
technical report ECRC{92{18
Constraint Simpli�cation RulesThom Fr�uhwirththom@ecrc.de

EUROPEAN COMPUTER-INDUSTRY RESEARCH CENTREECRC GMBH, ARABELLASTR. 17 D-8000 M�UNCHEN 81, GERMANY - TEL +49 89/926 99 0 - FAX 926 99 170 - TLX 521 6910

cEuropean Computer-Industry Research Centre, February 1993Neither the authors of this report nor the European Computer-Industry ResearchCentre GmbH, Munich, Germany, make any warranty, express or implied, or assumeany legal liability for the accuracy, completeness or usefulness of any information,apparatus, product or process disclosed, or represent that its use would not in-fringe privately owned rights. Permission to copy in whole or in part is grantedfor non-pro�t educational and research purposes, provided that all such whole orpartial copies include the following: a notice that such copying is by the permissionof the European Computer-Industry Research Centre GmbH, Munich, Germany;an acknowledgement of the authors and individual contributors to the work; allapplicable portions of this copyright notice. Copying, reproducing or republishingfor any other purpose shall require a license with payment of fee to the EuropeanComputer-Industry Research Centre, GmbH,Munich, Germany. All rights reserved.
For more information about this work, please contact:Thom Fr�uhwirththom@ecrc.de

ii

AbstractIn current constraint logic programming systems, constraint solving is hard-wired in a \blackbox". We are investigating the use of logic programs to de�ne and implement constraintsolvers1. The representation of constraint evaluation in the same formalism as the rest ofthe program greatly facilitates the prototyping, extension, specialization and combination ofconstraint solvers. In our approach, constraints are speci�ed by de�nite clauses provided by ahost language, while constraint evaluation is speci�ed using multi-headed guarded clauses calledconstraint simpli�cation rules (SiRs)2. SiRs de�ne determinate conditional rewrite systems thatexpress how conjunctions of constraints simplify. They have been used to encode a range ofconstraint solvers in our prototype implementation. Additionally, the de�nite clauses specifyinga constraint can be evaluated in the host language, if the constraint is \callable" and no SiRcan simplify it further. In this way our approach merges the advantages of constraints (ea-ger simpli�cation by SiRs) and predicates (lazy choices by de�nite clauses). Consequently ourframework provides a tight integration of the logic programming component with user-de�nedconstraint solvers. Furthermore it can make use of any hard-wired solvers already built into thehost language. We also present some results obtained using our prototype, a meta-interpreterfor Prolog augmented with SiRs.Keywords: Concurrent Constraint Logic Programming, Constraint Reasoning, Multi-HeadedGuarded Clauses, Committed Choice Languages

1This is a sligthly revised version of the report of July 1992 which was based on the internal report [Fru91].2Now called constraint handling rules [Fru93, FrHa93].iii

Contents1 Introduction : 11.1 Constraint Logic Programming : 11.2 Constraint Simpli�cation Rules : 22 Syntax and Semantics of SiRs : 42.1 Syntax of SiRs : 52.2 Declarative Semantics : 62.3 Operational Semantics : 63 Reasoning about SiRs : 83.1 Termination and Conuence : 84 The Prototype : 95 An Example Solver for Temporal Time Point Constraints : : : : : : : : : : : : : 116 Related Work : 136.1 Constraint Logic Programming Languages : : : : : : : : : : : : : : : : : : 136.2 Combined and Extended Languages : 136.3 Multiple Head Atoms : 147 Conclusions : 15

iv

1 IntroductionThe advent of constraints in logic programming is one of the rare cases where both theoreticaland practical aspects of a programming language are improved. Programs in constraint logicprogramming languages [JaLa87, Sar89, Coh90, Fru90, VH91] are both more declarative andmore e�cient than logic programming languages without constraints. We shortly describe themain ideas behind constraint logic programming and state some problems. Then we introduceconstraint simpli�cation rules by example and show how they overcome these problems.1.1 Constraint Logic ProgrammingConstraint logic programming (CLP) can be characterized by the interaction of a logic program-ming system (LP) with a constraint solver (CS). During program execution, the LP incrementallysends constraints and variable substitutions1 to the CS. The CS tries to solve the constraints.By a solved constraint we mean a constraint that was detected to be unsatis�able or reducedto a substitution. In the LP the results from the CS cause a priori pruning of branches in thesearch tree spawned by the program. Unsatis�ability means failure of the current branch, and asubstitution reduces the number of possible branches, i.e. choices, to explore via backtracking.In existing CLP systems, the CS usually is a black box (typically encoded in a low-level program-ming language) not amenable to reasoning, inspection and modi�cation. The lack of reasoningcapabilities means that there is no way to establish correctness of a CS. As the behavior of theCS can neither be inspected by the user nor explained by the computer, debugging of real lifeconstraint logic programs is very hard. It has already been demanded elsewhere that \constraintsolvers must be completely changeable by users" (p. 276 in [CAL88]). The lack of declarativenessand exibility becomes a major obstacle if one wants to� build a new CS,� extend the CS with new constraints,� specialize the CS for a particular application,� combine constraint solvers.By contrast, we claim that using logic programs to de�ne constraint solvers allows for reasoningabout, inspection and modi�cation of CS. We introduce a language in which the user can buildany new CS's, as well as extend, specialize and combine them at will. We call it a user-de�ned CSto distinguish it from a built-in CS. The resulting user-de�ned CS is incremental and determinateby nature of the language, and should be terminating and correct. Constraint solving can bemade incremental by repeatedly simplifying constraints until they are solved. By determinate wemean that the CS commits to every constraint simpli�cation it makes. Otherwise we would notgain anything, as the CS would have to backtrack to undo choices like a Prolog program. Notethat a determinate computation does not preclude the presence of choices, but the possibilityof backtracking. Therefore it must not matter which choice is made. This computation modelis referred to as don't care nondeterminism, while Prolog employs don't know nondeterminism[Sha89]2. Finally, we would like to be able to prove that the CS program terminates, is conuent,i.e. produces the same result no matter to what choice one commits, and is correct with regardto a speci�cation of the constraints it solves. It is useful to view SiRs as conditional rewritesystems to establish that they are canonical, i.e. terminating and conuent. On the other hand,when viewed as logical formulae, the logical correctness of SiRs can be established. We can1Of course, substitutions can be regarded equality constraints.2Logic languages that commit to choices are called committed choice languages or concurrent languages, asthey permit concurrent evaluation of potential choices. 1

prove the former property by adopting well-known techniques such as termination proofs andunfailing completion from (conditional and constrained) rewriting systems. We can prove thelatter property by using techniques from automated theorem proving.1.2 Constraint Simpli�cation RulesIn this subsection we present an amalgamation of Prolog with SiRs. As an example, we de�nea user-de�ned constraint �. In Prolog, the built-in predicate =< can only be evaluated if thearguments are known, while the user-de�ned constraint will also handle variable arguments./* 1. Call Declaration */(1) callable X�Y if bound(X),bound(Y)./* 2. Constraint Definition */(2) X�Y :- X=<Y. % user-defined constraint calls the built-in predicate/* 3. Constraint Simplification Rules */(3a) X�X , true. % reflexivity(3b) X�Y,Y�X , X=Y. % identity(3c) X�Y,Y�Z) X�Z. % transitivityIn clause (2), � is de�ned to call the corresponding built-in comparison predicate =<. Thepredicate de�nition speci�es the user-de�ned constraint, it is thus called a constraint de�nition.The SiRs of (3) specify how � simpli�es as a constraint. They implement reexivity, identity andtransitivity of less-than-or-equal in a straightforward way. SiR (3a) states that X�X is logicallytrue. Hence, whenever we see the goal X�X we can replace it by true. Similarly, SiR (3b) meansthat if we �nd X�Y as well as Y�X in the current resolvent, we can replace it by the logicallyequivalent X=Y. SiRs (3a) and (3b) are called replacement SiRs. SiR (3a) detects satis�abilityof a constraint, and SiR (3b) solves a conjunction of constraints returning a substitution. SiR(3c) states that the conjunction X�Y,Y�Z implies X�Z. We can add logical consequences as aredundant constraint. This kind of SiR is called augmentation SiR3. Note that SiRs (3b) and(3c) have multiple head atoms, a feature that is essential in solving conjunctions of constraints.With single-headed SiRs alone, unsatis�ability of a conjunction of constraints (e.g. X<Y,Y<X)could never be detected and global constraint satisfaction could not be achieved.Redundancy produced by Augmentation SiRs is useful, as the following example shows. Giventhe query A�B,C�A,B�C. The �rst two goals cause SiR (3c) to �re and add C�B to the resolvent.This new goal together with B�C matches the head of SiR (3b). So the two goals are replacedby B=C. The substitution is applied to the rest of the resolvent, A�B,C�A, resulting in A�B,B�Awhere B=C. SiR (3b) applies, resulting in A=B. The resolvent contains no more inequalities, thesimpli�cation stops. The constraint solver we built has solved A�B,C�A,B�C and produced theanswer A=B,B=C.However, our small constraint solver is not complete, because it does not detect unsatis�ability ofconstraint goals like 4�3. A complete solver for � would require an in�nite number of SiRs, onefor each pair of numbers. Instead we utilize the constraint de�nition (2) to solve the inequalitywith known arguments. The call declaration (1) states that we can call X�Y as a predicate if3Replacement and augmentation constraint simpli�cation rules are now called simpli�cation and propagationconstraint handling rules [Fru93, FrHa93]. 2

