
Operational Equivalence of CHR Programs AndConstraintsSlim Abdennadher and Thom Fr�uhwirthComputer Science Department, University of MunichOettingenstr. 67, D-80538 Munich, GermanyfSlim.Abdennadher, Thom.Fruehwirthg@informatik.uni-muenchen.deAbstract. A fundamental question in programming language semanticsis when two programs should be considered equivalent. In this paper weintroduce a notion of operational equivalence for CHR programs anduser-de�ned constraints. Constraint Handling Rules (CHR) is a high-level language for writing constraint solvers either from scratch or bymodifying existing solvers.We give a decidable, su�cient and necessary syntactic condition for op-erational equivalence of terminating and con
uent CHR programs.For practical reasons, we also investigate a notion of operational equiva-lence for user-de�ned constraints that are de�ned in di�erent programs.We give a su�cient syntactic condition for constraints de�ned in termi-nating and con
uent CHR programs. For a subclass of programs whichhave only one user-de�ned constraint in common, we are able to give asu�cient and necessary syntactic condition.1 IntroductionConstraint Handling Rules (CHR) [Fr�u98] is essentially a committed-choice lan-guage consisting of multi-headed guarded rules that transform constraints intosimpler ones until they are solved. CHR de�nes both simpli�cation of and prop-agation over user-de�ned constraints. Simpli�cation replaces constraints by sim-pler constraints while preserving logical equivalence, e.g. X�Y^Y�X, X=Y. Prop-agation adds new constraints, which are logically redundant but may cause fur-ther simpli�cation, e.g. X�Y^Y�Z) X�Z.As a special-purpose language for writing constraint solvers, CHR aims to ful�llthe promise of user-de�ned constraints as stated in [ACM96]: \For the theoreti-cian meta-theorems can be proved and analysis techniques invented once andfor all; for the implementor di�erent constructs (backward and forward chain-ing, suspension, compiler optimization, debugging) can be implemented onceand for all; for the user only one set of ideas need to be understood, though withrich (albeit disciplined) variations (constraint systems)."A fundamental and hard question in programming language semantics is whentwo programs should be considered equivalent. For example correctness of pro-gram transformation can be studied only with respect to a notion of equivalence.

Also, if modules or libraries with similar functionality are used together, one maybe interested in �nding out if program parts in di�erent modules or libraries areequivalent. In the context of CHR, this case arises frequently when constraintsolvers written in CHR are combined. Typically, a constraint is only partiallyde�ned in a constraint solver. We want to make sure that the operational se-mantics of the common constraints of two programs do not di�er, and we areinterested in �nding out if they are equivalent.The literature on equivalence of programs in logic-based languages is sparse. Inmost papers that touch the subject, a suitable notion of program equivalenceserves as a correctness criterion for transformations between programs, e.g. inpartial evaluation and deduction. Our concern is the problem of program equiv-alence in its generality, where the programs to be compared are independentfrom each other.[Mah86] provides a systematic comparison of the relative strengths of variousformulations of equivalence of logic programs. These formulations arise naturallyfrom several formal semantics of logic programs. Maher does not study how totest for equivalence. The results may be extensible to constraint logic programs,but committed-choice languages like CHR have di�erent semantics that inducedi�erent notions of equivalence. In particular, in CHR the distinction betweensuccessful, failed or deadlocked goals is secondary, but the distinction between agoal and its instances is vital. For similar reasons, [GLM95] among other thingsextends Maher's work by considering relationships between equivalences derivedfrom semantics that are based e.g. on computed answer substitutions. Gabbrielliet. al. are not concerned with tests for equivalence, either.Like [GLM95] we are concerned with equivalences of the observable behaviorof programs. Observables are then a suitable abstraction of execution traces.In case of equivalence based on operational semantics expressed by a transitionsystem, it is common to de�ne as observables the results of �nite computations,where one abstracts away local variables, see e.g. [EGM98].We have already shown in previous work [Abd97] that analysis techniques areavailable for an important property of any constraint solver, namely con
uence:The result of a computation should be independent from the order in whichconstraints arrive and in which rules are applied to the constraints. For con
u-ence of terminating CHR programs we were able to give a decidable, su�cientand necessary condition [Abd97,AFM99]. A completion algorithm that makesprograms con
uent if it terminates, was presented in [AF98].It is tempting to think that a suitable modi�cation of the concept of con
