Operational Equivalence of CHR Programs And
Constraints

Slim Abdennadher and Thom Frithwirth

Computer Science Department, University of Munich
Oettingenstr. 67, 80538 Miinchen, Germany
{Slim.Abdennadher, Thom.Fruehwirth}@informatik.uni-muenchen.de

Abstract. A fundamental question in programming language semantics
is when two programs should be considered equivalent. In this paper we
introduce a notion of operational equivalence for CHR programs and
user-defined constraints. Constraint Handling Rules (CHR) is a high-
level language for writing constraint solvers either from scratch or by
modifying existing solvers.

We give a decidable, sufficient and necessary syntactic condition for op-
erational equivalence of terminating and confluent CHR programs.

For practical reasons, we also investigate a notion of operational equiva-
lence for user-defined constraints that are defined in different programs.
We give a sufficient syntactic condition for constraints defined in termi-
nating and confluent CHR programs. For a subclass of programs which
have only one user-defined constraint in common, we are able to give a
sufficient and necessary syntactic condition.

1 Introduction

Constraint Handling Rules (CHR) [Frii98] is essentially a committed-choice lan-
guage consisting of multi-headed guarded rules that transform constraints into
simpler ones until they are solved. CHR, defines both simplification of and prop-
agation over user-defined constraints. Simplification replaces constraints by sim-
pler constraints while preserving logical equivalence, e.g. X>YAY>X < X=Y. Prop-
agation adds new constraints, which are logically redundant but may cause fur-
ther simplification, e.g. X>YAY>Z = X>Z.

As a special-purpose language for writing constraint solvers, CHR, aims to fulfill
the promise of user-defined constraints as stated in [ACM96]: “For the theoreti-
cian meta-theorems can be proved and analysis techniques invented once and
for all; for the implementor different constructs (backward and forward chain-
ing, suspension, compiler optimization, debugging) can be implemented once
and for all; for the user only one set of ideas need to be understood, though with
rich (albeit disciplined) variations (constraint systems).”

A fundamental and hard question in programming language semantics is when
two programs should be considered equivalent. For example correctness of pro-
gram transformation can be studied only with respect to a notion of equivalence.

Also, if modules or libraries with similar functionality are used together, one may
be interested in finding out if program parts in different modules or libraries are
equivalent. In the context of CHR, this case arises frequently when constraint
solvers written in CHR are combined. Typically, a constraint is only partially
defined in a constraint solver. We want to make sure that the operational se-
mantics of the common constraints of two programs do not differ, and we are
interested in finding out if they are equivalent.

For example, we would like to know if the following two CHR rules defining the
user-defined constraint max

max (X,Y,Z) & X<Y | Z=Y.
max (X,Y,Z) & X>Y | Z=X.

are operationally equivalent with these two rules

max (X,Y,Z) & X<Y | Z=Y.
max (X,Y,Z) & X>Y | Z=X.

or if the union of the rules results in a better constraint solver for max.

The literature on equivalence of programs in logic-based languages is sparse. In
most papers that touch the subject, a suitable notion of program equivalence
serves as a correctness criterion for transformations between programs, e.g. in
partial evaluation and deduction. Our concern is the problem of program equiv-
alence in its generality, where the programs to be compared are independent
from each other.

[Mah86] provides a systematic comparison of the relative strengths of various
formulations of equivalence of logic programs. These formulations arise naturally
from several formal semantics of logic programs. Maher does not study how to
test for equivalence. The results may be extensible to constraint logic programs,
but committed-choice languages like CHR have different semantics that induce
different notions of equivalence. In particular, in CHR the distinction between
successful, failed or deadlocked goals is secondary, but the distinction between a
goal and its instances is vital. For similar reasons, [GLM95] among other things
extends Maher’s work by considering relationships between equivalences derived
from semantics that are based e.g. on computed answer substitutions. Gabbrielli
et. al. are not concerned with tests for equivalence, either.

Like [GLM95] we are concerned with equivalences of the observable behavior
of programs. Observables are then a suitable abstraction of execution traces.
In case of equivalence based on operational semantics expressed by a transition
system, it is common to define as observables the results of finite computations,
where one abstracts away local variables, see e.g. [EGMO9S].

We have already shown in previous work [Abd97] that analysis techniques are
available for an important property of any constraint solver, namely confluence:
The result of a computation should be independent from the order in which con-
straints arrive and in which rules are applied to the constraints. For confluence

of terminating CHR programs we were able to give a decidable, sufficient and
necessary condition [Abd97,AFM99].

It is tempting to think that a suitable modification of the concept of confluence
can be used to express equivalence of programs. In this paper we show that a
straightforward application of our confluence test is too weak to capture the
operational equivalence of CHR programs.