both X and Y are bound. Only if no simpli�cation at all is possible, we choose a callable goal andexecute its constraint de�nition. For example, the query 4�A,A�3 is augmented with 4�3 bySiR (3c). Then no more simpli�cation is possible and 4�3 is the only callable constraint. Callingits constraint de�nition produces a failure and so we know that 4�A,A�3 is unsatis�able.We now extend our solver for � by a new user-de�ned constraint over numbers, max(X,Y,Z),which holds if Z is the maximum of X and Y.callable max(X,Y,Z) if bound(X),bound(Y).max(X,Y,Y):- X�Y.max(X,Y,X):- Y�X.We add the following simpli�cations.max(X,X,Z) , X=Z.max(X,Y,X) , Y�X.max(X,Y,Y) , X�Y.max(X,Y,Z),X�Y , Y=Z,X�Y.max(X,Y,Z),Y�X , X=Z,Y�X.max(X,Y,Z)) X�Z,Y�Z. % invariant and approximationmax(X,Y,Z1),max(X,Y,Z2) , Z1=Z2,max(X,Y,Z1). % functional dependencyIn the query max(A,B,C),max(A,C,D), the �rst constraint goal is augmented with A�C,B�C. Theconstraints A�C,max(A,C,D) are simpli�ed into C=D,A�C. The new resolvent is max(A,B,C),B�C,C=D,A�C. At this point, no more constraint simpli�cation is possible. There is also nocallable goal. Therefore the computation deadlocks. We interpret a deadlocked resolventas conditional answer4 [VE88]. A conditional answer allows for the �nite representation ofin�nitely many solutions. The conditional answer to our query max(A,B,C),max(A,C,D) ismax(A,B,C),B�C,C=D,A�C.So far, SiRs �re as soon as the head atoms match atoms in the resolvent. Thus SiRs wait forbindings so the matching can be performed. Often, one needs to express more sophisticated�ring conditions. We extend the �ring conditions from bindings to arbitrary built-in constraintsand from matching to checking entailment (implication) of these built-in constraints. Thisis accomplished by introducing guards. As soon as the built-in CS of the host language candetermine that a guard holds, i.e. is entailed, the corresponding SiR can be �red.In our example, let =< be a built-in constraint from now on, i.e. there is a built-in constraint solverfor inequalities (the user-de�ned constraint � is no longer needed). Then we can replace theSiR max(X,Y,Z),X=<Y , Y=Z,X=<Y by max(X,Y,Z) , X=<Y | Y=Z, where X=<Y is the guard.As a consequence, the �rst SiR becomes obsolete, as the built-in constraint X=<Y in the guardnaturally covers the case when X=Y. Contrast this with the user-de�ned constraint � in the headof the original SiR that clearly cannot match =. Now max can be de�ned by SiRs as follows.max(X,Y,Z) , X=<Y | Y=Z.max(X,Y,Z) , Y=<X | X=Z.max(X,Y,X) , Y=<X.4Also called quali�ed answer in [Va86]. 3

max(X,Y,Y) , X=<Y.max(X,Y,Z)) X=<Z,Y=<Z.max(X,Y,Z1),max(X,Y,Z2) , Z1=Z2,max(X,Y,Z1).However, the CS for max is not complete, i.e. there are satis�able or (worse) unsatis�ableconstraint goals which are neither simpli�able nor callable. For example, the query max(X,7,9)results in max(X,7,9),X=<9, but it is not reduced to X=9. In practice, a CS is often not completefor e�ciency reasons, For example, the implementation of CLP(R) delays non-linear arithmeticexpressions [Ja*90], although there is a decision procedure for them. If the application requiresit, we can always add SiRs to cover the incomplete cases or modify the call declaration to enableadditional choices to trigger the necessary simpli�cations, while built-in constraint solvers cannotbe as easily adopted. In our example, new SiRs of the formmax(X,Y,Z) , Y<Z | X=Z.or an extended call declarationcallable max(X,Y,Z) if ground(X),ground(Y).callable max(X,Y,Z) if ground(X),ground(Z).callable max(X,Y,Z) if ground(Y),ground(Z).will help.Potentially, we can view any predicate as a de�nition of a constraint and add some SiRs for it.Seen this way, SiRs are lemmas that allow us to express the determinate information containedin a predicate. As a result, predicates and constraints are just alternate views on the sameinformation. To see the power of such lemmas considerappend(X,[],L) , X=L,list(L).A recursion on the list X in the usual de�nition of append is replaced by a simple uni�cationX=L and type check list(L).With our approach, building a constraint solver amounts to writing a constraint de�nitionand adding SiRs and a suitable call declaration to it. A CS written with SiRs can be easilyextended by adding SiRs or relaxing guards, and it can be easily specialized by removing SiRsor strengthening guards. CS's are combined by merging their clauses. However, some care hasto be taken if the CS's share constraints. One constraint de�nition has to be removed and wehave to make sure that the resulting set of SiRs is still canonical, i.e. terminating and conuent.In the next section, we introduce the syntax of constraint simpli�cation rules, their declarativeand operational semantics. Section 3 introduces our prototype implementation of Prolog withSiRs. Then we discuss related as well as current and future work.2 Syntax and Semantics of SiRsSiRs augment a given programming language, the host language, in order to de�ne simpli�cationof user-de�ned constraints. In the following we assume that the host language is a constraintlogic programming language, however other languages (e.g. LISP or ML) can be augmented aswell. In this context, Prolog can be seen as constraint logic programming language with equalityas built-in constraint over the Herbrand Universe, CLP(H).4

2.1 Syntax of SiRsA program written in the host language augmented by SiRs is a �nite set of clauses from the hostlanguage and from the language of SiRs. The clauses of the language of SiRs are call declarationsand constraint simpli�cation rules. A predicate de�nition in the host language extended by oneor more call declarations is called a constraint de�nition. A constraint de�nition together withone or more SiR is called a user-de�ned constraint.There are two kinds of SiRs. The syntax of a replacement simpli�cation rule isA1; : : :Ai , C1; : : :Cj j B1; : : :Bkand of an augmentation simpli�cation rule isA1; : : :Ai) C1; : : :Cj j B1; : : :Bk ,where the� head A1; : : :Ai is a conjunction of atoms of user-de�ned constraints (called head atoms),� guard C1; : : :Cj is a conjunction of atoms (called guard atoms) which neither are, nordepend on, user-de�ned constraints,� body B1; : : :Bk is a conjunction of atoms (called body atoms).Call declarations are meta-clauses that give conditions when a goal may be considered for calling.The syntax of a call declaration for a predicate p iscallable A if C1; : : :Cj ,where A is an atom of p and the C1; : : :Cj is a guard, a conjunction of atoms which neither are,nor depend on, user-de�ned constraints. Prolog implementations supporting coroutining usevarious meta-logical predicates or declarations to specify when a goal has to delay (or suspend).There are geler (alias freeze) in Prolog II, wait declarations in MU-Prolog, when declarations inNU-Prolog and delay declarations in Sepia-Prolog [M*89]. Call declarations are more expressivethan delay declarations. For example, instead ofcallable max(X,Y,Z) if bound(X), bound(Y).we can be more precise and state that we may call max(X,Y,Z) if the order between X and Y isknown,callable max(X,Y,Z) if X=<Y.callable max(X,Y,Z) if X>=Y.Furthermore, there is a crucial di�erence in operational semantics. A goal is eagerly activatedas soon as its delay declaration is violated, but its activation is delayed as long as possible evenif its call declaration is satis�ed.The syntax of guarded SiRs was chosen to exhibit the relationship with committed choice lan-guages. Like in most of these languages, guards are kept simple, because they are checked manytimes. Therefore we do not allow user-de�ned constraints in the guard. As usual, variables inthe guard that do not appear in the head of a SiR are considered to be existentially quanti�ed.For the guards, the host language should at least provide built-in predicates or constraints tocompare and type-check terms, e.g.� true that always succeeds and fail that always fails,5

