem Prover, A. Frisch, Univ. of York, UK.

PROTEIN+ Theorem Prover, F.Stolzenburg, P. Baumgartner, Univ. Koblenz.
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Don’t-care and Don’t-know Nondeterminism

The CHR∨ program for append of two lists

append(X,Y,Z) ⇔
( X=[] ∧ Y=L ∧ Z=L
∨ X=[H|L1] ∧ Y=L2 ∧ Z=[H|L3] ∧ append(L1, L2, L3) ).

can be improved by adding the following rule

append(X,[],Z) ⇔ X = Z.

Thom Frühwirth Constraint Programming with CHR



Language Issues
Classical Applications

Trends in Applications
Application Projects

Reasoning Services
Spatio-Temporal Reasoning
Agents and Actions
Logical Algorithms
Types and Security
Testing and Verification
Semantic Web
Computational Linguistics

Top-down Evaluation with Tabling

fib(N,M) is true if M is the Nth Fibonacci number.

fib(N,M1) ∧ fib(N,M2) ⇔ M1 = M2 ∧ fib(N,M1).

fib(0,M) ⇒ M = 1.
fib(1,M) ⇒ M = 1.
fib(N,M) ⇒ N≥2 | fib(N-1,M1) ∧ fib(N-2,M2) ∧ M = M1 + M2.
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Abduction

Abducibles: predicates only partially defined by integrity constraints.
Abducibles as CHR constraints.

A bird is either an albatros or a penguin.

bird(X) ⇔ albatros(X) ∨ penguin(X).

Penguins can’t fly.

penguin(X) ∧ flies(X) ⇔ false.

The query bird(X) ∧ flies(X) leads to the only answer
albatros(X) ∧ flies(X).
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Bottom-up evaluation of logic programs

p(X ,Y ) ← e(X ,Y ).
p(X ,Y ) ← e(X ,Z ) ∧ p(Z ,Y ).

is transformed into
e(X ,Y ) ⇒ p(X ,Y ).

e(X ,Z ) ∧ p(Z ,Y ) ⇒ p(X ,Y ).

e(a, b) ∧ e(b, c) ∧ e(c , d)
↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d)
↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d)
↓

e(a, b) ∧ e(b, c) ∧ e(c , d) ∧ p(a, b) ∧ p(b, c) ∧ p(c , d) ∧ p(a, c) ∧ p(b, d) ∧ p(a, d)
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Spatio-Temporal Reasoning

M. T. Escrig, F. Toledo,
Universidad Jaume I, Castellun, Spain.
Qualitative Spatial Reasoning: Theory and Practice,
Application to Robot Navigation, IOS Press, 1998.
Qualitative Spatial Reasoning on 3D Orientation Point
Objects, QR2002.
Integrates orientation, distance, cardinal directions over
points as well as extended objects.

• Spatio-Temporal Annotated CLP - A. Raffaeta, Univ. Venice.
• Diagrammatic Reasoning - B. Meyer, Monash Melbourne.
• RCC Reasoning - B. Bennet, A.G. Cohn, Leeds UK.
• PMON logic for dynamical temporal systems - E. Sandewall, Linkoeping Univ.

• GRF Temporal Reasoning - G. Dondossola, E. Ratto, CISE Milano.
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Agents and Actions

FLUX: A Logic Programming Method for Reasoning Agents,
Michael Thielscher, TPLP CHR Special Issue 2005.
Fluent Calculus, Reasoning about Actions, Robotics.

Specification and Verification of Agent Interaction...
Alberti, Chesani, Gavanelli, Lamma, Mello, Torroni, ACM SAC 2004.
Social integrity constraints on agent behaviour.

• Multi Agent Systems Using Constrains Handling
Rules, IC-AI 2002 - B. Bauer, M. Berger, Siemens
Munich, Germany - S. Hainzer, Uni Linz, Austria.

• PMON logic for dynamical temporal systems with

actions and change - M. Bjgareland, E. Sandewall,

Linkoeping University, Sweden.
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Logical Algorithms

Naive Union-Find
Tom Schrijvers, Thom Frühwirth, TPLP Programming Pearl, to appear.

make @ make(X) <=> root(X).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X ~> PX \ find(X,R) <=> find(PX,R).
findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> Y ~> X, root(X).
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Logical Algorithms

Optimal Union-Find
Tom Schrijvers, Thom Frühwirth, TPLP Programming Pearl, to appear.

make @ make(X) <=> root(X,0).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X ~> PX , find(X,R) <=> find(PX,R), X ~> R.
findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.
linkLeft @ link(X,Y), root(X,RX), root(Y,RY) <=> RX >= RY |

Y ~> X, root(X,max(RX,RY+1)).
linkRight@ link(X,Y), root(Y,RY), root(X,RX) <=> RY >= RX |

X ~> Y, root(Y,max(RY,RX+1)).
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Dynamic Programming: Parsing

The Cocke-Younger-Kasami Algorithm
for grammars in Chomsky normal form:
Grammar rules = A->T or A->B*C.
Word = Sequence of tokens (terminal symbols).

term @ A->T∧ word(T+R) ⇒ parses(U,T+R,R).

non-term @ A->B*C∧ parses(B,I,J)∧parses(C,J,K) ⇒ parses(A,I,K).

substr @ word(T+R) ⇒ word(R).
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Types and Security

Chameleon Project, Martin Sulzmann, Peter J. Stuckey.