uencecan be used to express equivalence of programs. In this paper we show that astraightforward application of our con
uence test is too weak to capture theoperational equivalence of CHR programs.In practice, one is often interested in comparing implementations of constraintsinstead of whole programs. Hence we investigate a notion of operational equiva-lence for user-de�ned constraints that are de�ned in di�erent programs. We givea su�cient syntactic condition for constraints de�ned in terminating and con
u-ent CHR programs. For a subclass of programs which have only one user-de�ned

constraint in common, we are able to give a su�cient and necessary syntacticcondition.Based on these results, we are �nally able to give a decidable, su�cient and neces-sary syntactic condition for operational equivalence of terminating and con
uentCHR programs.This paper is organized as follows: In Section 2 we de�ne the CHR languageand summarize previous con
uence results. Section 3 presents our notion ofoperational equivalence for CHR and the results about this notion. Finally, weconclude with a summary and directions for future work.2 PreliminariesIn this section we give an overview of syntax and semantics as well as con
uenceresults for constraint handling rules. More detailed presentations can be foundin [AFM96,Abd97,AFM99].2.1 Syntax of CHRWe use two disjoint kinds of predicate symbols for two di�erent classes of con-straints: built-in constraint symbols and user-de�ned constraint symbols (CHRsymbols). We call an atomic formula with a constraint symbol a constraint. Built-in constraints are handled by a prede�ned, given constraint solver that alreadyexists as a certi�ed black-box solver. user-de�ned constraints are de�ned in aCHR program.A CHR program is a �nite set of rules. There are two kinds of rules:A simpli�cation rule is of the formH , C B:A propagation rule is of the form H) C B;where the head H is a non-empty conjunction of user-de�ned constraints, theguard C is a conjunction of built-in constraints, and the body B is a goal. Agoal is a conjunction of built-in and user-de�ned constraints. A guard \true" isusually omitted together with the commit symbol . A CHR symbol is de�ned ina CHR program if it occurs in the head of a rule in the program.2.2 Declarative Semantics of CHRThe logical meaning of a simpli�cation rule is a logical equivalence provided theguard holds. 8F denotes the universal closure of a formula F .8(C ! (H $ 9�y B)),

where �y are the variables that appear only in the body B.The logical meaning of a propagation rule is an implication provided the guardholds8(C ! (H ! 9�y B)).The logical meaning P of a CHR program P is the conjunction of the logicalmeanings of its rules united with a consistent constraint theory CT that de�nesthe built-in constraint symbols. We require CT to de�ne the constraint symbol= as syntactic equality.2.3 Operational Semantics of CHRThe operational semantics of CHR is given by a transition system.A state GV is a goal G together with a sequence of variables, V . Where it is clearfrom the context, we will drop the annotation V .We require that states are normalized so that they can be compared syntacticallyin a meaningful way. Basically, we require that the built-in constraints are in a(unique) normal form, where all syntactic equalities are made explicit and arepropagated to the user-de�ned constraints. Furthermore, we require that thenormalization projects out strictly local variables, i.e. variables appearing in thebuilt-in constraints only. A precise de�nition of the normalization function Ncan be found in [Abd97,AFM99].Given a CHR program P we de�ne the transition relation 7!P by introducingtwo kinds of computation steps (Figure 1). 7!+P denotes the transitive closure,7!�P denotes the re
exive and transitive closure of 7!P .An initial state for a goal G is the state N (GV), where N is a function thatnormalizes a state as de�ned below and V is a sequence of all variables appearingin G. A �nal state is one where either no computation step is possible anymoreor where the built-in constraints are inconsistent.A computation of a goal G in a program P is a sequence S0; S1; : : : of states withSi 7!P Si+1 beginning with the initial state for G and ending in a �nal state ordiverging. Where it is clear from the context, we will drop the reference to theprogram P .In Figure 1, the notation Gbuilt denotes the built-in constraints in a goal G.We will also use the notation Guser to denote the user-de�ned constraints ina goal G. An equation c(t1; : : : ; tn)=d(s1; : : : ; sn) of two constraints stands fort1=s1^ : : :^ tn=sn if c and d are the same CHR symbols and for false otherwise.An equation (p1 ^ : : : ^ pn)=(q1 ^ : : : ^ qm) stands for p1=q1 ^ : : : ^ pn=qn ifn = m and for false otherwise. Conjuncts can be permuted since conjunction isassociative and commutative.To Simplify user-de�ned constraints H 0 means to remove them from the stateH 0 ^ G and to add the body B of a fresh variant of a simpli�cation rule (H ,C B) and the equationH=H 0 and the guard C to the resulting stateG, providedH 0 matches the head H and the guard C is implied by the built-in constraintsappearing in G, and �nally to normalize the resulting state. In this case we say