� bound and ground about the binding of variables1� number and list about types,� =:= and = to check equality of arithmetic expressions and terms respectively,� < and @< to provide an order on arithmetic expressions and terms respectively.2.2 Declarative SemanticsAn overview on semantics of logic programming languages with don't know nondeterminism canbe found in [Ll87]. There are approaches to give declarative �xpoint semantics to languageswith don't care nondeterminism as well, mostly by Levi and his colleagues, e.g. [FL88, Le88].This is not an easy problem due to the nature of don't care nondeterminism [HA88, Nai89].By contrast, declarative semantics for programs with SiRs is straightforward because correctReplacement SiRs just de�ne simpli�cations which preserve meaning and correct AugmentationSiRs just add redundant constraints. In a logical sense, correct SiRs must be redundant whenread as an implication from head to body. In other words, a correct SiR must be a logicalconsequence of the constraint de�nitions in the program if its guard is true. Note that so far theconstraint de�nition was used to introduce choices, now it is also used as a constraint speci�cationto prove correctness. More formally, de�ne a constraint logic program with SiRs to be completedif each predicate and constraint de�nition is completed by Clarks completion [Ll87]. Given acompleted constraint logic program P , let PHost be P without the SiRs and call declarations.A replacement simpli�cation rule in P of the form A1; : : :Ai , C1; : : :Cj j B1; : : :Bk is correctwith respect to PHost if(PHost ^ C1 ^ : : :Cj)! (A1 ^ : : :Ai $ B1 ^ : : :Bk).Analogously, an augmentation simpli�cation rule A1; : : :Ai) C1; : : :Cj j B1; : : :Bk in P iscorrect with respect to PHost if(PHost ^ C1 ^ : : :Cj)! (A1 ^ : : :Ai ! B1 ^ : : :Bk).Hence the declarative semantics of the underlying host language are inherited: The declarativesemantics of a programwith correct SiRs is just the declarative semantics of the program with theSiRs removed. To prove SiRs correct, we have to show that they are indeed logical consequencesof the program.In deterministic ALPS [Ma87] programs the theorems about declarative semantics of don't knownondeterministic logic programs [Ll87] only apply under a strong condition. The guards in theclauses of each predicate have to be mutually exclusive. SiRs can be seen as extending thisresult to any committed choice language whose clauses are logical consequences of constraintde�nitions. A quite elaborate soundness theorem with regard to declarative semantics of theAndorra Kernel Language (AKL) is proven in [Fra90]. To achieve the result, the allowed guardsof AKL have to be restricted in several nontrivial ways to tame the infamous cut.2.3 Operational SemanticsThe computation of a constraint program is a (�nite) sequence of derivation steps which rewritethe resolvent by adding or removing goals2. A resolvent is a conjunction of goals, which isconsidered as a multi-set (or bag) or store of goals3. A goal is an atom. The initial resolvent1Note that bound and ground delay until they succeed, they never fail as opposed to nonvar.2A more precise operational semantics using a transition system can be found in [Fru93].3A generalization of a constraint store. 6

is called query. The �nal resolvent is called (conditional) answer. It is a conjunction of goalswhich are neither simpli�able by a SiR nor callable.Predicates are used in a goal-driven manner to generate new substitutions and constraints whenchoosing a clause. These choices may lead to a combinatorial explosion in the number of back-trackings. On the other hand, constraints are employed in a data-driven manner. When enoughinformation is available, the constraint simpli�es in a determinate way and can eventually betested for satis�ability. Hence we want to postpone execution of predicates as long as possi-ble and rather do some constraint simpli�cation. We are eager in simpli�cation and lazy inchoices. Only if no constraint simpli�cation is possible a callable goal can be chosen for exe-cution. This yields to a preference order on possible derivation steps which is reected in thefollowing computation strategy.� Determinate Derivation Steps by Constraint Simpli�cation� solve built-in constraints using the built-in CS� simplify user-de�ned constraints using SiRs� Introduction of Choices by Predicate Calling� call a callable predicate� call a callable user-de�ned constraint using its constraint de�nition.A sequence of derivation steps only involving constraint simpli�cation is a single simpli�cationstep.In don't know nondeterministic logic programming languages, a determinate derivation step canbe performed if a goal succeeds with at most one clause. This idea seems to be �rst present in[Nai85] and in P-Prolog [YaAi86] and later in ALPS [Ma87], a class of at committed choicelanguages with constraints. The Andorra Model of D.H.D.Warren and Guarded Rules of Smolka[Smo91] also give priority to determinate derivation steps, the latter author names this principleresiduation. One di�erence to the Andorra Model is that residuation performs nondeterministiccomputation steps only on atoms whose predicate is explicitly declared as generating. Theproblem with these approaches is that they aim at determining at run-time whether at mostone clause of a predicate can lead to success, which is undecidable in general. In our approachthe determinism in a predicate is made explicit by SiRs, and the condition when a determinatesimpli�cation is possible is expressed concisely by the guards. SiRs and many other techniquesfor speeding up computations do not interfere, they are orthogonal to each other. This holds,for example, for residuation and generalised propagation [LPW92]. In our prototype we haveintroduced a declaration similar to the call declaration stating when a predicate is deterministic.Determinism is not detected at run-time, but declared4 and thus the drawback of residuationmentioned before is avoided.We now explain how user-de�ned constraints simplify via SiRs. Each user-de�ned constraintis associated with all SiRs in whose heads it occurs. Every time the constraint is activated, itchecks itself the applicability of its associated SiRs. If a SiR has more than one head atom,the resolvent is searched for the other head atoms. Then the guards are evaluated, ideallyconcurrently. Either a guard succeeds, fails or delays. If the guard succeeds and if the SiR isa Replacement SiR, the matched head atoms in the resolvent are replaced by the body of theSiR. Because the matched head atoms are gone, all the SiRs associated with it are gone as well.If the SiR is an Augmentation SiR, the body of the SiR is added to the resolvent. If a guardfails, the associated SiR cannot �re. It is not necessary to reconsider it again. Any substitutionperformed or any built-in constraint that is added to the resolvent may cause activation of theconstraint and wake up the delayed guard.4The \generating" declaration proposed by Smolka has no conditional part and is therefore too weak for ourpurposes. 7