In practice, one is often interested in comparing implementations of constraints
instead of whole programs. Hence we investigate a notion of operational equiva-
lence for user-defined constraints that are defined in different programs. We give
a sufficient syntactic condition for constraints defined in terminating and conflu-
ent CHR programs. For a subclass of programs which have only one user-defined
constraint in common, we are able to give a sufficient and necessary syntactic
condition.

Based on these results, we are finally able to give a decidable, sufficient and neces-
sary syntactic condition for operational equivalence of terminating and confluent
CHR programs.

This paper is organized as follows: In Section 2 we define the CHR language
and summarize previous confluence results. Section 3 presents our notion of
operational equivalence for CHR and the results about this notion. Finally, we
conclude with a summary and directions for future work.

2 Preliminaries

In this section we give an overview of syntax and semantics as well as confluence
results for constraint handling rules. More detailed presentations can be found
in [AFM96,Abd97,AFM99].

2.1 Syntax of CHR

We use two disjoint kinds of predicate symbols for two different classes of con-
straints: built-in constraint symbols and user-defined constraint symbols (CHR
symbols). We call an atomic formula with a constraint symbol a constraint. Built-
in constraints are handled by a predefined, given constraint solver that already
exists as a certified black-box solver. user-defined constraints are defined in a
CHR program.

A CHR program is a finite set of rules. There are two kinds of rules:

A simplification rule is of the form

H & CIB.
A propagation rule is of the form
H=CI|B,

where the head H is a non-empty conjunction of user-defined constraints, the
guard C is a conjunction of built-in constraints, and the body B is a goal. A

goal is a conjunction of built-in and user-defined constraints. A guard “true” is
usually omitted together with the commit symboll. A CHR symbol is defined in
a CHR program if it occurs in the head of a rule in the program.

2.2 Declarative Semantics of CHR

The logical meaning of a simplification rule is a logical equivalence provided the
guard holds. VF' denotes the universal closure of a formula F.

VY(C — (H + 3y B)),

where ¢ are the variables that appear only in the body B.
The logical meaning of a propagation rule is an implication provided the guard
holds

Y(C — (H — 37§ B)).

The logical meaning P of a CHR program P is the conjunction of the logical
meanings of its rules united with a consistent constraint theory C'T that defines
the built-in constraint symbols. We require CT to define the constraint symbol
= as syntactic equality.

2.3 Operational Semantics of CHR

The operational semantics of CHR is given by a transition system.

A state Gy is a goal G together with a sequence of variables, V. Where it is clear
from the context, we will drop the annotation V.

We require that states are normalized so that they can be compared syntactically
in a meaningful way. Basically, we require that the built-in constraints are in a
(unique) normal form, where all syntactic equalities are made explicit and are
propagated to the user-defined constraints. Furthermore, we require that the
normalization projects out strictly local variables, i.e. variables appearing in the
built-in constraints only. A precise definition of the normalization function A
can be found in the appendix and in [Abd97,AFM99].

Given a CHR program P we define the transition relation —p by introducing
two kinds of computation steps (Figure 1). =}, denotes the transitive closure,
—p denotes the reflexive and transitive closure of — p.

An initial state for a goal G is the state N (Gy), where N is a function that
normalizes a state as defined below and V is a sequence of all variables appearing
in G. A final state is one where either no computation step is possible anymore
or where the built-in constraints are inconsistent.

A computation of a goal G in a program P is a sequence Sp, S1, - . . of states with
S; —p Si+1 beginning with the initial state for G and ending in a final state or
diverging. Where it is clear from the context, we will drop the reference to the
program P.

In Figure 1, the notation Gy, denotes the built-in constraints in a goal G.
We will also use the notation G4 to denote the user-defined constraints in

a goal G. An equation c¢(ty,...,t,)=d(s1,...,sn) of two constraints stands for
t1=s1A\...Atp=sy if c and d are the same CHR symbols and for false otherwise.
An equation (p1 A ... Apy)=(q1 A ... A qp) stands for py=q; A ... A pp=q, if
n = m and for false otherwise. Conjuncts can be permuted since conjunction is
associative and commutative.

Simplify
If (H < C|B) is a fresh variant of a rule with variables &
and CT =V (Gt — 32(H=H' A C))
then (H'AG)y —p N((H=H' ABAC AG)y)

Propagate
If (H = C|B) is a fresh variant of a rule with variables &
and CT 'Z A4 (Gbuilt — HE(H:H, N C))
then (H'AG)y —p N((H=H' ABACAH' AG)y)

Fig. 1. Computation Steps of Constraint Handling Rules

To Simplify user-defined constraints H' means to remove them from the state
H' A G and to add the body B of a fresh variant of a simplification rule (H <
C'| B) and the equation H=H' and the guard C to the resulting state G, provided
H' matches the head H and the guard C is implied by the built-in constraints
appearing in GG, and finally to normalize the resulting state. In this case we say
that the rule R is applicable to H'. A “variant” of a formula is obtained by
renaming its variables. “Matching” means that H' is an instance of H, i.e. it is
only allowed to instantiate (bind) variables of H but not variables of H'. In the
logical notation this is achieved by existentially quantifying only over the fresh
variables Z of the rule to be applied in the condition.