SimplifyIf (H , C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbuilt ! 9�x(H=H 0 ^ C))then (H 0 ^G)V 7!P N ((H=H 0 ^B ^ C ^ G)V)PropagateIf (H) C B) is a fresh variant of a rule with variables �xand CT j= 8 (Gbuilt ! 9�x(H=H 0 ^ C))then (H 0 ^G)V 7!P N ((H=H 0 ^B ^ C ^H 0 ^G)V)Fig. 1. Computation Steps of Constraint Handling Rulesthat the rule R is applicable to H 0. A \variant" of a formula is obtained byrenaming its variables. \Matching" means that H 0 is an instance of H , i.e. it isonly allowed to instantiate (bind) variables of H but not variables of H 0. In thelogical notation this is achieved by existentially quantifying only over the freshvariables �x of the rule to be applied in the condition.The Propagate transition is like the Simplify transition, except that it keepsthe constraints H 0 in the state. Trivial nontermination caused by applying thesame propagation rule again and again is avoided by applying a propagation ruleat most once to the same constraints. A more complex operational semantics thataddresses this issue can be found in [Abd97].Example 1. Let � and < be built-in constraint symbols. We de�ne a CHR sym-bol max, where max(X,Y,Z) means that Z is the maximum of X and Y:max(X,Y,Z), X�Y Z=Y.max(X,Y,Z), Y�X Z=X.max(X,Y,Z)) X�Z ^ Y�Z.The �rst rule states that max(X,Y,Z) can be simpli�ed into Z=Y in any goalwhere it holds that X�Y. Analogously for the second rule. The third rule propa-gates constraints. It states that max(X,Y,Z) unconditionally implies X�Z ^ Y�Z.Operationally, we add these logical consequences as redundant constraints, themax constraint is kept.To the goal max(1,2,M) the �rst rule is applicable: max(1; 2; M) 7! M=2.To the goal max(A,B,M) ^ A<B the �rst rule is applicable:max(A,B,M) ^ A<B 7! M=B ^ A<B.To the goal max(A,A,M) both simpli�cation rules are applicable, and in bothcases: max(A; A; M) 7! M=A.Redundancy from the propagation rule is useful, as the goal max(A,3,3) shows:To this goal only the propagation rule is applicable, and then the �rst rule:max(A; 3; 3) 7! max(A,3,3) ^ A�3 7! A�3.Note, that the constraint 3=3 is simpli�ed to true by the built-in constraintsolver; according to our assumption about the built-in constraint symbol =.

2.4 Con
uenceThe con
uence property of a program guarantees that any computation startingfrom an arbitrary initial state, i.e. any possible order of rule applications, resultsin the same �nal state. Due to space limitations, we can just give an overviewon con
uence results for CHR programs, for details see [AFM99,Abd97].De�nition 1. A CHR program is called con
uent if for all states S; S1; S2:If S 7!� S1 and S 7!� S2 then S1 and S2 are joinable. Two states S1 and S2 arecalled joinable if there exist states T1 and T2 such that S1 7!� T1 and S2 7!� T2and T1; T2 are variants of each other.To analyze con
uence of a given CHR program we cannot check joinability start-ing from any given ancestor state S, because in general there are in�nitely manysuch states. However one can restrict the joinability test to a �nite number of\minimal" states based on the following observations: First, adding constraintsto a state cannot inhibit the application of a rule as long as the built-in con-straints remain consistent (monotonicity property, cf. Lemma 2 in Section 3.2).Hence we can restrict ourselves to ancestor states that consist of the head andguards of two rules. Second, joinability can only be destroyed if one rule inhibitsthe application of another rule. Only the removal of constraints can a�ect theapplicability of another rule, in case the removed constraint is needed by theother rule. Hence at least one rule must be a simpli�cation rule and the tworules must overlap, i.e. have at least one head atom in common in the ancestorstate. This is achieved by equating head atoms in the state.De�nition 2. Given a simpli�cation rule R1 and an arbitrary (not necessarilydi�erent) rule R2, whose variables have been renamed apart. Let Hi ^Ai be thehead and Ci be the guard of rule Ri (i = 1; 2). Then a critical ancestor state ofR1 and R2 is (H1 ^ A1 ^H2 ^ (A1=A2) ^ C1 ^ C2)V ;provided A1 and A2 are non-empty conjunctions and CT j= 9((A1=A2) ^ C1 ^C2).The application of R1 and R2, respectively, to a critical ancestor state of R1 andR2 leads to two states that form the so-called critical pair.De�nition 3. Let S be a critical ancestor state of R1 and R2. If S 7! S1 usingrule R1 and S 7! S2 using rule R2 then the tuple (S1; S2) is the critical pair ofR1 and R2. A critical pair (S1; S2) is joinable, if S1 and S2 are joinable.De�nition 4. A CHR program is called terminating, if there are no in�nitecomputations.The following theorem from [AFM96,Abd97,AFM99] gives a decidable, su�cientand necessary condition for con
uence of a terminating CHR program:Theorem 1. A terminating CHR program is con
uent i� all its critical pairsare joinable.