3 Reasoning about SiRsIt is useful to view SiRs as conditional rewrite systems to establish that they are canonical, i.e.terminating and conuent. On the other hand, when viewed as logical formulae, the correctnessof SiRs can be established. We can prove the former property by adopting well-known techniquessuch as termination proofs and unfailing completion from (conditional and constrained) rewritingsystems. We can prove the latter property by using techniques from automated theorem proving.If we can prove a set of SiRs both canonical and correct we can be sure that the SiRs indeedimplement a \well-behaved" constraint solver. As far as we know there is no other logic program-ming language that relies to such an extent on techniques developed for rewriting systems. Anintroduction to rewrite systems is [Kir89], to conditional rewriting systems [KR89, DO88]. Anintroduction to automated theorem proving is [Gal86]. For the relationship of automated theo-rem proving and logic programming we refer the reader to [WoMc91]. Also note that completionof rewrite systems can serve as a theorem proving procedure [Hs85, JSC91].Correctness has been discussed in the previous section on declarative semantics.3.1 Termination and ConuenceTermination is a highly desirable property which has been studied in many di�erent contexts. Inparticular, termination proofs for sets of SiRs can bene�t from work in rewriting systems [Der87]and logic programming [Plu90, VeDe91, Bez89, ApPe90]. If a set of SiRs is terminating, thenthere is no simpli�cation step from any resolvent consisting of in�nitely many derivation steps.Finding a suitable termination order may need user intervention. Termination for a class of SiRsis proved by giving an ordering on atoms showing that the body of a rule is always smaller thanthe head of the rule. Our experiments with the prototype implementation indicate that theexpressive power of terminating SiRs is su�cient to model constraint simpli�cation in a naturalway. Such an ordering in addition introduces an intuitive notion of a \simpler" constraint, sothat we also prove the intuition that constraints get indeed simpli�ed. A constraint C1 is simplerthan a constraint C2 if it is \simpler" to de�ne C1 with C2 than vice versa. Note that whencombining constraint solvers that share constraints, nonterminating simpli�cation steps mightarise even if each solver is terminating. E.g. one solver de�nes less-than in terms of greater-thanand the other de�nes greater-than in terms of less-than.As correct SiRs are logical consequences of the program, any result of a simpli�cation stepwill have the same meaning, but it is not guaranteed that the result is syntactically the same.In particular, for a resolvent, unsatis�ability may be detected without making choices or notdepending on what SiRs have been used for simpli�cation.A set of SiRs is conuent if each possible order of applications starting from any resolvent leadsto the same resulting resolvent. A set of SiRs is locally conuent if any two resolvents resultingfrom one application of a SiR to the intial resolvent can be simpli�ed into the same resolvent.It is well-known from rewrite systems that local conuence and termination imply conuence.Furthermore, in a conuent set of SiRs any resolvent has a unique normal form, provided itexists. This means that the answer to a query will always be the most simple one1. The notionof conuence is important for combining constraint solvers as well as concurrent applications ofSiRs. Concurrent SiRs are not applied in a �xed order. As correct SiRs are logical consequencesof the program, any result of a simpli�cation step will have the same meaning, however it is notguaranteed anymore that the result is syntactically the same. In particular, a solver might be1It can, however, contain redundant constraints and introduce new variables.8

complete with one order of applications but incomplete with another one. Syntactically di�erentconstraint evaluations might also arise if combined solvers share constraints, depending on whichsolver comes �rst.To show that a set of SiRs is locally conuent, we employ a variant of the well-known completion2procedure originally conceived by Knuth and Bendix [Kir89]. For some contrived examples, anycompletion procedure may not terminate. For each pair of SiRs whose head atoms overlap,so-called critical pairs taking their bodies are produced. If we cannot show that the resolventsin the critical pair are identical by simplifying them, we orient them into a new SiR that we add.Of course, adding a SiR implies computing new critical pairs. Orientation of the critical pairis based on the termination order and may fail. Such unorientable rules can be oriented usingunfailing completion[Kir89, KR89, DO88] by adding an appropriate ordering constraint in theguard.An unfailing completion procedure for SiRs is proposed in a forthcoming report by the sameauthor.4 The PrototypeA meta-interpreter for Prolog augmented with SiRs has been implemented on top of Sepia-Prolog [M*89] utilizing its delay-mechanism and built-in meta-predicates to create, inspect andmanipulate delayed goals. The prototype includes a simple kind of incremental constraints, apreprocessor for SiRs, a tracing tool for user-de�ned constraints and variable bindings, and asimple partial evaluator based on simpli�cations. It is completely transparent with regard tothe host language Sepia-Prolog. A wide range of constraint solvers have been implemented inthe resulting language.By \incremental constraints" we mean the possibility for the user to add additional constraintsduring computation. The preprocessor associates each user-de�ned constraint with the SiRs itcan potentially match and partially evaluates their guards. Thus at run-time only single con-straint goals need to be meta-interpreted if access to the resolvent is provided. The tracer showswhich SiRs are �ring and which choices are made or undone. It is based on an extension of thefour-port box-model of the standard Prolog debugger. The variable tracer shows when and howa variable is bound and when the binding is undone due to backtracking. The partial evaluatortakes a user program and simpli�es each clause body, of both SiRs or de�nite clauses, with thehelp of the SiRs, but making only a limited number of choices (usually zero or one). There aresome additional features not discussed in full in this paper, including run-time loop checkingand a declaration for deterministic predicates to support residuation [Smo91]. A combinationwith generalised propagation [LPW92] is planned.With the help of the prototype, we designed constraint solvers with SiRs for� n-queens,� inequalities,� booleans,� �nite domains (a la CHIP),� terminological reasoning [FrHa93],� temporal reasoning [Fru93],� real closed �elds (a la CLP(R)),� term manipulation.2Do not confuse with Clarks completion of logic programs.9

Typically it took only a few days to produce a reasonable prototype. In the n-queens problem,treating the no attack predicate as a user-de�ned constraint has reduced the number of back-tracks even more than reported with any of the approaches in [VH89], p. 123. However, theadditional cost outweighs the savings in backtracking. The solver for inequalities is based onthe one described in the introduction. The boolean solver, given the de�nition of a full-adder,is able to �nd out by constraint simpli�cation only that adding a number to itself results ina number whose binary representation is shifted by one digit. Finite domains over equalitiesand inequalities were implemented as introduced in CHIP [VH89]. In terminological reasoning,the constraint simpli�er can simplify and prove inconsistency of attributive concept de�nitions.We plan to extend this application to cover types and subsume �nite domains. A constraintsolver for temporal time point constraints [DMP91] was developed step by step starting fromthe solver for inequalities. We give a short presentation of this idea in the next section. Ageneric constraint solver for qualitative and quantitative temporal constraints over points andintervals based on path consistency is described in [Fru93]. With real closed �elds we mean aCLP(R)-like solver that runs the examples that are distributed with the CLP(R) implementa-tion [Ja*90]. The solver was developed by a straightforward extension of Gaussian eliminationwith inequalities. Recently we have connected our solver to one for nonlinear polynomials basedon Groebner Bases [Mon92]. The term manipulation CS turns the built-in predicates functor,arg and =.. into user-de�ned constraints. SiRs have also been used as a committed choiceprogramming language on their own. Examples from [Sha89] as well as the basics of an Earleyparser [Ea70] and a distributed shortest path algorithm have been implemented.These constraint solvers back up our claim that it is possible to conveniently de�ne constraintsolvers with SiRs. This is because one can directly express the essence of constraint evaluation,the simpli�cation of constraints, without worrying about implementation details. Control isprede�ned but can be customized with the help of high level call declarations.Regarding speed, for the small problems we have tackled so far, our prototype is on average anorder of magnitude slower than the built-in constraint solvers (if available) of CHIP or CLP(R).This does not come as a surprise, as the prototype is basically a meta-interpreter and lacksany specialized data structures (e.g. bit vectors) used in built-in constraint solvers. On someexamples, we match the speed of the built-in solvers. Depth-�rst tree search as performed byProlog has exponential complexity. Constraint programming cuts branches in the search tree.A conjunction of constraints is simpli�ed with an algorithm that often has just polynomialcomplexity. In other words, once the problem is big enough, using constraints can pay o�, evenif the CS is slow.A particular challenge of the implementation is matching of multiple head atoms. In the pro-totype, we have restricted the number of head atoms to two. For most applications, two headssu�ced. In spite of the restriction, any number of heads can still be matched at the expense ofintroducing auxiliary constraints and SiRs. In most SiRs, the head atoms are connected througha shared variable. This means that we only have to search for the second goal in the list ofthose goals which are delayed on the shared variable. The list of these delayed goals comes forfree, as it is already maintained by the delay-mechanism of Sepia-Prolog. Of course, the overallcomplexity of goal search for two headed SiRs is still quadratic in a fraction of the size of theresolvent. If further speed-up is needed, once the CS has been established, proven correct and\tuned" as required, it can be reworked in a low-level language.The host language has to provide coroutining. There is need to access the resolvent to gethold of the delayed goals (alternatively they could be passed in an additional argument for eachpredicate). To evaluate guards, there has to be a mechanism to evaluate it locally and to delaythe execution of the subsequent body if the guard delays. In Sepia-Prolog, this can be donewith a meta-call that returns all delayed goals, so the case the guard delays can be determined.10