The Propagate transition is like the Simplify transition, except that it keeps
the constraints H' in the state. Trivial nontermination caused by applying the
same propagation rule again and again is avoided by applying a propagation rule
at most once to the same constraints. A more complex operational semantics that
addresses this issue can be found in [Abd97].

Ezample 1. Let < and < be built-in constraint symbols. We define a CHR sym-
bol max, where max (X,Y,Z) means that Z is the maximum of X and Y:

max(X,Y,Z) & X<Y | z=Y.
max(X,Y,Z) & Y<X | Z=X.
max(X,Y,Z) = X<Z A Y<Z.

The first rule states that max(X,Y,Z) can be simplified into Z=Y in any goal
where it holds that X<Y. Analogously for the second rule. The third rule propa-
gates constraints. It states that max (X,Y,Z) unconditionally implies X<Z A Y<Z.

Operationally, we add these logical consequences as redundant constraints, the
max constraint is kept.

To the goal max(1,2,M) the first rule is applicable: max(1,2,M) — M=2.

To the goal max(A,B,M) A A<B the first rule is applicable:

max (A,B,M) A A<B — M=B A A<B.

To the goal max(A,A,M) both simplification rules are applicable, and in both
cases: max(A,A,M) — M=A.

Redundancy from the propagation rule is useful, as the goal max(A,3,3) shows:
To this goal only the propagation rule is applicable, and then the first rule:
max(A,3,3) — max(A,3,3) A A<3 — A<3.

Note, that the constraint 3=3 is simplified to true by the built-in constraint
solver; according to our assumption about the built-in constraint symbol =.

2.4 Confluence

The confluence property of a program guarantees that any computation starting
from an arbitrary initial state, i.e. any possible order of rule applications, results
in the same final state. Due to space limitations, we can just give an overview
on confluence results for CHR programs, for details see [AFM99,Abd97].

Definition 1. A CHR program is called confluent if for all states S, Sy, Ss:
If S—*S; and S —»* S, then S; and S, are joinable. Two states S; and S, are
called joinable if there exist states 77 and 75 such that S; —=* 77 and Sy —* 15
and Ty, T, are variants of each other.

To analyze confluence of a given CHR program we cannot check joinability start-
ing from any given ancestor state S, because in general there are infinitely many
such states. However one can restrict the joinability test to a finite number of
“minimal” states based on the following observations: First, adding constraints
to a state cannot inhibit the application of a rule as long as the built-in con-
straints remain consistent (monotonicity property, cf. Lemma 2 in Section 3.2).
Hence we can restrict ourselves to ancestor states that consist of the head and
guards of two rules. Second, joinability can only be destroyed if one rule inhibits
the application of another rule. Only the removal of constraints can affect the
applicability of another rule, in case the removed constraint is needed by the
other rule. Hence at least one rule must be a simplification rule and the two
rules must overlap, i.e. have at least one head atom in common in the ancestor
state. This is achieved by equating head atoms in the state.

Definition 2. Given a simplification rule R; and an arbitrary (not necessarily
different) rule R», whose variables have been renamed apart. Let H; A A; be the
head and C; be the guard of rule R; (i = 1,2). Then a critical ancestor state of
Ry and R is

(Hl ANAL AN Hy A (A1:A2) ACL A Cz)v,

provided A; and A, are non-empty conjunctions and CT | 3((A1=43) AC1 A
Cs).

The application of R; and R», respectively, to a critical ancestor state of R; and
R leads to two states that form the so-called critical pair.

Definition 3. Let S be a critical ancestor state of Ry and Ry. If S +— 5] using
rule Ry and S +— S» using rule R, then the tuple (S, S2) is the critical pair of
R; and Rs. A critical pair (S, S2) is joinable, if Sy and Ss are joinable.

Definition 4. A CHR program is called terminating, if there are no infinite
computations.

The following theorem from [AFM96,Abd97,AFM99] gives a decidable, sufficient
and necessary condition for confluence of a terminating CHR program:

Theorem 1. A terminating CHR program is confluent iff all its critical pairs
are joinable.

Ezample 2. Consider the program for max of Example 1. The following critical
pair stems from the critical ancestor state' (max(X,Y,Z) AX < Y)jxyz of the first
rule and the third one:

(S1,8;) == (Z=Y A X<Y , max(X,Y,Z) A X<Y A X<Z A Y<Z)

(S1,S2) is joinable since S; is a final state and the application of the first rule
to Sy results in Sj.

3 Operational Equivalence

In this section we give sufficient and necessary conditions for equivalence of
terminating programs. The following definition states that two programs are
operationally equivalent if for each goal, the final state in one program is the
same as the final state in the other program.