Example 2. Consider the program for max of Example 1. The following criticalpair stems from the critical ancestor state1 (max(X; Y; Z)^X � Y)[X;Y;Z] of the �rstrule and the third one:(S1; S2) := (Z=Y ^ X�Y , max(X,Y,Z) ^ X�Y ^ X�Z ^ Y�Z)(S1; S2) is joinable since S1 is a �nal state and the application of the �rst ruleto S2 results in S1.3 Operational EquivalenceIn this section we give su�cient and necessary conditions for equivalence ofterminating programs. The following de�nition states that two programs areoperationally equivalent if for each goal, the �nal state in one program is thesame as the �nal state in the other program.De�nition 5. Let P1 and P2 be CHR programs. A state S is P1; P2-joinable,i� there are two computations S 7!�P1 S1 and S 7!�P2 S2, where S1 and S2 are�nal states, and S1 and S2 are variants of each other.Let P1 and P2 be CHR programs. P1 and P2 are operationally equivalent if allstates are P1; P2-joinable.We will see in Section 3.1 that an adaptation of our con
uence test - that we callcompatibility - does not yield a test for operational equivalence. In Section 3.3,we will be able to give a decidable, su�cient and necessary syntactic condition foroperational equivalence of terminating and con
uent programs based on resultsin Section 3.2.In practice, we want to combine CHR programs which de�ne di�erent CHRsymbols, but also have some CHR symbols in common. A typical scenario isthat of modules or libraries implementing similar functionality. In the contextof CHR, this case arises frequently when constraint solvers written in CHR arecombined. Typically, a CHR symbol is only partially de�ned in a constraintsolver.A closer look at De�nition 5 reveals that for these practical scenarios, it is muchtoo strict: States that involve CHR symbols that are de�ned in one programonly, are rarely P1; P2-joinable. Therefore, in Section 3.2, we investigate opera-tional equivalence of user-de�ned constraints that are implemented in di�erentprograms.3.1 Compatibility of ProgramsWe can use our con
uence test to ensure that the di�erent, con
uent programsare \compatible": The union of the programs is con
uent.1 For readability, variables from di�erent rules have been identi�ed to have an overlap.