Another possibility would be an if-then-else that delays until the condition either succeeds orfails. Such a construct was present in a version of CHIP [A*90]. Last but not least, if a user-de�ned constraint has been tried to match its associated SiRs, but was not replaced, we haveto redelay it. In Sepia-Prolog, this is achieved by a special delay declaration. The same e�ectcould be achieved by using a dynamic construct like freeze.5 An Example Solver for Temporal Time Point ConstraintsRecently, as a result of collaborating with CHIC Esprit partners we have started to investigatetemporal constraints. So far what we can conclude from this preliminary work is that SiRsenable a clear step by step development of constraint solvers of speci�c domains.In order to de�ne a constraint solver on temporal constraints over time points we exploitedthe natural relationship of these constraints with ordering constraints in general. Therefore,we started from the constraint solver for the less-than-or-equal constraint '=<' introduced inthe introduction. We extended the inequality to the form X+N=<Y, where N is a given positivenumber, meaning that the distance in time (or space) of the two points X and Y is at least N.callable XN =< Y if ground(XN),bound(Y).XN=<Y :- call(XN =< Y, sepia).X+N=<X , N=0.X+N=<Y,X+M=<Y , NM is max(N,M) | X+NM=<Y.X+N=<Y,Y+M=<X , N = 0, M = 0, X = Y.X+N=<Y,Y+M=<Z) NM is N+M | X+NM=<Z.In the call declaration the extension in syntax is reected by requiring the �rst argument tobe ground, such that X+N can be evaluated. The four SiRs are straightforward extensions ofthe previous ones. Some auxiliary arithmetic computations with is are added in the guards tocompute the distances for the resulting inequalities in the body.If we allow for negative N we can express maximal distances as well. The set of SiRs however willbe non-terminating, as there is no termination order, because there is no bound on the minimalor maximal distances that could be computed anymore. The termination problem is solved byintroducting a new constraint relation '=<*' which stands for derived inequalities as opposedto the initial ones using '=<'.callable XN =< Y if ground(XN),bound(Y).XN=<Y :- call(XN =< Y, sepia).callable XN =<* Y if ground(XN),bound(Y).XN=<*Y :- call(XN =< Y, sepia).X+N=<Y) true | X+N=<*Y.X+N=<*X , true | N=<0.X+N=<*Y,Y+M=<*X , N=0,M=0 | X = Y. 11

X+N=<*Y,X+M=<*Y , NM is max(N,M) | X+NM=<*Y.X+N=<*Y,Y+M=< Z) NM is N+M | X+NM=<*Z.The derived inequality constraint of course has the same call declaration and predicate speci�ca-tion as the original inequality. The original SiRs are turned into SiRs for the derived inequality.However, there is one exception, which is the crucial detail causing termination. In the last SiRperforming transitive closure, one relation must be not a derived but an original relation. Thisalso elimates redundant inequalities that have been produced by the transitive closure before.To get the simpli�cations started, we have to give some initial derived relations. This is done bythe �rst SiR which has been added and produces a derived inequality for each initial inequality.We also drop the conditions about inequality of the points that ensured that the most speci�cSiR is applied �rst, because that is are handled implicitly by our prototype implementation.In temporal reasoning applications, usually both minimal and maximal distance of two timepoints are given. Hence it is a good idea to merge the two constraints X+N=<Y,Y+M=<X (N positiveand M negative) into a single constraint N=<Y-X=<(-M) (by abuse of the relational notation),where Y is the starting point and X is the end point of the interval Y-X. This is exactly thenotation used in [DMP91].callable X =< Y =< Z if bound(X),ground(Y),bound(Y).X =< Y =< Z:- call(X =< Y, sepia), call(Y =< Z, sepia).callable X =<* Y =<* Z if bound(X),ground(Y),bound(Y).X =<* Y =<* Z:- call(X =< Y, sepia), call(Y =< Z, sepia).A=<X-Y=<B) A=<*X-Y=<*B.A=<*X-X=<*B , A=<0=<B.A=<*X-Y=<*B , A=0,B=0 | X = Y.A=<*X-Y=<*B,C=<*X-Y=<*D , AC is max(A,C), BD is min(B,D) | AC=<*X-Y=<*BD.A=<*X-Y=<*B,C=< Y-Z=< D) AC is A+C, BD is B+D | AC=<*X-Z=<*BD.A=<*X-Y=<*B,C=< Z-Y=< D) AC is A-D, BD is B-C | AC=<*X-Z=<*BD.Above, the SiRs have been extended correspondingly. The only interesting thing to note is thatthe last SiR about transitivity had to be split into two cases. The reason is that from X+N=<Y,Y+M=<X we only produced N=<Y-X=<(-M), but not M=<X-Y=<(-N), as it causes redundant com-putations for all other SiRs.The above SiRs will produce derived inequality constraints for every pair of time points (providedthey are connected). Again this means redundant information and hence redundant computa-tion, as we can compute all relations when knowing the distances from one given referencepoint to all other time points. We will specify the reference point X with a dummy constraintstart(X). For this optimization only the �rst SiR has to be restricted fromA=<X-Y=<B) A=<*X-Y=<*B.toA=<X-Y=<B,start(X)) A=<*X-Y=<*B. 12

The resulting set of SiRs de�nes (and implements) a specialized constraint solver for temporalconstraints on time points. The correctness of the solver can be shown and its behaviour hasbeen tailored to temporal constraints starting from inequality constraints. Thus SiRs can supportthe prototyping of \built-in" constraint solvers. Further optimisations are possible, for exampleusing a dynamic shortest-path algorithm. If further speed-up is needed, once the prototype hasbeen established and \tuned" as required, it can be reworked in a low-level language.6 Related Work6.1 Constraint Logic Programming LanguagesCurrent constraint logic programming languages [VH91, Coh90, Fru90] are not extensible, theydo not allow for user-de�ned constraints. The exception to the rule is the constraint logicprogramming CHIP [VH89]. The general technique of propagation is employed over �nite do-mains. The idea is to prune large search trees by enforcing local consistency of built-in anduser-de�ned constraints. There is work at ECRC on extending propagation over �nite domainsto arbitrary constraint domains [LPW92], and on compiling propagation into demons [Kue91].These techniques are orthogonal to our approach and thus can be integrated. Demons [A*90]are essentially single-headed Replacement SiRs without guards. However, demons must de�nea constraint completely, no associated constraint de�nitions are allowed. One version of CHIPalso included forward rules [Gr89], which correspond to SiRs without guards. [Gr89] also givesa detailed account of the semantics of forward rules and therefore SiRs without guards. In thissense, SiRs can be seen as an extension of the work on demons and forward rules in CHIP. Inpractice, demons and forward rules have been proven useful in CHIP applications in the booleandomain for circuit design and veri�cation [Si91]. Their potential to de�ne constraint solvers ingeneral was not realised, maybe because of their limitations. To the best of our knowledge,the notion of Augmentation rules is not present in any other logic programming language thanCHIP and SiRs.6.2 Combined and Extended LanguagesIn the following we relate our approach to other work on combining deterministic and nonde-terministic computations into one logic programming language.Amalgamating pure Prolog with single headed Replacement SiRs only results in a language ofthe family cc(#;!;))1 of the cc framework proposed by Saraswat [Sar89, Sar90]. A close studyof [Sar89] reveals that he proposes a special Tell operation called \inform" that could be usedto simulate Augmentation SiRs. SiRs naturally �t the ask-and-tell interpretation of constraintlogic programming introduced by Saraswat and applied by [VH91]. The resolvent is viewed asconstraint store for user-de�ned constraints. They are matched by the heads of SiRs and theguards ask if certain constraints hold in the built-in constraint store and on the arguments ofthe matched user-de�ned constraints.Guarded Rules [Smo91] correspond exactly to single headed Replacement SiRs. Like correct SiRs,admissible guarded rules are logical consequences of a program to be amalgamated. However,Smolka does not consider predicates with associated Guarded Rules as de�nitions for user-de�ned constraints. There are only built-in constraints. Interestingly, Smolka de�nes the built-1# means Ask in addition Tell is supported, ! is the commit operator for don't care nondeterminism used and) is the commit operator for don't know nondeterminism able to describe pure Prolog.13