Definition 5. Let P, and P, be CHR programs. A state S is Py, Px-joinable,
iff there are two computations S —% S1 and S —p, Sa, where S; and S are
final states, and S; and S, are variants of each other.

Let P, and P, be CHR programs. P, and P, are operationally equivalent if all
states are P;, P»-joinable.

We will see in Section 3.1 that an adaptation of our confluence test - that we call
compatibility - does not yield a test for operational equivalence. In Section 3.3,
we will be able to give a decidable, sufficient and necessary syntactic condition for
operational equivalence of terminating and confluent programs based on results
in Section 3.2.

In practice, we want to combine CHR programs which define different CHR
symbols, but also have some CHR symbols in common. A typical scenario is
that of modules or libraries implementing similar functionality. In the context

! For readability, variables from different rules have been identified to have an overlap.

of CHR, this case arises frequently when constraint solvers written in CHR are
combined. Typically, a CHR symbol is only partially defined in a constraint
solver.

A closer look at Definition 5 reveals that for these practical scenarios, it is much
too strict: States that involve CHR symbols that are defined in one program
only, are rarely Pj, Py-joinable. Therefore, in Section 3.2, we investigate opera-
tional equivalence of user-defined constraints that are implemented in different
programs.

3.1 Compatibility of Programs

We can use our confluence test to ensure that the different, confluent programs
are “compatible”: The union of the programs is confluent.

Definition 6. Let P, and P> be two confluent and terminating CHR, programs
and let the union of the two programs, P; U P, be terminating. P, and P, are
compatible if P U P, is confluent.

Testing the compatibility of P, and P> means to test the joinability of the critical
pairs of Py U P, i.e. the critical pairs of P; united with the critical pairs of P,
united with critical pairs coming from one rule in P; and one rule in P,. Note
that critical pairs from rules of different programs can only exist, if the heads of
the rules have at least one constraint in common.

If the confluence test fails, we can locate the rules responsible for the problem.
If the test succeeds, we can just take the union of the rules in the two programs.
This means that a common CHR symbol can even be partially defined in the
programs which are combined.

Example 3. P, contains the following CHR rules defining max:

max (X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

whereas P> has the following definition of max:

max (X,Y,Z) & X<Y | Z=Y.
max (X,Y,Z) & X>Y | Z=X.

We want to know whether the definitions of max are compatible. There are three
critical ancestor states coming from one rule in P; and one rule in Py:

— max(X,Y,Z) A X<Y A X<Y stems from the first rule of P; and the first rule
of PQ.

— max(X,Y,Z) A X>Y A X<Y stems from the second rule of P; and the first
rule of P;.

— max(X,Y,Z) A X>Y A X>Y stems from the second rule of P; and the second
rule of P».

Since the critical pairs coming from the critical ancestor states described above
are joinable, the two definitions of max are compatible. Hence we can just take
the union of the rules and define max by all four rules.

Note that the compatibility test does not ensure that the constraints are oper-
ationally equivalent. In P; the goal max(X,Y,Z) A X>Y has the following com-
putation:

max(X,Y,Z) A X>Y +p, Z=X A X>Y

In P; the initial state max (X,Y,Z) A X>Y is also final state, i.e. no computation
step is possible. On the other hand, in P, the goal max(X,Y,Z) A X<Y has a
non-trivial computation, while the goal is a final state in P;.
The constraint max is “operationally stronger” in P, U P» than in each program
alone, in the sense that more computation steps are possible.

3.2 Equivalence of Constraints

We now introduce a test to ensure that the definitions of the same CHR sym-
bol in different programs are not only compatible, but indeed are operationally
equivalent. We first restrict our attention to states that consist of one CHR
symbol (only) being common to both programs.

Definition 7. Let ¢ be a CHR symbol. A c-state is a state where all user-defined
constraints have the same CHR symbol c.

Definition 8. Let ¢ be a CHR symbol defined in two CHR programs P; and
P,. P, and P, are operationally c-equivalent if all c-states are Py, Py-joinable.

We give now a sufficient syntactic condition for operational c-equivalence of
terminating CHR, programs. As with confluence, we will try to find a finite
subset of states, such that the P;, P>-joinability of the subset implies P, P»-
joinability of all c-states. As we will see, the similarities with confluence will not
go much beyond that, mainly because in operational c-equivalence two different
programs are involved.

The following example illustrates, that, first of all, the critical pairs known from
confluence (and compatibility) are not the right subset of states to ensure oper-
ational equivalence.

Example 4. Let P; be the following CHR program:

p(a) & s.
p(b) &r.
sATr & true.

and let P, consist only of the first two rules.

It is not sufficient for operational equivalence to consider the critical pairs coming
from the critical ancestor states p(a) and p(b): In P, the conjunction p(a) A
p(b) leads to true, but in P, the goal sAr is a final state.