De�nition 6. Let P1 and P2 be two con
uent and terminating CHR programsand let the union of the two programs, P1 [P2, be terminating. P1 and P2 arecompatible if P1 [P2 is con
uent.Testing the compatibility of P1 and P2 means to test the joinability of the criticalpairs of P1 [P2, i.e. the critical pairs of P1 united with the critical pairs of P2united with critical pairs coming from one rule in P1 and one rule in P2. Notethat critical pairs from rules of di�erent programs can only exist, if the heads ofthe rules have at least one constraint in common.If the con
uence test fails, we can locate the rules responsible for the problem.If the test succeeds, we can just take the union of the rules in the two programs.This means that a common CHR symbol can even be partially de�ned in theprograms which are combined.Example 3. P1 contains the following CHR rules de�ning max:max(X,Y,Z), X<Y Z=Y.max(X,Y,Z), X�Y Z=X.whereas P2 has the following de�nition of max:max(X,Y,Z), X�Y Z=Y.max(X,Y,Z), X>Y Z=X.We want to know whether the de�nitions of max are compatible. There are threecritical ancestor states coming from one rule in P1 and one rule in P2:{ max(X,Y,Z) ^ X<Y ^ X�Y stems from the �rst rule of P1 and the �rst ruleof P2.{ max(X,Y,Z) ^ X�Y ^ X�Y stems from the second rule of P1 and the �rstrule of P2.{ max(X,Y,Z) ^ X�Y ^ X>Y stems from the second rule of P1 and the secondrule of P2.Since the critical pairs coming from the critical ancestor states described aboveare joinable, the two de�nitions of max are compatible. Hence we can just takethe union of the rules and de�ne max by all four rules.Note that the compatibility test does not ensure that the constraints are oper-ationally equivalent. In P1 the goal max(X,Y,Z) ^ X�Y has the following com-putation:max(X,Y,Z) ^ X�Y 7!P1 Z=X ^ X�YIn P2 the initial state max(X,Y,Z) ^ X�Y is also �nal state, i.e. no computationstep is possible. On the other hand, in P2 the goal max(X,Y,Z) ^ X�Y has anon-trivial computation, while the goal is a �nal state in P1.The constraint max is \operationally stronger" in P1 [P2 than in each programalone, in the sense that more computation steps are possible.

3.2 Equivalence of ConstraintsWe now introduce a test to ensure that the de�nitions of the same CHR sym-bol in di�erent programs are not only compatible, but indeed are operationallyequivalent. We �rst restrict our attention to states that consist of one CHRsymbol (only) being common to both programs.De�nition 7. Let c be a CHR symbol. A c-state is a state where all user-de�nedconstraints have the same CHR symbol c.De�nition 8. Let c be a CHR symbol de�ned in two CHR programs P1 andP2. P1 and P2 are operationally c-equivalent if all c-states are P1; P2-joinable.We give now a su�cient syntactic condition for operational c-equivalence ofterminating CHR programs. As with con
uence, we will try to �nd a �nitesubset of states, such that the P1; P2-joinability of the subset implies P1; P2-joinability of all c-states. As we will see, the similarities with con
uence will notgo much beyond that, mainly because in operational c-equivalence two di�erentprograms are involved.The following example illustrates, that, �rst of all, the critical pairs known fromcon
uence (and compatibility) are not the right subset of states to ensure oper-ational equivalence.Example 4. Let P1 be the following CHR program:p(a), s.p(b), r.s^r, true.and let P2 consist only of the �rst two rules.It is not su�cient for operational equivalence to consider the critical pairs comingfrom the critical ancestor states p(a) and p(b): In P1 the conjunction p(a) ^p(b) leads to true, but in P2 the goal s^r is a �nal state.The example indicates that we not only have to consider c-states, but also thosestates that can be reached from c-states. Because even if these states can bereached in di�erent programs due to con
uence and even if they are �nal states,there may be contexts (extensions of the states by more constraints) in whichthe computation can be continued, and it can be continued in di�erent ways inthe di�erent programs. The idea is to avoid this by making sure that also theuser-de�ned constraints that occur in these states are operationally equivalent.For a given CHR symbol c one can safely approximate the set of all CHR symbolsthat appear in successor states to a c-state by looking at the bodies of rules withc in the head. Based on this idea we introduce the notion of dependency betweenCHR symbols.De�nition 9. A CHR symbol c depends directly on a CHR symbol c0, if there isa rule in whose head c appears and in whose body c0 appears. A CHR symbol c

depends on a CHR symbol c0, if c depends directly on c0, or if c depends directlyon a CHR symbol d and d depends on c0.The dependency set of a CHR symbol c is the the set of all CHR symbols that cdepends on. Let CP1 ; CP2 be the dependency sets of c with respect to P1 and P2,respectively. Each CHR symbol from (CP1 \ CP2) [fcg is called a c-dependentCHR symbol.De�nition 10. Let P1 and P2 be CHR programs. The set of c-critical states isde�ned as follows:fH ^ C (H � C B) 2 P1 [P2; where � 2 f , ;) g andH contains only c-dependent CHR symbolsgThe set of c-critical states is formed by taking the head and guards of all rulesin whose heads c-dependent CHR symbols appear.In the following we will show that P1; P2-joinability of these minimal states issu�cient for P1; P2-joinability of arbitrary c-states. Before we can state andprove the theorem, we need several lemmata.The �rst lemma states that normalization has no in
uence on applicability ofrules. We therefore can assume in the following that states are normalized exceptwhere otherwise noted.Lemma 1. Let S and S0 be states.S 7! S0 holds i� N (S) 7! S0:Proof. Can be found in [AFM99].The following lemma shows that a computation can be repeated in any context,i.e. with states in which constraints have been added.De�nition 11. The pair of constraints (G1; G2) is called connected via V i� allvariables that appear both in G1 and in G2 also appear in V .Lemma 2. [Monotonicity] If (G;H) is connected via V 0 and GV 7!� G0V , andV � V 0, then (G ^H)V0 7!� N ((G0 ^H)V0):Proof. Can be found in [AFM99].Next we show that a computation can be repeated in a state where variableshave been instantiated according to some equations.De�nition 12. Let C be a conjunction of built-in constraints. Let H and H 0be conjunctions of user-de�ned constraints with disjoint variables. C[H=H 0] isobtained from C by replacing all variables x by the corresponding term t, whereCT j= H=H 0 ! (x=t) and x appears in H and t appears in H 0.