in constraint system as a terminating and determinate reduction system. Hence it could beimplemented by Replacement SiRs. [Smo91] can be read as an excellent introduction to some ofthe basic ideas also underlying our approach.The Andorra Model of D.H.D.Warren for parallel computation has inspired a rapid developmentof numerous languages and language schemes. The Andorra Kernel Language (AKL) [JaHa91]is a guarded language with built-in constraints based on an instance of the Kernel AndorraProlog control framework [HaJa90]. AKL combines don't care nondeterminism and don't knownondeterministism with the help of di�erent guard operators. There are three kinds of guardoperators, namely cut, commit and wait. A language amalgamated with SiRs inherits the thecommit operator of the SiRs as well as the guard operators of the host language (e.g. cut inthe case of Prolog). Although single-headed Replacement SiRs can be written in AKL using thecommit operator, it is not possible to add a constraint de�nition for the user-de�ned constraint,as AKL restricts all clauses for a predicate to have the same guard operator.We think that AKL might be a good implementation language for SiRs and a good host language,because AKL already combines a variant of Prolog with a committed choice language. Likemost logic programming languages, AKL itself does not support two of the essential featuresfor de�ning simpli�cation of user-de�ned constraints: Augmentation rules and multiple headatoms.6.3 Multiple Head AtomsAccording to [Coh88] at the very beginning of the development of Prolog in the early 70'sby Colmerauer and Kowalski, experiments were performed with clauses having multiple headatoms. More recently, clauses with multiple head atoms were proposed to model parallelismand distributed processing, e.g. [Br90, AnPa91], or objects [Con88, AnPa90]. The similarity ofthe object oriented approaches with SiRs is merely syntactical. Rules about objects cannot beregarded as specifying constraint simpli�cation. Object rules are supposed to model the changeof objects, while SiRs model equivalence and implication of constraints. Unlike SiRs, object rulesdo not support both kinds of nondeterminism.In committed choice languages, multiple head atoms have been considered only rarely. In histhesis, Saraswat remarks on multiple head atoms that \the notion seems to be very powerful"and that \extensive further investigations seems warranted" ([Sar89], p. 314). He motivatesso-called joint reductions of multiple atoms as analogous to production rules of expert systemlanguages like OPS5. The examples given suggest the use of joint reductions to model objectsin a spirit similar to what is worked out in [AnPa90].Multi-headed Replacement SiRs are su�cient to simulate the parallel machine for multiset trans-formation proposed in [BCL88]. This machine is based on the chemical reaction metaphoras means to describe highly parallel computations for a wide spectrum of applications. Theproposed implementation on a vector architecture may also be useful for implementing SiRs.Following [BCL88], we implemented the sieve of Eratosthenes to compute primes simply as:primes(1) , true.primes(N) , N>1 | M is N-1, prime(N),primes(M).prime(I),prime(J) , 0 is J mod I | prime(I). % J is a multiple of IThe conditional answer to the query primes(n) will be a conjunction of prime(pi) where eachpi is a prime (2 � pi � n). 14

7 ConclusionsWe proposed constraint simpli�cation rules (SiRs) to de�ne constraint solvers in logic program-ming languages. SiRs are multi-headed guarded clauses. By amalgamating a logic programminglanguage with SiRs, a exible, extensible constraint logic programming language results. Logicprograms extended by correct SiRs have a straightforward declarative semantics as SiRs arelogically redundant. In this way, a logical reconstruction for constraint solving in logic program-ming is achieved. As opposed to built-in constraint solvers written in low-level languages, aCS implemented by SiRs can be proven correct with regard to a constraint de�nition. Criticsmight argue that real-life constraint solvers de�ned by SiRs are hard to write and hard to provecorrect. However, constraint solvers in a low-level language are harder to write and much harderto prove correct. Although intended as a language for constraint simpli�cation, SiRs could alsoserve as a powerful programming language on their own.Completion of SiRs and implementing various constraint solvers and meta-constraints (that takeother constraints as arguments) are the topics of current research.SiRs support rapid prototyping of built-in constraint solvers by providing executable speci�-cations (if not implementations). They support specialization, modi�cation and combinationof constraint solvers. Our approach merges the advantages of constraints (simpli�cation viaSiRs) and predicates (choices via de�nite clauses). The result is a tight integration of the logicprogramming component and user-de�ned constraint solvers.We believe that our approach has the potential to provide a comprehensive framework forconstraints in logic programming, because SiRs will make it possible� to add constraint solvers for any required domain of computation. Thus constraint solverscan be specially built for particular applications.� to generate constraint solvers semi-automatically from constraint de�nitions.� to enable debugging of CLPs.� to integrate closely the logic program and the constraint solver, enabling reasoning aboutconstraint logic programs.AcknowledgementsThanks to Alex, Jesper, Mark, Thierry and Volker, my colleagues at ECRC, who discussed theseideas with me, as well as G. Smolka. F. Rossi, and anonymous referees, who commented on thispaper.Bibliography[A*90] A. Aggoun et al, CHIP Compiler Version 2 Reference Manual, and CHIP InterpreterVersion 2.1 Reference Manual, ECRC, Munich, Germany, May 1990.[AnPa90] Andreoli J.-M. and Pareschi R., Linear Objects: Logical Processes with Built-InInheritance, Seventh Intl Conf on Logic Programming MIT Press 1990, pp. 495-510.[AnPa91] Andreoli J.-M. and Pareschi R., Communication as Fair Distribution of Knowledge,Proceedings of OOPSLA '91.[ApPe90] K. R. Apt and D. Pedreschi, Studies in Pure Prolog: Termination, ESPRIT Compu-tational Logic Symposium, Springer 1990, pp. 150-176.15

[BCL88] Banatre J.-P., Coutant A. and Le Metayer D., A Parallel Machine for Multiset Trans-formation and its Programming Style, Future Generation Computer Systems 4:133-144, 1988.[Bez89] M. Bezem, Characterizing Termination of Logic Programs with Level Mappings,North American Conference on Logic Programming, MIT Press 1989, pp. 69-80.[Br90] Brogi A., AND-Parallelism without Shared Variables, Proc of the Seventh Intl Confon Logic Programming MIT Press 1990, pp. 306-321.[CAL88] Aiba A. et al, Constraint Logic Programming Language CAL, Int Conf on FifthGeneration Computer Systems, 1988, Ohmsha Publishers, Tokyo, pp. 263-276.[Coh88] J. Cohen, A View of the Origins and Development of Prolog, CACM 31(1):26-36,Jan. 1988.[Coh90] J. Cohen, Constraint Logic Programming Languages, CACM 33(7):52-68, July 1990.[Con88] Conery J. S., Logical Objects, Proc of the Fifth Intl Conf and Symp on Logic Pro-gramming MIT Press 1988, pp. 420-434.[DO88] Dershowitz N. and Okada M., Conditional Equational Programming and the Theoryof Conditional Term Rewriting, Int Conf on Fifth Generation Computer Systems,Ohmsha 1988, Tokyo, pp. 337-346[Der87] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation,3(1+2):69-116, 1987.[DMP91] R. Dechter, I. Meiri and J. Pearl, Temporal Constraint Networks, Journal of Arti�cialIntelligence 49:61-95, 1991.[Ea70] J. Earley, An E�cient Context-Free Parsing Algorithm, CACM, 13(2), 1970.[FL88] Falaschi M. and Levi G., Finite Failure and Partial Computations in ConcurrentLogic Languages, Int Conf on Fifth Generation Computer Systems, Ohmsha 1988,Tokyo, pp. 364-381.[Fra90] T. Franzen, Formal Aspects of Kernel Andorra: I, SICS Research Report R90008,May 1990, Swedish Institute of Computer Science, Kista, Sweden.[Fru90] Fr�uhwirth T., Constraint Logic Programming - An Overview, Technical Report E181-2, Christian Doppler Laboratory For Expert Systems, Vienna Austria, August 1990.[Fru91] Fr�uhwirth T., Constraint Simpli�cation Rules, Internal Report LP-63, ECRC Mu-nich, Germany, October 1991.[Fru93] Fr�uhwirth T., Temporal Reasoning with Constraint Handling Rules, Technical Re-port Core-93-8, ECRC Munich, Germany, January 1993.[FrHa93] Fr�uhwirth T. and Hanschke P., Terminological Reasoning with Constraint HandlingRules, Technical Report, in preparation, ECRC Munich, Germany, January 1993.[Gal86] J. H. Gallier, Logic for Computer Science: Foundations of Automated TheoremProving, Harper and Row, New York, 1986.[Gr89] T. Graf, Raisonnement sur les contraintes en programmation en logique, Ph.D. The-sis, Version of June 1989 Universite de Nice, France, September 1989 (in French).16

