
On Completion of Constraint Handling Rules

Slim Abdennadher and Thom Frühwirth

Computer Science Department

University of Munich

Oettingenstr. 67, 80538 Munich, Germany

1



Architecture of Constraint Programs

application
(e.g. in a CLP language)6

6
6

constraints

black-box constraint solver
(e.g. arithmetic constraints)

2



with CHR

6

6
user-defined constraints

CHR program
(e.g. interval arithmetics)6

predefined

2-a



Remarks� In general constraint application are written in a CLP language

using black box solvers. Nevertheless these solvers are efficient,

this approach makes it hard to modify a solver or build a solver

over a new domain, let alone reason about and analyze it.� CHR is a proposal to extend CLP languages to allow the user to

define new constraints, together with rules specifying how the new

constraints react with the constraint store.� CHR: declarative� Black-box solver: non-declarative

2-1



CHR: Introductory Example� defined by CHR:�� defined by the blackbox solver: true, =X � X , true (reflexivity)[X � Y , X = Y j true (reflexivity)]X � Y ^ Y � X , X = Y (antisymmetry)X � Y ^ Y � Z ) X � Z (transitivity)

A � B ^B � C ^ C � AA � B ^B � C ^ C � A ^A � C(transitivity)

A � B ^B � C ^A = C(antisymmetry)

A � B ^B � A ^A = C(black-box solver)

A = B ^A = C(antisymmetry)

3



Remarks� CHR consists of guarded rules. We distinguish two kinds of rules.

Simplification rule replaces constraints by simpler constraints while

preserving logical equivalence. Propagation rule adds new con-

straints, which are logically redundant but may cause further sim-

plification.� We define a user-defined constraint for less-than-or-equal. The

syntactical equality and true are predefined constraints. The

CHR program implements reflexivity, antisymmetry, and transitivity

in a straightforward way.� The reflexivity rule states that X�X is logically true. Whenever we

see a constraint of the form A�A we can simplify it with true. The

reflexivity rule can be written using a guard (a precondition on the

aplicability of the rule).� The antisymmetry rule means that if we find X�Y as well as Y�X
in the current constraint, we can replace them by the logically

equivalent X=Y.� The transitivity rule propagates constraints. It states that the con-

junction of X�Y and Y�Z implies X�Z. Operationally, we add

the logical consequence X�Z as a redundant constraint.� Redundancy from propagation rules is useful, as the following

computation shows:

3-1



CHR: Syntax and Declarative Semantics

Simplification rule: H , C j B 8�x (C ! (H $ 9�y B))
Propagation rule: H ) C j B 8�x (C ! (H ! 9�y B))
(�x: variables occurring in H or C ; �y: variables occurring only in B;)

Declarative semantics of a CHR program:� the above logical formulas +� a constraint theory CT for the predefined constraints.

4



CHR: Calculus

Solve

If CT j= 8� (G$ G0)
and G0 is “simpler” than G
then

GG0
Simplify

If (H , C j B) is a fresh variant of a rule with variables �x
and Gpre are the predefined constraints in G
and CT j= Gpre ! 9�x(H=H 0 ^ C)
then

H 0 ^GH=H 0 ^B ^G
Propagate

If (H ) C j B) is a fresh variant of a rule with variables �x
and Gpre are the predefined constraints in G
and CT j= Gpre ! 9�x(H=H 0 ^ C)
then

H 0 ^GH=H 0 ^B ^H 0 ^G
5



� “^” is AC (or AC1 with unit>)� “H=H 0”: syntactic equality per component of the conjunctionsH and H 0;� simplified states and rules;� Actual states contain information to avoid trivial nontermination of

propagation rules.

5-1



Confluence

Given a goal, every computation leads to the same result no matter

what rules are applied.

A decidable, sufficient and necessary condition for confluence of

terminating CHR programs through joinability of critical pairs

(Abdennadher, CP97).

Example X � X , true (reflexivity)X � Y ^ Y � X , X = Y (antisymmetry)A � A ^A � A
reflexivity

wwo o
o o
o o
o o
o o
o

antisymmetry

''O
OO

OO
OO

OO
OO

OA � A
reflexivity

''P
PP

PP
PP

PP
PP

P
A = ASolve

wwn n
n n
n n
n n
n n
n n
n

true

6



Remarks� In previous work we introduced a notion of confluence for CHR

programs. Confluence is an essential syntactical property of any

constraint solver. It ensures that the solver will always compute

the same result for a given set of constraints independent of which

rules are applied.� We gave a decidable, sufficient and necessary syntactic condi-

tion for confluence of terminating CHR programs. This condition

adopts the notion of critical pairs as known from term rewriting

systems.� These critical pairs can be derived from rules with overlapping

heads.� Consider the program for less-than-or-equal. The critical state

stems from unifying the first atom of the head of the reflexivity rule

with the first atom of the head of the antisymmetry rule. The crit-

ical pair stems from applying the reflexivity and the antisymmetry

rule.