Lemma 3. Let P be a CHR program and let R be a rule from P with headH and guard C. Let H 0 be a conjunction of user-de�ned constraints. Let (H ^H=H 0 ^ C)V and (H 0 ^ C[H=H 0])V0 be intial states, where H and H 0 havedisjoint variables. If CT j= 9�x(H = H 0^C), where �x are the variables appearingin H , and (H ^H = H 0 ^ C)V 7!�P GV , then (H 0 ^ C[H=H 0])V0 7!�P GV0 .Proof. The claim holds due to the equality propagation property of the normal-ization function N and according to Lemma 1. A detailed proof can be found in[AF99].Next we show that a computation can be repeated in a state where redundantbuilt-in constraints have been removed.Lemma 4. Let C be a conjunction of built-in constraints. If H ^ C ^G 7!� Sand CT j= 8 (Gbuilt ! C) then H ^G 7!� S.Proof. This is a consequence of the following claim: If H ^ C ^ G 7! S andCT j= 8 (Gbuilt ! C) then H ^G 7! S. This claim can be proven by analyzingeach kind of computation step [AF99].Finally, the last Lemma refers to joinability of c-critical states.De�nition 13. Let C = nVi=1Ci be a conjunction of constraints, � a permutationon [1; : : : ; n], where 0 � m � n, then mVi=1C�i is a subconjunction of C.Lemma 5. Let P1 and P2 be terminating CHR programs de�ning a CHRsymbol c and let G be a goal. If all c-critical states are P1; P2-joinable and thereis a rule in P1 that is applicable to Guser then there is a rule in P2 that isapplicable to a subconjunction of Guser .Proof. Can be found in [AF99].We are now ready to state and prove the main theorem of the paper, that givesa su�cient condition for operational c-equivalence.Theorem 2. Let c be a CHR symbol de�ned in two con
uent and terminatingCHR programs P1 and P2. Then the following holds: P1 and P2 are operationallyc-equivalent if all c-critical states are P1; P2-joinable.The proof can be found in [AF99].We now give an example of two operationally equivalent user-de�ned constraints.Example 5. The constraint sum(List,Sum) holds if Sum is the sum of elementsof a given list List. The CHR symbol sum can be implemented in di�erent ways.Let P1 be the following CHR program:sum([],Sum), Sum=0.sum([X|Xs],Sum), sum(Xs,Sum1) ^ Sum = Sum1 + X.