[HA88] Hewitt C. and Agha G., Guarded Horn Clause Languages: Are they Deductive andLogical?, Int Conf on Fifth Generation Computer Systems, Ohmsha 1988, Tokyo,pp. 650-657.[HaJa90] Haridi S. and Janson S., Kernel Andorra Prolog and its Computation Model, SeventhInt Conference on Logic Programming, MIT Press 1990, pp. 31-46.[Hs85] Hsiang J., Refutational Theorem Proving Using Term-Rewriting Systems, Arti�cialIntelligence 25(3), Elsevier, March 1985, pp. 255-300.[JSC91] Special Issue on Rewriting Techniques in Theorem Proving, Bachmair L. and HsiangJ. (eds), Journal of Symbolic Computation, 11(1-2), Academic Press, Jan-Feb 1991.[Ja*90] J. Ja�ar et al The CLP(R) Language and System, Research Report RC 16292,November 1990, IBM T.J. Watson Research Center.[JaHa91] S. Janson and S. Haradi, Programming Paradigms of the Andorra Kernel Language,Draft of March 13, 1991, accepted at ILPS 91 in San Diego, Swedish Institute ofComputer Science, Kista, Sweden.[JaLa87] J. Ja�ar and J.-L. Lassez, Constraint Logic Programming, ACM 14th POPL 87,Munich, Germany, January 1987, pp. 111-119.[KR89] Kaplan S. and Remy J.-L., Completion Algorithms for Conditional Rewriting Sys-tems, Chapter 5 in Resolution of Equations in Algebraic Structures, Volume 2 Rewrit-ing Techniques, Ait-Kaci H. and Nivat M. (eds), Academic Press 1989.[Kir89] C. Kirchner and H. Kirchner, Rewriting: Theory and Applications, Working paperfor a D.E.A. lecture at the University of Nancy I, France, 1989.[Kue91] K�uchenho� V., Compiling Constraint Reduction, Technical Report Draft, ECRCMunich, Germany, September 1991.[Le88] Levi G., Models, Unfolding Rules and Fixpoint Semantics, Invited Talk, Fifth IntlConf and Symp on Logic Programming MIT Press 1988, pp. 1649-1665.[Ll87] Lloyd J. W., Foundations of Logic Programming, 2nd ed., Springer, New York, 1987.[LPW92] Le Provost T. and Wallace M., Domain Independent Propagation, International Con-ference on Fifth Generation Computer Systems 1992, Tokyo, Japan, June 1992, p.1004-1012.[M*89] Micha Meier et al., SEPIA - An Extendible Prolog System, 11th World ComputerCongress IFIP'89, San Francisco, USA, August 1989.[Ma87] Maher M. J., Logic Semantics for a Class of Committed Choice Programs, Proc ofthe Fourth Intl Conf on Logic Programming MIT Press 1987, pp. 858-876.[Mon92] Monfroy E., Non-linear Constraints: A Language and a Solver, Technical ReportECRC-92, ECRC, Munich, Germany, 1992, to appear.[Nai85] Naish L., Prolog control rules, Proceedings of the Ninth International Joint Confer-ence on Arti�cial Intelligence, Los Angeles, California, September 1985, pp. 720-722.[Nai89] Naish L., Proving Properties of Committed Choice Logic Programs, Journal of LogicProgramming, 7(1), July 1989, pp. 63-84.17

[Plu90] L. Pluemer, Termination Proofs for Logic Programs based on Predicate Inequalities,Seventh Int Conference on Logic Programming, MIT Press 1990, pp. 634-648.[Sar89] V. A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Dissertation,Carnegie Mellon Univ., Draft of Jan. 1989.[Sar90] V. A. Saraswat, Concurrent Constraint Programming, ACM Seventeenth Symp onPrinciples of Programming Languages, POPL 1990, pp. 232-245.[Sha89] Shapiro E., The Family of Concurrent Logic Programming Languages, ACM Com-puting Surveys, 21(3):413-510, September 1989.[Si91] H. Simonis, Constraint Logic Programming as a Digital Circuit Design Tool, Ph.D.Thesis, Draft Version, February 1991.[Smo91] Smolka G., Residuation and Guarded Rules for Constraint Logic Programming, Dig-ital Equipment Paris Research Laboratory Research Report, France, June 1991.[VE88] Van Emden M. H., Conditional Answers for Polymorphic Type Inference, Proc ofthe Fifth Intl Conf and Symp on Logic Programming MIT Press 1988, pp. 590-603.[VH89] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Cam-bridge, Massachusetts, 1989.[VH91] P. Van Hentenryck, Constraint Logic Programming, The Knowledge EngineeringReview, 6(3), pp. 151-194, September 1991.[Va86] Vasey P., Quali�ed Answers and their Application to Transformation, Proc of theThird Intl Conf on Logic Programming 1986, pp. 425-432.[VeDe91] K. Verschaetse and D. De Schreye, Deriving Termination Proofs for Logic Programsusing Abstract Procedures, 8th Int Conf on Logic Programming, MIT Press 1991,pp. 301-315.[WoMc91] Wos L. and McCune W., Automated Theorem Proving and Logic Programming: ANatural Symbiosis, Journal of Logic Programming, 11(1), July 1991, pp. 1-53.[YaAi86] Yang R. and Aiso H., A Parallel Logic Language Based on the Exclusive Relation,Third Int Conference on Logic Programming, MIT Press, 1986.
18

Other Reports Available from ECRC[ECRC{TR{LP-60] Mireille Ducasse and Anna-Maria Emde. Opium 3.1 - User Manual A High-level Debugging Environment for Prolog. 1991.[ECRC{TR{LP-61] E. Yardeni, T. Fr�uhwirth, and E. Shapiro. Polymorphically Typed LogicPrograms. 1991.[ECRC{TR{DPS-81] U. Baron, S. Bescos, and S. Delgado. The ElipSys Logic ProgrammingLanguage. 17. 01. 1991.[ECRC{TR{DPS-82] Sergio Delgado, Michel Dorochevsky, and Kees Schuerman. A SharedEnvironment Parallel Logic Programming System On Distributed Memory Ar-chitectures. 18. 01. 1991.[ECRC{TR{DPS-83] Andre Veron, Jiyang Xu, and Kees Schuerman. Virtual Memory Supportfor OR-Parallel Logic Programming Systems. 05. 03. 1991.[ECRC{TR{DPS-85] Michel Dorochevsky. Garbage Collection in the OR-Parallel Logic Pro-gramming. 15. 03. 1991.[ECRC{TR{DPS-100] Alan Sexton. KCM Kernel Implementation Report. 22. 05. 1991.[ECRC{TR{DPS-103] Michel Dorochevsky. Key Features of a Prolog Module System. 08. 03.1991.[ECRC{TR{DPS-104] Michel Dorochevsky, Kees Schuerman, and Andre Veron. ElipSys: AnIntegrated Platform for Building Large Decision Support Systems. 29. 01. 1991.[ECRC{TR{DPS-105] Jiyang Xu and Andre Veron. Types and Constraints in the Parallel LogicProgramming System ElipSys. 15. 03. 1991.[ECRC{TR{DPS-107] Olivier Thibault. Design and Evaluation of a Symbolic Processor. 13.06. 1991.[ECRC{TR{DPS-112] Michel Dorochevsky, Jacques Noy�e, and Olivier Thibault. Has DedicatedHardware for Prolog a Future ? 14. 09. 1991.[ECRC{91{1] Norbert Eisinger and Hans J�urgen Ohlbach. Deduction Systems Based on Res-olution. 29. 10. 1991.[ECRC{91{2] Michel Kuntz. The Gist of GIUKU: Graphical Interactive Intelligent Utilitiesfor Knowledgeable Users of Data Base Systems. 4. 11. 1991.[ECRC{91{3] Michel Kuntz. An Introduction to GIUKU: Graphical Interactive IntelligentUtilities for Knowledgeable Users of Data Base Systems. 4. 11. 1991.[ECRC{91{4] Michel Kuntz. Enhanced Graphical Browsing Techniques for Collections ofStructured Data. 4. 11. 1991.[ECRC{91{5] Michel Kuntz. A Graphical Syntax Facility for Knowledge Base Languages. 4.11. 1991.[ECRC{91{6] Michel Kuntz. A Versatile Browser-Editor for NF2 Relations. 4. 11. 1991.[ECRC{91{7] Norbert Eisinger, Nabiel Elshiewy, and Remo Pareschi. Distributed Arti�cialIntelligence - An Overview. 4. 11. 1991.19

