
Annotated Constraint
Logic Programming
Applied to Temporal
Reasoning

Thom Frühwirth ECRC-94-22

technical report ECRC-94-22

Annotated Constraint Logic Programming
Applied to Temporal Reasoning

Thom Frühwirth

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I

c
European Computer-Industry Research Centre, 1994

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more
information

please
contact : Thom Frühwirth (thom@ecrc.de)

II

Abstract

Annotated constraint logic programming (ACLP) combines constraint logic
programming (CLP) and generalized annotated programming (GAP). With ACL
we propose a first order logic with constraints where formulas can be
annotated. ACL comes with inference rules for annotated formulas and a
constraint theory for handling annotations. We describe an implementation
based on the standard interpreter for logic programs. The inference rules of
ACL are turned into clauses of the interpreter, and the constraints on
annotations are solved by a suitable constraint solver. Then we optimize the
interpreter.

We also introduce an instance of ACLP for reasoning about time. Temporal
ACLP is conceptually simple while covering substantial parts of temporal logic.
Temporal annotations avoid the proliferation of variables and quantifiers of
standard first-order approaches. In TACLP, the model of time can be freely
chosen since it is represented in the constraint theory. Both qualitative and
quantitative (metric) temporal reasoning with time points (instants) and periods
(temporal intervals) are supported. TACLP is implemented as an instance of the
generic interpreter. An example, the “Workshop Murder Mystery”, forms a
guideline through the paper.This paper was presented at the Sixth International Conference on ProgrammingLanguage Implementation and Logic Programming (PLILP'94), Madrid (Spain),September 14-16, 1994, Proceedings to appear in Springer LNCS.Part of this work was supported by ESPRIT Project 5291 CHIC.

III

1 Introduction

As a starting point for our investigation, we may take the following citation
from [KiSu92]: “We see that there is a close relationship between annotated
logic programming and constraint logic programming.[...] there is also a close
connection between annotated programs and certain fragments of temporal
logics. Thus, there is hope that [...] a single unifying framework for
multivalued, temporal and constraint logic programming will emerge.”

1.1 Annotated Constraint Logic

One contribution of our paper is that we integrate generalized annotated
programming (GAP) and constraint logic programming (CLP) into annotated
constraint logic programs (ACLP) and implement it with a generic interpreter.
In GAP [KiSu92], atomic formulas can be annotated and special inference rules
for the annotated formulas exist. In CLP [JaMa94, VH91], certain predicates are
considered to be constraints and are solved efficiently by a special purpose
constraint solver. As a basis for ACLP, we propose ACL, a first order logic with
constraints where formulas can be annotated. We consider annotations as
distinguished terms with a special structure. ACL extends first-order constraint
logic with inference rules for annotated formulas and a constraint theory for
handling annotations.

Our approach is to provide an implementation of ACLP on top of existing
(CLP) languages. Another approach is to define a an SLD-style proof theory
and implement it from scratch or by modifying a CLP compiler. Our approach
is flexible and straightforward: We can implement a generic interpreter for
ACLP in CLP, since the inference rules of ACL can be written as CLP clauses.
This does not imply that annotations are just syntactic sugar for a CLP
language, as our example will illustrate.

As for the other approach, in [KiSu92] an SLD-style proof theory for GAP is
developed. However an implementation would be difficult since the proof
theory involves a possibly infinite number of clauses called “reductants”.
Recently, “ca-resolution” to compute annotated logic programs was proposed
in [LeLu94] and implemented in C. The idea is to compute dynamically and
incrementally the reduction (that resulted in the reductants in [KiSu92]) by
collecting partial answers. It turns out that operationally this is similar to the
workings of our ACLP interpreter (which relies on recursion to collect the
partial answers). However, in [LeLu94] the class of programs considered is
smaller and the intermediate stages of a reduction are not sound with respect

1

to the standard CLP semantics. Thus the “independence of computation rule”
of SLD-resolution does not hold.