The example indicates that we not only have to consider c-states, but also those
states that can be reached from c-states. Because even if these states can be
reached in different programs due to confluence and even if they are final states,
there may be contexts (extensions of the states by more constraints) in which
the computation can be continued, and it can be continued in different ways in
the different programs. The idea is to avoid this by making sure that also the
user-defined constraints that occur in these states are operationally equivalent.
For a given CHR symbol ¢ one can safely approximate the set of all CHR symbols
that appear in successor states to a c-state by looking at the bodies of rules with
¢ in the head. Based on this idea we introduce the notion of dependency between
CHR symbols.

Definition 9. A CHR symbol ¢ depends directly on a CHR symbol ¢/, if there is
a rule in whose head ¢ appears and in whose body ¢ appears. A CHR symbol ¢
depends on a CHR symbol ¢, if ¢ depends directly on ¢, or if ¢ depends directly
on a CHR symbol d and d depends on ¢'.

The dependency set of a CHR, symbol ¢ is the the set of all CHR symbols that ¢
depends on. Let Cp,,Cp, be the dependency sets of ¢ with respect to P, and P,
respectively. Each CHR symbol from (Cp, N Cp,) U {c} is called a c-dependent
CHR symbol.

Definition 10. Let P, and P> be CHR programs. The set of c-critical states is
defined as follows:

{HAC | (H ® CIB)e PLUP,, where ® € { &, = } and
H contains only c-dependent CHR, symbols}

The set of c-critical states is formed by taking the head and guards of all rules
in whose heads c-dependent CHR symbols appear.

In the following we will show that P;, P»-joinability of these minimal states is
sufficient for P;, P>-joinability of arbitrary c-states. Before we can state and
prove the theorem, we need several lemmata.

The first lemma states that normalization has no influence on applicability of
rules. We therefore can assume in the following that states are normalized except
where otherwise noted.

Lemma 1. Let S and S’ be states.
S +— S’ holds iff N(S) — S'.
Proof. Can be found in [AFM99].

The following lemma, shows that a computation can be repeated in any context,
i.e. with states in which constraints have been added.

Definition 11. The pair of constraints (G1,G2) is called connected via V iff all
variables that appear both in G; and in G» also appear in V.

Lemma 2. [Monotonicity] If (G, H) is connected via V' and Gy —* GY,, and
Y C V', then
(G A H)y/ —* N((G’ A H)y/).

Proof. Can be found in [AFM99].

Next we show that a computation can be repeated in a state where variables
have been instantiated according to some equations.

Definition 12. Let C be a conjunction of built-in constraints. Let H and H'
be conjunctions of user-defined constraints with disjoint variables. C[H=H'] is
obtained from C' by replacing all variables x by the corresponding term ¢, where
CT = H=H' — (z=t) and z appears in H and t appears in H'.

Lemma 3. Let P be a CHR program and let R be a rule from P with head
H and guard C. Let H' be a conjunction of user-defined constraints. Let (H A
H=H'AC)y and (H' A C[H=H'])y» be intial states, where H and H' have
disjoint variables. If CT |= 3z2(H = H' AC), where Z are the variables appearing
in H, and (H ANH =H'A C)V —p Gy, then (H’ A C[H:H’])w —p Gy:.

Proof. The claim holds due to the equality propagation property of the normal-
ization function N and according to Lemma 1. A detailed proof can be found in
[AF99].

Next we show that a computation can be repeated in a state where redundant
built-in constraints have been removed.

Lemma 4. Let C be a conjunction of built-in constraints. If HACAG —* S
and CT EV (Gpuir — C) then HAG —* S.

Proof. This is a consequence of the following claim: If H AC A G — S and
CT =V (Gpuir — C) then H A G — S. This claim can be proven by analyzing
each kind of computation step [AF99].

Finally, the last Lemma refers to joinability of c-critical states. The proof for the
following lemma can be found in the appendix.

n
Definition 13. Let C = A C; be a conjunction of constraints, = a permutation
i=1

m
on [1,...,n], where 0 < m < n, then A Cj, is a subconjunction of C.
i=1

Lemma 5. Let P, and P, be terminating CHR programs defining a CHR
symbol ¢ and let G be a goal. If all c-critical states are P;, Py-joinable and there
is a rule in P; that is applicable to Gyse then there is a rule in P, that is
applicable to a subconjunction of G yser-

We are now ready to state and prove the main theorem of the paper, that gives
a sufficient condition for operational c-equivalence. The proof for Theorem 2 can
be found in the appendix.

Theorem 2. Let ¢ be a CHR symbol defined in two confluent and terminating
CHR programs P; and P,. Then the following holds: P, and P» are operationally
c-equivalent if all c¢-critical states are P;, P»-joinable.

We now give an example of two operationally equivalent user-defined constraints.