Let P2 be a CHR program de�ning sum using an auxiliary CHR symbol sum1:sum([],Sum), Sum = 0.sum([X|Xs],Sum), sum1(X,Xs,Sum).sum1(X,[],Sum), Sum = X.sum1(X,Xs,Sum), sum(Xs,Sum1) ^ Sum = Sum1 + X.sum([],Sum) and sum([X|Xs],Sum) are the sum-critical states coming from P1and P2. The sum-critical states are P1; P2-joinable:For the sum-critical state sum([],Sum) the �nal state is Sum = 0 in both P1 andP2.A computation of the sum-critical state sum([X|Xs],Sum) in P1 proceeds asfollows:sum([X|Xs],Sum) 7!P1 sum(Xs; Sum1)^ Sum = Sum1+ XA computation of the same initial state in P2 results in the same �nal state:sum([X|Xs],Sum) 7!P2 sum1(X; Xs; Sum) 7!P2 sum(Xs; Sum1)^ Sum = Sum1+ XSince all sum-critical states are P1; P2-joinable, P1 and P2 are operationally sum-equivalent.The next example shows why our joinability test for critical states is a su�cient,but not necessary condition for operational equivalence.Example 6. Let P1 be the following CHR programp(X), X>0 q(X).q(X), X<0 true.and let P2 be the following onep(X), X>0 q(X).q(X), X<0 false.P1 and P2 are operationally p-equivalent, but the p-critical state q(X)^ X < 0 isnot P1; P2-joinable.The reason that we can only give a su�cient, but not necessary condition foroperational c-equivalence in the general class of CHR programs is that the de-pendency relation between user-de�ned constraints only approximates the actualset of user-de�ned constraints that occur in states that can be reached from ac-state.A su�cient and necessary condition: In practice, one is often interested to com-pare constraint solvers which have only one CHR symbol in common. In thiscase we can give a decidable, su�cient and necessary condition.Theorem 3. Let c be the only CHR symbol de�ned in two con
uent and ter-minating CHR programs P1 and P2. P1 and P2. Then the following holds: P1and P2 are operationally c-equivalent i� all c-critical states are P1; P2-joinable.

Proof. \=)" direction: Let P1 and P2 be operationally c-equivalent. We proveby contradiction that all c-critical states are P1; P2-joinable: Assume that H ^Cis a c-critical state that is not P1; P2-joinable, where H is the head of a rule fromP1 [P2 and C its guard.Since P1 and P2 have only c in common, the constraint symbol c is the only c-dependent CHR symbol, i.e. (CP1\CP2)[fcg = fcg. ThereforeH^C is a c-state.This contradicts the prerequisite that P1 and P2 are operationally c-equivalent.\(=" direction: This is a special case of Theorem 2.Theorem 3 gives a decidable characterization of the c-equivalent subset of termi-nating and con
uent CHR programs: P1; P2-joinability of a given c-critical stateis decidable for a terminating CHR program and there are only �nitely manyc-critical states.Example 7. The user-de�ned constraint range(X,Min,Max) holds if X is betweenMin and Max.Let P1 be a CHR program de�ning range using the CHR symbol max:max(X,Y,Z), X<Y Z=Y.max(X,Y,Z), X�Y Z=X.range(X,Min,Max), max(X,Min,X) ^ max(X,Max,Max).Let P2 be a program de�ning range using the built-in constraint symbols <, �:range(X,Min,Max), Max<Min false.range(X,Min,Max), Min�Max Min�X ^ X�Max.P1 and P2 are not operationally range-equivalent, since the range-critical staterange(X; Min; Max) coming from P1 is not P1; P2-joinable: range(X; Min; Max) canbe reduced to max(X,Min,X) ^ max(X,Max,Max) in P1. In P2 the answer forthe state range(X; Min; Max) is the state itself, because no rule is applicable.P1 is \operationally stronger" than P2, since the computation step in P1 doesnot require that the values of Max and Min are known. This can be exempli�edby the goal range(5,6,Max). The inconsistency of the goal can be detected inP1. In P2, range(5,6,Max) is a �nal state.3.3 Equivalence of ProgramsBased on the condition presented above for the operational equivalence of con-straints we can also give a decidable, su�cient and necessary condition for op-erational equivalence of terminating and con
uent programs.However, it is not enough to consider the union of all c-critical states for allcommon CHR symbols c, as the following example illustrates.Example 8. Let P1 bep, s.s^q, true.