6-1



Completion

Derive rules from a non-joinable critical pair that would allow a

transition from one of the critical states into the other one.

X � Y ^ Y � X , X = Y (antisymmetry)X � Y ^ Y < X , false (inconsistency)

A � B ^B � A ^B < A
antisymmetry

wwo o
o o
o o
o o
o o
o

inconsistency
''N

NN
NN

NN
NN

NNA = B ^B < ASolve �� B � A ^ falseSolve��A = B ^A < A false
X < X , X = Y j false (irreflexivity)

7



Remarks� The idea of completion is to derive a rule from a non-joinable criti-

cal pair that would allow a transition from one of the critical states

into the other one, thus re-introducing confluence.� This example shows that the completion method can be used - to

some extent – to specialize constraints.� We extend the CHR program for less-than-or-equal by a simplifi-

cation rule expressing the interaction between less-than-or-equal

and less. Then the resulting program loses confluence.� The completion procedure inserts the following rule ... expressing

the irreflexivity of <.

7-1



Orientation of the Rulesp(X;Y ) , X � Y ^ q(X;Y ) (r1)p(X;Y ) , X > Y ^ r(X;Y ) (r2)

p(A;B)
r1
wwn n
n n
n n
n n
n n
n

r2
''P

PP
PP

PP
PP

PPq(A;B) ^A � B r(A;B) ^A > B
r(X;Y ) , X > Y j q(X;Y ) ^X � Y (r3)q(X;Y ) ) X � Y j X > Y (r4)

1¡

8



Remarks� In contrast to completion methods for TRS, we need more than

one rule to make a critical pair joinable and in general it is not suf-

ficient to insert only simplification rules as in completion for TRS,

in order to join a non-joinable critical pair. as the following example

shows.� We write the following CHR program, where p, q and r are

user-defined constraints and �; > are built-in constraints. The

CHR program is not confluent, since the c.p. stemming from r1
and r2 is non-joinable.

8-1



Inference Rules of Completion� C : set of critical pairs� P : set of rules

CP-Deduction: (C;P )(S1; S2) is a critical pair of P(C [ f(S1; S2)g; P )
CP-Simplification: (C [ f(S1; S2)g; P )S1 7! S01S2 7! S02(C [ f(S01; S2)g; P )
CP-Deletion: (C [ f(S1; S2)g; P )S1 and S2 are joinable(C;P )
CP-Orientation: (C [ f(S1; S2)g; P )R = orient�(S1; S2)(C;P [R)

9



Remarks� Our completion algorithm maintains a set C of critical pairs and a

set P of rules.� The rule CP-Deduction permits to add critical pairs to C .� The rule CP-Simplification replaces state in a critical pair by its

successor state.� The rule CP-Deletion removes a joinable critical pair.� CP-Orientation removes a critical pair from C and adds new rules

to P , provided the critical pair can be oriented with respect to the

termination ordering�.

9-1



Properties of Completion (I)

1. The algorithm stops successfully

2. The algorithm aborts unsuccessfully

3. The algorithm does not terminate

Range-restricted Rule:

Every variable in the body or the guard appears also in the head.

Correctness Theorem

If P is a range-restricted terminating CHR program and

the completion procedure is successful

Then: Output P 0� confluent� terminating� logically equivalent to P

10



Remarks� As is the case for TRS our completion procedure cannot be always

successful. We distinguish three cases:

1. The algorithm stops successfully and returns a program P 0.
2. The algorithm aborts unsuccessfully, if a critical pair cannot

be transformed into rules for one of three reasons:

– The program remains terminating if new rules are added

but the termination ordering is too weak to detect this.

– The program loses termination if new rules are added.

– The critical pair consists exclusively of built-in constraints.

3. The algorithm does not terminate, because new rules pro-

duce new critical pairs, which require again new rules, and

so on.� we showed that when the algorithm stops successfully, the re-

turned program is confluent and terminating.

10-1



Properties of Completion (II)

Consistency Theorem

If the completion procedure aborts unsuccessfully because

the final states consist only of differing predefined constraints

Then The logical meaning of P is inconsistent.

X � X , false (reflexivity)X � Y ^ Y � X , X = Y (antisymmetry)A � A ^A � A
reflexivity

uul l
l l
l l
l l
l l
l l
l

antisymmetry

''O
OO

OO
OO

OO
OO

Ofalse ^A � Asolve
��

A = ASolve
��false true

11



Remarks� Another property of the completion procedure is that it can exhibit

inconsistency of the program to complete.� The logical meaning of this program is not a consistent theory.

11-1



Conclusion� Completion method for Constraint Handling Rules to make a

non-confluent CHR program confluent by adding new rules.� Completion helps the CHR programmer to extend, modify and

specialize existing solvers instead of having to write them from

scratch.

Current Work: The relationship of completion to partial evaluation.

12



Remarks� Partial evaluation is a particular program transformation for spe-

cializing programs. One interesting direction for future work is to

investigate the relationship of completion to partial evaluation.

12-1