[ECRC{91{8] Norbert Eisinger. An Approach to Multi-Agent Problem-Solving. 11. 11. 1991.[ECRC{91{9] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and PhilippeMarchal. TUBE Implementor's Manual. 21. 11. 1991.[ECRC{91{10] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and PhilippeMarchal. TUBE Programmer's Manual. 21. 11. 1991.[ECRC{91{11] Michael Dahmen. A Debugger for Constraints in Prolog. 26. 11. 1991.[ECRC{91{12] Jean-Marc Andreoli and Remo Pareschi. Communication as Fair Distributionof Knowledge. 26. 11. 1991.[ECRC{91{13] Jean-Marc Andreoli, Remo Pareschi, and Marc Bourgois. Dynamic Programmingas Multiagent Programming. 26. 11. 1991.[ECRC{91{14] Volker K�uchenho�. On the E�cient Computation of the Di�erence BetweenConsecutive Database States. 5. 12. 1991.[ECRC{91{15] Sylvie Bescos and Michael Ratcli�e. Secondary Structure Prediction of rRNAMolecules Using ElipSys. 16. 12. 1991.[ECRC{91{16] Michael Dahmen. Abstract Debugging of Coroutines and Constraints in Prolog.30. 12. 1991.[ECRC{92{1] Thierry Le Provost and Mark Wallace. Constraint Satisfaction Over the CLPScheme. 30. 1. 1992.[ECRC{92{2] G�erard Comyn, M. Jarke, and Suryanarayana M. Sripada. Proceedings of the1st Compulog Net meeting on Knowledge Bases (CNKBS'92). 30. 1. 1992.[ECRC{92{3] Jesper Larsson Trae� and Steven David Prestwich. Meta-programming for re-ordering Literals in Deductive Databases. 30. 1. 1992.[ECRC{92{4] Beat W�uthrich. Update Realizations Drawn from Knowledge Base Schemas andExecuted by Dialog. 4. 2. 1992.[ECRC{92{5] Lone Leth. A New Direction in Functions as Processes. 25. 2. 1992.[ECRC{92{6] Steven David Prestwich. The PADDY Partial Deduction System. 23. 3. 1992.[ECRC{92{7] Andrei Voronkov. Extracting Higher Order Functions from First Order Proofs.23. 3. 1992.[ECRC{92{8] Andrei Voronkov. On Computability by Logic Programs. 23. 3. 1992.[ECRC{92{9] Beat W�uthrich. Towards Probabilistic Knowledge Bases. 02. 4. 1992.[ECRC{92{10] Petra Bayer. Update Propagation for Integrity Checking, Materialized ViewMaintenance and Production Rule Triggering. 08. 4. 1992.[ECRC{92{11] Mireille Ducass�e. Abstract views of Prolog executions in Opium. 15. 4. 1992.[ECRC{92{12] Alexandre Lefebvre. Towards an E�cient Evaluation of Recursive Aggregates inDeductive Databases. 30. 4. 1992.[ECRC{92{13] Udo W. Lipeck and Rainer Manthey (Hrsg.). Kurzfassungen des 4. GI-Workshops \Grundlagen von Datenbanken", Barsinghausen, 9.-12.6.1992. 12.05. 1992. 20

[ECRC{92{14] Lone Leth and Bent Thomsen. Some Facile Chemistry. 26. 05. 1992.[ECRC{92{15] Jacques Noy�e (Ed.). Proceedings of the International KCM User Group Meet-ing,Munich, 7 and 8 October 1991. 03. 06. 1992.[ECRC{92{16] Frederick Knabe. A Distributed Protocol for Channel-Based Communicationwith Choice. 10. 06. 1992.[ECRC{92-17] Benoit Baurens, Petra Bayer, Luis Hermosilla, and Andrea Sikeler. PublicationManagement: A Requirements Analysis. 03. 07. 1992.[ECRC{92-18] Thom Fr�uhwirth. Constraint Simpli�cation Rules. 28. 07. 1992.[ECRC{92-19] Mark Wallace. Compiling Integrity Checking into Update Procedures. 29. 07.1992.[ECRC{92-20] Petra Bayer. Data and Knowledge for Medical Applications: A Case Study. 30.07. 1992.[ECRC{92-21] Michel Dorochevsky and Andr�e V�eron. Binding Techniques and Garbage Col-lection for OR-Parallel CLP Systems. 11. 08. 1992.[ECRC{92-22] Shan-Wen Yan. E�ciently Estimating Relative Grain Size for Logic Programson Basis of Abstract Interpretation. 25. 08. 1992.[ECRC{92-23] Jean-Marc Andreoli, Paolo Ciancarini, and Remo Pareschi. Interaction AbstractMachines. 25. 08. 1992.[ECRC{92-24] Jean-Marc Andreoli and Remo Pareschi. Associative Communication and itsOptimization via Abstract Interpretation. 25. 08. 1992.[ECRC{92-25] Jean-Marc Andreoli, Lone Leth, Remo Pareschi, and Bent Thomsen. On theChemistry of Broadcasting. 25. 08. 1992.[ECRC{92-26] Marc Bourgois, Jean-Marc Andreoli, and Remo Pareschi. Extending Objects withRules, Composition and Concurrency : the LO Experience. 25. 08. 1992.[ECRC{92-27] Benoit Dageville and Kam-Fai Wong. SIM: A C-based SIMulation Package. 28.09. 1992.[ECRC{92-28] BeatW�uthrich. On the E�cient Distribution-free Learning of Rule Uncertaintiesand their Integration into Probabilistic Knowledge Bases. 29. 09. 1992.[ECRC{92-29] Andrei Voronkov. Logic Programming with Bounded Quanti�ers. 29. 09. 1992.[ECRC{92-30] Eric Monfroy. Gr�obner Bases: Strategies and Applications. 30. 09. 1992.[ECRC{92-31] Eric Monfroy. Speci�cation of Geometrical Constraints. 30. 09. 1992.[ECRC{92-32] Bent Thomsen, Lone Leth, and Alessandro Giacalone. Some Issues in the Se-mantics of Facile Distributed Programming. 22. 10. 1992.[ECRC{92-33] Mireille Ducass�e. An Extendable Trace Analyser to Support Automated Debug-ging. 04. 12. 1992.[ECRC{92-34] Jorge Bocca and Luis Hermosilla. A Preliminary Study of the Performance ofMegaLog. 20. 12. 1992. 21

[ECRC{93{1] Benoit Dageville and Kam-Fai Wong. Supporting Thousands of Threads Usinga Hybrid Stack Sharing Scheme. 18. 01. 1993.[ECRC{93{2] Steven Prestwich. ElipSys Programming Tutorial. 18. 01. 1993.[ECRC{93{3] Beat W�uthrich. Learning Probabilistic Rules. 28. 01. 1993.[ECRC{93{4] Eric Monfroy. A Survey of Non-Linear Solvers. 02. 02. 1993.[ECRC{93{5] Thom Fr�uhwirth, Alexander Herold, Volker K�uchenho�, Thierry Le Provost,Pierre Lim, Eric Monfroy, and Mark Wallace. Constraint Logic Programming -An Informal Introduction. 02. 02. 1993.

22