A Theory of Overloading, ACM TOPLAS, 2005.
Improving type error diagnosis, Haskell’04, ACM.
Sound and Decidable Type Inference for Functional
Dependencies, ESOP’04, LNCS 2968.
Enforcing Security Policies using Overloading
Resolution, TR 2001.

Sub(Int,Float) <=> true;
Sub(a1->a2, b1->b2) <=> Sub(b1,a1), Sub(a2,b2);

TypeTool - A Type Inference Visualization Tool, Sandra Alves, Mario Florido,
WF(C)LP 2004; Type Inference with CHR, WF(C)LP 2001.
Subtyping Constraints in Quasi-lattices, Emmanuel Coquery, Francois Fages,
LNCS 2914, 2003; TCLP tool for Type Checking CHR.

Typed Interfaces to Compose CHR Programs, G. Ringwelski, H. Schlenker.
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Testing and Verification

Model Based Testing for Real:
The Inhouse Card Case Study,
A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel,
TU Munich,
Journal on Software Tools for Technology Transfer
(STTT) 5:2-3, Springer 2004.

• Automatic Generation of Test Data - J. Harm, University Rostock, Germany.

• Executable Z-Specifications - P. Stuckey, Ph. Dart, University Melbourne.
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Semantic Web

COIN Context Interchange Project,
Stuart E. Madnick, MIT Cambridge.
Reasoning About Temporal Context Using
Ontology and Abductive CLP,
PPSWR 2004 LNCS 3208.

Semantic Web Reasoning for Ontology-Based Integration of Resources,
Liviu Badea, Doina Tilivea and Anca Hotaran, PPSWR 2004 LNCS 3208.

• S. Bressan, C.H. Goh, S. Madnick, M. Siegel et. al.
Context Knowledge Representation and Reasoning in the Context Interchange
System, Applied Intelligence, Vol 13:2, 2000;

Context Interchange...for the intelligent integration of information, ACM

Transactions on Information Systems, 1999.
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Computational Linguistics

Coordination Revisited: A CHR Approach, Veronica Dahl et. al., LNCS
3315, 2004.
CHR Grammars, Henning Christiansen, TPLP CHR Special Issue 2005.
Assumptions and Abduction in Prolog, H. Christiansen, V. Dahl, WLPE
2004.
Abduction, Assumption Grammars.
Topological Parsing, Gerald Penn et. al., EACL’03.
HPSG, Attribute Logic.

Property Grammars, HPSG, Philippe Blache, Aix;
Frank Morawietz, Tuebingen.

Morphological Analysis, Juergen Oesterle, Univ.

Munich, CIS.
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Java Memory Machine

JMM by Vijay Saraswat, IBM TJ Watson Research and Penn State Univ.
Implementation JMMSolve by Tom Schrijvers, K.U. Leuven, Belgium

Conditional Read
Xr = (Cond)?Xw1:Xi

ite(true,Xr,Xw1,Xi) <=> Xr = Xw1.
ite(false,Xr,Xw1,Xi) <=> Xr = Xi.
ite(Cond,Xr,X,X) <=> Xr = X.
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Lung Cancer Diagnosis

Veronica Dahl, Simon Fraser University, Vancouver, Canada.
Lung cancer is leading cause of cancer death, very low survival rate.
Use bio-markers indicating gene mutations to diagnose lung cancer.

Concept Formation Rules (CFR) in CHR.
Retractable constraints.

age(X,A),history(X,smoker),
serum_data(X,marker_type) <=>
marker(X,marker_type,P,B),
probability(P,X,B) |
possible_lung_cancer(yes,X).
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Multimedia Transformation Engine for Web Presentations

Joost Geurts, University of Amsterdam.
Automatic generation of interactive, time-based and media centric
WWW presentations from semi-structured multimedia databases.
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Business Rules for Optimization

MANIFICO - Francois Fages, Claude Kirchner, Hassan Ait-Kaci,...France

Business Rule: defines or constrains behavior or structure of business.
“A car must be available to be assigned to a rental agreement”.

DERBY EU Car Rent Case in CHR, O. Bouissou.

reservation(Renter,Group,From,To),
available(car(Id,Group,...),From) <=>...

rentagreement(Renter,Id,From,To).
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Further Reading

Essentials of Constraint
Programming
Thom Frühwirth,
Slim Abdennadher

Springer, 2003.

Constraint-Programmierung
Lehrbuch
Thom Frühwirth,
Slim Abdennadher

Springer, 1997.
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