Ezample 5. The constraint sum(List,Sum) holds if Sum is the sum of elements
of a given list List. The CHR symbol sum can be implemented in different ways.
Let P, be the following CHR program:

sum([],Sum) < Sum=0.
sum([X|Xs],Sum) <& sum(Xs,Suml) A Sum = Suml + X.

Let P, be a CHR program that implements sum using an auxiliary CHR symbol
suml:

sum([],Sum) < Sum = 0.

sum([X|Xs],Sum) <& sumil(X,Xs,Sum).

suml (X, [],Sum) < Sum = X.

suml (X,Xs,Sum) < sum(Xs,Suml) A Sum = Suml + X.

The sum-critical states coming from P, and P, are sum([],Sum) and sum([X|Xs],Sum).
The sum-critical states are P;, P>-joinable:

For the sum-critical state sum([],Sum) the final state is Sum = 0 in both P; and
Ps.

A computation of the sum-critical state sum([X|Xs],Sum) in P; proceeds as
follows:

sum([X|Xs],Sum) — p, sum(Xs,Suml) A Sum = Sum1 + X

A computation of the same initial state in P results in the same final state:
sum([X|Xs],Sum) — p, suml(X,Xs, Sum) — p, sum(Xs, Suml) A Sum = Suml + X
Since all sum-critical states are P;, P>-joinable, P, and P, are operationally sum-
equivalent.

The next example shows why our joinability test for critical states is a sufficient,
but not necessary condition for operational equivalence.

Example 6. Let P; be the following CHR program

p(X) & X>01 qX).
q(X) & X<0 | true.

and let P, be the following one

p(X) & X>01 qX).
q(X) & X<0 | false.

P, and P, are operationally p-equivalent, but the p-critical state q(X) AX < 0 is
not P, P»>-joinable.

The reason that we can only give a sufficient, but not necessary condition for
operational c-equivalence in the general class of CHR programs is that the de-
pendency relation between user-defined constraints only approximates the actual
set of user-defined constraints that occur in states that can be reached from a
c-state.

A sufficient and necessary condition: In practice, one is often interested to com-
pare constraint solvers which have only one CHR symbol in common. In this
case we can give a decidable, sufficient and necessary condition.

Theorem 3. Let ¢ be the only CHR symbol defined in two confluent and ter-
minating CHR programs P, and P,. P, and P,. Then the following holds: P,
and P, are operationally c-equivalent iff all c-critical states are P;, P»>-joinable.

Proof. “=" direction: Let P, and P> be operationally c-equivalent. We prove
by contradiction that all c-critical states are Pj, Py-joinable: Assume that H AC
is a c-critical state that is not P;, P>-joinable, where H is the head of a rule from
P, U P, and C its guard.

Since P; and P, have only ¢ in common, the constraint symbol ¢ is the only c-
dependent CHR symbol, i.e. (Cp, NCp,)U{c} = {c}. Therefore HAC is a c-state.
This contradicts the prerequisite that P, and P» are operationally c-equivalent.
“«<=" direction: This is a special case of Theorem 2.

Theorem 3 gives a decidable characterization of the c-equivalent subset of termi-
nating and confluent CHR programs: P;, P>-joinability of a given c-critical state
is decidable for a terminating CHR, program and there are only finitely many
c-critical states.

Example 7. The user-defined constraint range (X,Min,Max) holds if X is between
Min and Max.
Let P, be a CHR program that implements range using the CHR symbol max:

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

range (X,Min,Max) & max(X,Min,X) A max(X,Max,Max).

Let P be a program defining range using the built-in constraint symbols < and
<:

range (X,Min,Max) & Max<Min | false.

range (X,Min,Max) & Min<Max | Min<X A X<Max.

P, and P, are not operationally range-equivalent, since the range-critical state
range(X,Min, Max) coming from P; is not P;, Py-joinable: range(X,Min, Max) can
be reduced to max(X,Min,X) A max(X,Max,Max) in P;. In P, the answer for
the state range(X,Min, Max) is the state itself, because no rule is applicable.

P, is “operationally stronger” than P,, since the computation step in P, does
not require that the values of Max and Min are known. This can be exemplified
by the goal range(5,6,Max). The inconsistency of the goal can be detected in
P,. In P5, range(5,6,Max) is a final state.

3.3 Equivalence of Programs

Based on the condition presented above for the operational equivalence of con-
straints we can also give a decidable, sufficient and necessary condition for op-
erational equivalence of terminating and confluent programs.
However, it is not enough to consider the union of all c-critical states for all
common CHR symbols ¢, as the following example illustrates.

Ezample 8. Let P, be

p&s.
sA\q < true.

and let P, be

p&s.
sAq < false.

P, and P, have three common CHR symbols, p, s and q. s and p are the p-
dependent constraint symbols. There are no s-dependent CHR, symbols except
s itself. Analogously for q.

p is the only p-critical state. It is P;, P,-joinable. There is no s-critical state,
since q is not a s-dependent CHR symbol. Analogously for q.