1.2 Temporal Programming Languages

Another contribution of this paper is that in the ACLP framework we can define
a rather general class of temporal logic programming languages (TACLPs) and
thus formalize existing approaches. The idea is straightforward and has been
explored to some extent in [KiSu92]: Atomic formulas can be labeled with
temporal information. Temporal annotations say at what time(s) formulas are
valid. For examplepromoted(hugo) at 10/11/86worked at(hugo,sales) th [9/12/1988,3/2/1990]fired(hugo) in 1992
are the atomic formulaspromoted(hugo), worked at(hugo,sales), fired(hugo)
annotated with temporal information``at 10/11/86'', ``th [9/12/1988,3/2/1990]''1 , ''in 1992''.
Conceptually, this approach is simple: Like other approaches it accounts for
the special status of time and if there are no temporal annotations, we are left
with ordinary CLP. We also have shown in companion papers [Fru93, Fru94b]
that TACLP languages have their formal justification as expressive fragments of
temporal logics.

One of the first temporal logic programming languages was TEMPLOG, a
“temporal Prolog” [AbMa89]. TEMPLOG implements a fragment of first-order
temporal logic (tense logic). For example, in tense logic, the temporal operator
 denotes the next instant of time, and thus the TEMPLOG clause
fired(X) <= stole(X,Y)
reads “If X stole something, then he was fired immediately after”.
TEMPLOG is implemented using a special “temporal SLD resolution” strategy.
This corresponds to a “direct” implementation approach which has the
disadvantage that we have to start almost from scratch.

With the advent of constraints in logic programming, the implementation of
temporal logic by using temporal constraint languages became possible. The1th abbreviates “throughout”

2

idea is to translate the temporal logic into a first order logic by introducing
temporal parameters and special relations and functions describing the
structure of time. For example, the above TEMPLOG clause is translated intofire(X,T+1) :- steal(X,Y,T)
where +1 denotes the successor function on time points. As argued in [FrSc91],
these special functions and relations can be regarded as constraints and the
associated axioms as constraint theory. The advantage of this view is that there
is a clear separation of the temporal aspects of the logic from the first order
one: For the constraint theory, a special algorithm implemented as a constraint
solver can be used, while for the first order logic part, standard deduction
suffices.

In [Brz93], a powerful temporal logic (tense logic extended by parameterized
temporal operators) is translated into first order constraint logic. The resulting
constraint theory is rather complex as it involves quantified variables and
implication, whose treatment goes beyond standard CLP implementations. For
example, to find out who was unemployed since he was fired results in
executing a statement2::- T=<S,current date(S),fired(X,T),for all R ((T=<R,R=<S) implies unemployed(X,R))
The complexity is due to a general problem of the first order approach: The
translation of a temporal logic into first order logic results in a proliferation of
quantifiers, temporal variables and complex constraints. In ACLP languages,
the introduction of annotations avoids these problems. For example, the above
statement in TACLP is simply:- current date(S), fired(X) at T, unemployed(X) th [T,S]
The TACLP framework can cover the complete Horn clause fragment of
extended tense logic [Fru93, Fru94b]. Furthermore, TACLP can be implemented
as an instance of ACLP. The resulting constraints between annotations are
simpler than those of the standard first order approach. However, we have not
analyzed yet how well nested annotations can be implemented. In Brozskas
programming language, temporal operators can be nested, but “eventuality” in
the heads of clauses is dissallowed.

In TACLP and the above-mentioned languages predicates are time-dependent.
For completeness we mention another line of work in temporal programming
languages with a rather different flavor. In languages like TEMPURA [Mos86]
and METATEM [FiOw92] variables are time-dependent.2The actual syntax in [Brz93] is somewhat different

3

1.3 The Workshop Murder Mystery

We illustrate the power of our approach by means of an example. It involves
reasoning about qualitative and quantitative (metric), complete and partial
temporal information involving time periods, their duration, and time points.

There is a workshop at the Plaza hotel.
(1) In the afternoon session, after the coffee break (3:00
- 3:25pm), there were four more talks, 25 minutes each -
time periods.
Dr. Maringer gave the 3rd talk. The last talk was to be
given by Prof. Lepov. But there was a murder.
(2) Prof. Lepov was found dead in his hotel room at
5:35pm - time point.
(3) The doctor said he was dead for one to one and a half
hours - duration and partial knowledge.
There are two suspects, Dr. Kosta and Dr. Maringer. They
have alibis.
(4) Dr. Kosta took the last shuttle to the airport possible to
reach the 5:10pm plane - time point.
(5) The shuttle from the hotel leaves every half hour be-
tween noon and 11pm - recurrent (periodic) data.
(6) It takes at least 50 minutes to get to the airport - dura-
tion and partial knowledge.
(7) During the 2nd talk Dr. Maringer realised that he had
forgotten to copy his 30 slides - relates time periods.
So he picked up the slides from his hotel room and copied
them. It takes 5 minutes to get to the room, another 5
minutes to get to the copy room from there, and 5 more
minutes to get back to the lecture hall - durations.
A copy takes half a minute - repeated durations.
(8) Who murdered Prof. Lepov ?Structure of the Paper. In the next chapter, we quickly introduce annotated