and let P2 bep, s.s^q, false.P1 and P2 have three common CHR symbols, p, s and q. s and p are the p-dependent constraint symbols. There are no s-dependent CHR symbols excepts itself. Analogously for q.p is the only p-critical state. It is P1; P2-joinable. There is no s-critical state,since q is not a s-dependent CHR symbol. Analogously for q.Hence all p-, s and q-critical states are P1; P2-joinable, but the programs are notoperationally equivalent. s^q leads in P1 to true and with P2 to false.Still we can prove the operational equivalence of two programs by adapting thede�nition of c-critical states:De�nition 14. Let P1 and P2 be CHR programs. The set of critical states ofP1 and P2 is de�ned as follows:fH ^ C (H � C B) 2 P1 [P2; where � 2 f , ;) ggTheorem 4. Let P1 and P2 be terminating and con
uent programs. P1 and P2are operationally equivalent i� all critical states of P1 and P2 are P1; P2-joinable.Proof. Follows the proof of Theorem 3.Relationships. Operational equivalence of two con
uent and terminating CHRprograms implies their compatibility, since operational equivalence of P1 and P2implies the con
uence of P1 [P2. The converse does not hold, as the programsof Example 3 show. Furthermore operational equivalence of two CHR programsimplies the operational c-equivalence of all common constraints, since the set ofcritical states is a superset of the union of all sets of the c-critical states. Theconverse does not hold, as the programs of Example 8 show.4 ConclusionWe introduced the notion of operational equivalence of CHR programs. We gavea decidable, su�cient and necessary syntactic condition for operational equiva-lence of terminating and con
uent CHR programs. A decidable, su�cient andnecessary condition for con
uence of a terminating CHR programs was given inearlier work [AFM96,Abd97,AFM99]. We have also shown that an extension ofthe con
uence notion to two programs, called compatibility, is not su�cient.For practical reasons, we also investigated a notion of operational equivalencefor user-de�ned constraints that are de�ned in di�erent programs. We gave asu�cient syntactic condition for constraints de�ned in terminating and con
uentCHR programs. For programs which have only one user-de�ned constraint incommon, we were able to give a su�cient and necessary syntactic condition.

Future work aims to enlarge the class of CHR programs for which we can give asu�cient and necessary syntactic condition for operational equivalence. We alsoplan to investigate the relationship between operational equivalence and logi-cal equivalence of CHR programs. The complication is that di�erent programshave di�erent signatures and are therefore hard to compare logically. Roughly,operational equivalence seems to imply logical equivalence (but not the otherway round, see e.g. Example 3). Furthermore, operational equivalence togetherwith completion [AF98] provide a good starting point for investigating partialevaluation, and program transformation in general, of constraint solvers.Acknowledgements. We would like to thank Norbert Eisinger and HolgerMeuss for useful comments on a preliminary version of this paper.References[Abd97] S. Abdennadher. Operational semantics and con
uence of constraint prop-agation rules. In Third International Conference on Principles and Practiceof Constraint Programming, CP97, LNCS 1330. Springer-Verlag, November1997.[ACM96] ACM. The constraint programming working group. Technical report, ACM-MIT SDRC Workshop, Report Outline, 1996.[AF98] S. Abdennadher and T. Fr�uhwirth. On completion of constraint handlingrules. In 4th International Conference on Principles and Practice of Con-straint Programming, CP98, LNCS 1520. Springer-Verlag, 1998.[AF99] S. Abdennadher and T. Fr�uhwirth. Operational equivalence of constrainthandling rules. Research report PMS-FB-1999-4, Computer Science Depart-ment, University of Munich, 1999.[AFM96] S. Abdennadher, T. Fr�uhwirth, and H. Meuss. On con
uence of constrainthandling rules. In 2nd International Conference on Principles and Practice ofConstraint Programming, CP96, LNCS 1118. Springer-Verlag, August 1996.[AFM99] S. Abdennadher, T. Fr�uhwirth, and H. Meuss. Con
uence and semanticsof constraint simpli�cation rules. Constraints Journal, Special Issue on theSecond International Conference on Principles and Practice of ConstraintProgramming, 4(2), May 1999.[EGM98] S. Etalle, M. Gabrielli, and M. Meo. Unfold/fold transformations of CCPprograms. In 9th International Conference on Concurrency Theory, 1998.Corrected version.[Fr�u98] T. Fr�uhwirth. Theory and practice of constraint handling rules, special issueon constraint logic programming. Journal of Logic Programming, pages 95{138, October 1998.[GLM95] M. Gabbrielli, G. Levi, and M. Chiara Meo. Observable behaviors and equiva-lences of logic programs. Information and Computation, 122(1):1{29, October1995.[Mah86] M. J. Maher. Equivalences of logic programs. In Proceedings of Third Inter-national Conference on Logic Programming, Berlin, 1986. Springer.