Hence all p-, s and g-critical states are P;, P>-joinable, but the programs are not
operationally equivalent. sAq leads in P, to true and with P, to false.

Still we can prove the operational equivalence of two programs by adapting the
definition of c-critical states:

Definition 14. Let P, and P> be CHR programs. The set of critical states of
P, and P> is defined as follows:

{HAC | (H ©® CIB)e PLUP,, where ® € { &, = }}

Theorem 4. Let P; and P, be terminating and confluent programs. P, and P,
are operationally equivalent iff all critical states of P; and P, are P;, P»-joinable.

Proof. Follows the proof of Theorem 3.

3.4 Relationships

Operational equivalence of two confluent and terminating CHR programs im-
plies their compatibility, since operational equivalence of P, and P, implies the
confluence of P; U P,. The converse does not hold, as the programs of Example 3
show.

Furthermore operational equivalence of two CHR programs implies the opera-
tional c-equivalence of all common constraints, since the set of critical states is
a superset of the union of all sets of the c-critical states. The converse does not
hold, as the programs of Example 8 show.

4 Conclusion

We introduced the notion of operational equivalence of CHR programs. We gave
a decidable, sufficient and necessary syntactic condition for operational equiva-
lence of terminating and confluent CHR programs. A decidable, sufficient and
necessary condition for confluence of a terminating CHR programs was given in
earlier work [AFM96,Abd97,AFM99]. We have also shown that an extension of
the confluence notion to two programs, called compatibility, is not sufficient.
For practical reasons, we also investigated a notion of operational equivalence
for user-defined constraints that are defined in different programs. We gave a
sufficient syntactic condition for constraints defined in terminating and confluent
CHR programs. For a subclass of programs which have only one user-defined
constraint in common, we were able to give a sufficient and necessary syntactic
condition.

Future work aims to enlarge the class of CHR programs for which we can give a
sufficient and necessary syntactic condition for operational equivalence. We also
plan to investigate the relationship between operational equivalence and logical
equivalence of CHR programs. Furthermore, operational equivalence together
with completion [AF98] provide a good starting point for investigating partial
evaluation, and program transformation in general, of constraint solvers.

Acknowledgements. We would like to thank Norbert Eisinger and Holger
Meuss for useful comments on a preliminary version of this paper.

References

[Abd97] S. Abdennadher. Operational semantics and confluence of constraint prop-
agation rules. In Third International Conference on Principles and Practice
of Constraint Programming, CP97, LNCS 1330. Springer-Verlag, November
1997.

[ACM96] ACM. The constraint programming working group. Technical report, ACM-
MIT SDRC Workshop, Report Outline, 1996.

[AF98] S. Abdennadher and T. Frithwirth. On completion of constraint handling
rules. In 4th International Conference on Principles and Practice of Con-
straint Programming, CP98, LNCS 1520. Springer-Verlag, 1998.

[AF99] S. Abdennadher and T. Frithwirth. Operational equivalence of constraint
handling rules. Research report PMS-FB-1999-4, Computer Science Depart-
ment, University of Munich, 1999.

[AFM96] S. Abdennadher, T. Frithwirth, and H. Meuss. On confluence of constraint
handling rules. In 2nd International Conference on Principles and Practice of
Constraint Programming, CP96, LNCS 1118. Springer-Verlag, August 1996.

[AFM99] S. Abdennadher, T. Frithwirth, and H. Meuss. Confluence and semantics
of constraint simplification rules. Constraints Journal, Special Issue on the
Second International Conference on Principles and Practice of Constraint
Programming, 4(2), May 1999.

[EGM98] S. Etalle, M. Gabrielli, and M. Meo. Unfold/fold transformations of CCP
programs. In 9th International Conference on Concurrency Theory, 1998.
Corrected version.

[Fri98] T. Frithwirth. Theory and practice of constraint handling rules, special issue
on constraint logic programming. Journal of Logic Programming, pages 95—
138, October 1998.

[GLM95] M. Gabbrielli, G. Levi, and M. Chiara Meo. Observable behaviors and equiva-
lences of logic programs. Information and Computation, 122(1):1-29, October
1995.

[Mah86] M. J. Maher. Equivalences of logic programs. In Proceedings of Third Inter-
national Conference on Logic Programming, Berlin, 1986. Springer.

A Proofs for Section 3.2

Proof of Lemma 5.