constraint logic (ACL) and derive a generic optimized interpreter for fragments
of the logic. In the chapter after, we define a temporal logic programming
language as an instance of the ACLP scheme and give its implementation so
that the workshop murder mystery can be solved. We end with conclusions.

4

2 Annotated Constraint Languages

We define a first order logic with constraints and annotations. Then we
introduce annotated constraint logic programs and an optimized generic
interpreter for such programs.

2.1 Logics with Constraints and Annotations

We start from standard first order logic (FOL) consisting of terms built from
variables and function symbols with associated arities (including constants)
applied to terms, atoms built from predicate symbols with associated arities
(including propositions) applied to terms, and formulas built from atoms with
the usual logical connectives.De�nition. A �rst order constraint logic (FOCL) is a first order logic with a
distinguished class of predicates called relational constraints and a
distinguished class of interpreted functions called functional constraints. Aconstraint term is a term involving only functional constraints. A constrainttheory is the set of all sentences involving only relational and functional
constraints (and no program-defined predicates). Equality (=) as well as true
and false are relational constraints.

Next we add annotations to the constraint logic. Our definitions remove most
of the restrictions on constraints and annotations in generalized annotated
programs of [KiSu92] and in annotated logic programs of [LeLu94].De�nition. An (�rst order) annotated constraint logic (ACL) is a first order
constraint logic where formulas can be annotated with a distinguished class of
constraint terms called annotation terms. We write the annotation (term)
immediately after the formula it annotates. The class of all annotations forms
an upper semilattice (every nonempty finite subset has a least upper bound).
The partial ordering v (a transitive, reflexive and antisymmetric relation) is a
relational constraint. The least upper bound operator t is a functional
constraint (which is idempotent, associative and commutative).

ACL includes a minimal constraint theory for the lattice operations on
annotations and a minimal set of inference rules for annotated formulas.Constraint Theory. The lattice operations v and t can be axiomatized by
the following constraint theory CT(v;t) (all variables are assumed to be
all-quantified at the outermost scope):

5

(vReflexivity) � v �
(vAnti-Symmetry) � v � ^ � v �! � = �
(vTransitivity) � v � ^ � v
 ! � v

where �; �;
 are annotations.

Next we define the least upper bound t in the obvious way:
(tLUB) � v (� t �) ^ � v (� t �) ^ 8
(� v
 ^ � v
 ! (� t �) v
)

The definition of t is not really constructive. It helps to keep the following
theorems in mind:
(tIdempotency) � t � = �
(tCommutativity) � t � = � t �
(tAssociativity) � t (� t
) = (� t �) t
Inference Rules. In addition to modus ponens(Modus Ponens) A ; (A! B)B

we add two �nitary inference rules AX(v;t) to our constraint logic which
utilize the lattice structure of the annotations:(v Annotation) A � ; � v �A � (tAnnotation) A � ; A �A (� t �)
where A;B are formulas and �; � are annotations.

The (vAnnotation) rule says that if a formula holds with some annotation, then
it also holds with all annotations that are smaller according to the lattice. The
(tAnnotation) rule says that if a formula holds with some annotation and the
same formula holds with another annotation, then the formula also holds with
the least upper bound of the annotations. This upward closure of annotations
means that there is usually a single annotation that represents all the
annotations for which a formula holds. Problems may arise if we take the
closure of an infinite number of annotations - this issue is discussed at length in
[KiSu92].

