Operational Equivalence of CHR Programs And
Constraints

Slim Abdennadher and Thom Frihwirth

Computer Science Department
University of Munich
Oettingenstr. 67, 80538 Munich, Germany

Motivation

e Correctness of program transformation
e The use of modules or libraries with similar functionality
e Combination of constraint solvers

Example: Are the two CHR rules defining max

N |
& |

operationally equivalent to these two rules?

N |
& |

CHR: Syntax and Declarative Semantics

Upper case letters stand for conjunctions of or
constraints.

Simplification rule: OB VE(C'—=(< 3dgB))

Propagation rule: = |B Vz(('—=(—3dygB))

(x: variables occurring in ~ or (; g: variables occurring only in B)

Declarative semantics of a CHR program:
e declarative reading of the rules and

e constraint theory C'T’ for the built-in constraints.

CHR: Operational Semantics

i CTEV* (G G

and G’ is “simpler” than GG

G
then

Gl
If (< (| B)isafresh variant of a rule with variables 7
and are the built-in constraints in G
and CT = — JZ(H-H' AN ()

H' NG

then

H=H'"ANBAG
If (< (| B)is afresh variant of a rule with variables 7
and are the built-in constraints in G
and CT = — JZ(H-H' AN ()

H NG

then

H=H"NBANH NG

Confluence

Given a goal, every computation leads to the same result no matter

what rules are applied.

A decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs
(Abdennadher, CP97).

Example

ri @ & |
~

r2 @ |

\A/

Compatibility of Programs

Definition: Let P; and P> be two confluent and terminating CHR
programs and let the union of the two programs, P; U Ps, be
terminating. P; and P, are compatible if P; U Ps is confluent.

Example

P1: & |
ZN |

P2: & |
ZN |

Critical ancestor states from one rule in P; and one rule in Ps:
N AN
A A

A\ A

Compatibility vs. Operational Equivalence

Example

P1: & |
& |

P2: & |
& |

P1 and P2 are not operationally equivalent:

A\ A\

\LPl P2

A\

Operational Equivalence of Programs

Let P; and P» be CHR programs.

A state S'is Py, P»-joinable, iff there are two computations
S —p TandS —p T, where T is afinal state.

Py and P, are operationally equivalent iff all states are
Py, P>-joinable.

Decidable, Sufficient and Necessary Condition

terminating and confluent

Theorem
critical

The set of critical states of P; and Px:

{ NCT(© CIB)ePLUP;,, where® € { &, = }}

8-a

Motivation: Equivalence of Constraints

Pli

p dependsonS andr .

P, and P are not operationally equivalent but operationally

p-equivalent.

Operational Equivalence of Constraints

A c-state is a state where all CHR constraints have the same CHR
symbol c. Let ¢ defined in two CHR
programs P; and Ps.

P, and P, are operationally c-equivalent if all c- states are
Py, P>-joinable.

10

Sufficient Condition

terminating and confluent

Theorem

critical

The set of c-critical states:

{ ANCI(©CIB)eP UP,, where® € { &, = }and

contains only c-dependent CHR symbols}

10-a

Example

Pli
-~
-~
N =
Pz:
-~
-~

p dependsonS and I .

The set of p-critical states: {

11

Relationships

Operational equivalence = Compatibility

Compatibility 7= Operational equivalence (e.g. mMax)

Operational equivalence of two CHR programs —> operational

c-equivalence of all common constraints ¢

Operational c-equivalence of all common constraints of two CHR

programs #=> Operational equivalence

12

Counterexample

Py: Ps:
g g
N = N &
Common CHR symbols p, S and (.
e S and P are the p-dependent CHR constraint symbols.
e S is the only S-dependent symbol.
e (is the only (-dependent symbol.

is the only p-critical state. Itis P, P»-joinable.

But P; and P are not operationally equivalent:
e AN p

o A =P,

13

Conclusions

Given terminating and confluent CHR programs.

e A decidable, sufficient and necessary syntactic condition for

operational equivalence of CHR programs

e A sufficient syntactic condition for operational equivalence of

CHR constraints

Future Work

e Relationship between operational equivalence and logical

equivalence

e Combination of solvers by program transformation using

confluence, completion and operational equivalence

14

Example Operational Equivalence

sun([], Sum < Sun¥O0.
sun([X|] Xs], Sum) < sum(Xs, Sunl) A Sum = Sunl + X

Versus

sun([], Sum < Sum = 0.

sun([X|] Xs], Sum < sunil(X, Xs, Sum .

suml(X, [], Sum < Sum = X

suml(X, Xs, Sum < sunm(Xs, Sunl) A Sum = Sunl + X

sum([], Sum and sun([X| Xs], Sun) are the Sumcritical

states. They are joinable.

15

Example for sufficient, but not necessary condition
p(xX) & X>0 | q(X).
g(X) & X<0 | true.

Versus

p(xX) & X>0 | q(X).
g(X) & X<0 | fal se.

P, and P> are operationally p-equivalent, but the p-critical state
q(X) A X < 0is not Py, Ps-joinable.

16

Example

max(X, Y, Z) & X<Y | Z=V.
max(X, Y, Z) & X>Y | Z=X.
range(X, M n, Max) < max(X, M n, X) A max(X, Max, Max) .

versus

range(X, M n, Max) & Max<M n | fal se.
range(X, M n, Max) & M n<Max | M n<X A X<Max.

P, and P» are not operationally I ange-equivalent, e.g.
range(5, 6, Max) .

17