We prove the claim by contradiction. We assume that there is a rule R; in P,
that is applicable to Gser but there is no rule R, in P, that is applicable to a
subconjunction of Gyser. Let Hy be the head of Ry and let Cy be its guard.
Since all c-critical states are Py, Py-joinable, H; A Cy is Py, P>-joinable, i.e. H; A
Cy =5 Sand Hy ANCy =5, S, where S is a final state. Since the program is
terminating, S is different from H; A Cy. Then there is a rule Ry in P, with
head H, and guard C> that is applicable to a subconjunction Hg of Hi, i.e.
CT = Cy —» 3z(H2 = Hg A Cy). Since Ry is applicable to G yser, CT = Gpuinr —
AG(H1 = Guser A C1). Then the following holds CT' = Gpyir — 3Z(He = Hg A
C3), where Hg is a subconjunction of G yser. This contradicts the assumption.

For the proof of Theorem 2 to go through, CHR programs have to satisfy a range-
restriction condition: In every rule, every variable in the body appears also in
the head, i.e. there are no local variables. Nevertheless, our theorem holds for
general CHR, programs using the same proof technique, but the proof would be
longish and cluttered with technicalities taking into account local variables. The
proof can be found in [AF99].

The proof is by induction on the number of so-called macro-steps in a computa-
tion. These are conveniently chosen non-empty, finite sub-computations, as the
following definition shows:

Definition 15. Let R be a CHR rule with head H and guard C and let (H A
C)y =T By be a computation, where By is a final state. Let H' A G be a goal
and let R be applicable to H'. A macro step of a goal H' A G is a computation
of the form (H' A G)y =T N((BAH = H' AG)yr).

For the proof, we also have to define the normalization function more formally:

Definition 16. [Abd97,AFM99]

Let N be a function N' : S — &, where S is the set of all states and let
N(Gy) = G%. Assume that there is a fixed order on variables appearing in
a state such that the variables of V precede all other variables. Then N is a
normalization function, if it fulfills the following conditions:

— Equality propagation: G, is obtained from Gy by replacing all variables «,
that are uniquely determined in Gy, i-e. for which CT |=V (Gpyir — x=t)
holds, by the corresponding term ¢, except if ¢ is a variable that comes after
z in the variable order.

— Projection: The following must hold:

CT =V ((32Gyuire) < Ghuire),

where Z are the variables that appear in Gpyix but not in G/,
— Uniqueness: If

N(G1ly) = G1}, and
N(GQ];) = G2IV and
CT | (32Glyuir) < (39G20uite),

holds, where T and g, respectively, are the strictly local variables of the two
states, then:
G]'Ibuilt = G2Ibuilt'

Proof of Theorem 2.

Using Lemma 5 we can show that the number of macro steps in a computation
of a goal GG in P, and P» are equal. Since P; and P, are terminating, the number
of macro steps in these computations is finite.

In order to prove that P, and P, are operationally c-equivalent, we prove by
induction over the number of macro steps that the final states of a goal G in P,
and P», respectively, are equal. Since P, and P» are confluent, any computation
for the goal G will lead to the same final state.

Base case: n = 0. G is a final state for P and P, i.e. no rule is applicable.
Induction step: We assume that the induction hypothesis holds for m < n.
We prove the assertion for n.

Let G be of the form H' A G’ and there is a rule R in P; that is applicable to
H’, then according to Lemma 5 there is a rule in P, which is applicable to a
subconjunction of H'.

Let R have head H and guard C. Then there is a computation of the form
(HAC)y = p, By, where B is a final state. In the following we use the assumption
that all c-critical states are Py, P»-joinable: There is also a computation (H A
C)y =5, B, where B is a final state.

Let G’ be of the form G, A G, where G, and G',,.,. are conjunctions of

user? user

built-in and user-defined constraints, respectively. Then the following holds:

— According to Lemma 2:
(HNCANH=H'")y, =p N((BANH=H')y,)
— According to Lemma 3:
(H' ACIH=H')y, =}, N((B A H=H')y,)
— According to Lemma 2:
(H' A CIH=H'| A Gl)v, =iy, N((BAH=H'AGl)v,)

— Since R is applicable to H', the applicability condition CT =V (G),.;; —
Jz(H=H'AC)) holds. CT =V (3z(H=H' A C') - C[H=H']) holds, hence
CT =V (G}, — C[H=H']) holds. Therefore, according to Lemma 4, the
built-in constraint C[H=H'] can be removed from the state and the same
rules remain applicable:

(' A Gl vy =5, N((B A H=H' A Gy)v,)

— According to Lemma 2 we can add the constraints G/,

(HI A Glbuilt A Gitser)v4 '_);91 N((B ANH=H'A Glbuilt A Gitser)]&)

— Since G' = GY,;; N Glyse, the following holds:

(H'AG")y, =p N(BANH=H'AG")y,)

By the same argumentation as above the following holds:

(H'ANG")y, =»p, N(BANH=H' NG'")y,).

The number of macro steps in a computation for the goal BAH=H'AG' is n—1.
By the induction hypothesis and according to Lemma 1 the following holds:
N({(BANH=H'"ANG")y,) =p Srand N((BAH=H'AG")y,) —p, Sr.

The final states of G in P, and P», respectively, are equal, i.e. Sp. O