The axioms that define the interplay of the logical connectives and the
annotations come with the specific instance of our framework. For example,
we may have an axiom for distributivity of annotations over conjunction:(A ^B) �, A � ^ B �. Depending on these axioms it may not be possible to
transform certain annotated formulas into the normal form of ACLP clauses.De�nition. An ACLP clause is of the form:A � C1 ^ : : : ^ Cn ^B1 �1 ^ : : : ^Bm �m (n;m � 0)
where A is the head formula, the Bi’s are the body formulas, the Cj ’s are the
relational constraints, and �;�k ’s are optional annotations. An ACLP program is
a finite set of ACLP clauses. In instances of ACLP formulas are often restricted
to atomic formulas.

6

2.2 Implementing Annotated Constraint Logic Programs

In this chapter we define an executable clause fragment of first order annotated
constraint logic. Our generic interpreter implements the annotation inference
rules for the fragment in any CLP language that provides a suitable constraint
solver for annotations.

Logic programming languages are well suited for writing interpreters as they
can treat programs as data [BoKo82, StSh94]. The object program is reified, i.e.
the predicates are represented by functions in the interpreter. solve(A) is a
unary predicate that is true if and only if A is true at the object level. ACLP
clauses of the object program, say A B, are represented at the meta level asclause(A;B) where clause is a binary predicate.

The clauses of the standard interpreter (which is part of the Prolog folklore)
handle relational constraints, negation as failure, conjunction and disjunction:solve(A) constraint(A) ^A:solve(:A) :solve(A):solve(A ^B) solve(A) ^ solve(B):solve(A _B) solve(A) _ solve(B):
The most important clause of the standard interpreter for logic programs
performs an SLD resolution step and thus implements modus ponens:solve(A) clause(A;B)^ solve(B):
The annotation inference rules AX(v;t) can be put into clause form easily:solve(A �) � v � ^ solve(A �):solve(A
)
 = (� t �) ^ solve(A �) ^ solve(A �):
We now improve the termination behavior of the generic interpreter for ACLP
and optimize it. The details and proofs for the following equivalence
transformations can be found in the full version of this paper.

Unfolding solve(A �) in the first clause for annotations using the second clause
results in:solve(A
)
 v (� t �) ^ solve(A �) ^ solve(A �):
It is easy to see that the above clause subsumes the two original clauses
implementing AX(v;t) by taking either � = � or
 = (� t �). Note that if� = � we compute solve(A �) twice. To improve efficiency, we introduce an
exclusive disjunction:

7

solve(A
)
 v (� t �) ^ solve(A �) ^ (� = � _ :(� = �) ^ solve(A �)):
A negated constraint like :(� = �) does not necessarily mean that we have to
provide negation in the constraint solver. One may simply delay the negated
constraint until it can be decided if it holds or not. As we will see, in specific
instances of ACLP, the negated constraints can also be replaced by positive
ones.

To enforce as much as possible that both � and � contribute to an upper
bound which covers
 we add constraints in the second disjunct:solve(A
)
 v (� t �) ^ solve(A �) ^ (� = � _:(
 v �) ^ :(
 v �) ^ :(� = �) ^ solve(A �)):
Finally we unfold solve(A �) with the clause implementing modus ponens
which results in:solve(A
)
 v (� t �) ^ clause(A �;B) ^ solve(B) ^ (� = � _:(
 v �) ^ :(
 v �) ^ :(� = �) ^ solve(A �)):
As a consequence, we can restrict modus ponens to non-annotated formulas:solve(A) non annotated(A)^ clause(A;B)^ solve(B):
The above clauses can be specialized for the specific instance of ACL, and the
additional axioms of the instance have to be implemented in a similar fashion.
We will illustrate this with temporal ACLP.

8

3 Temporal Logic Programming

Temporal annotated constraint logic (TACLP) supports both time points
(instants) and time periods (temporal intervals). Here we will start from time
points and then relate periods to convex sets of points. We could also define
points in terms of periods to show the duality between points and periods. For
all practical purposes it does not seem to matter what notion is the basic one.
For background in temporal logic and temporal programming we refer the
reader to [Ben83, Gal87].

3.1 Temporal Annotations and Constraints

We may think of a time point as denoting an indivisible, duration-less instant or
moment of time. We will introduce three kinds of annotations based on sets of
time-points. Different from the first order approach, we will use set annotations
to capture quantified temporal variables. The idea is to see that quantification
over a temporal variable intentionally defines a (possibly infinite) set of time
points. The set approach is not new, e.g. [McD82] uses a similar construction.

The annotated formula A at t means that the formula A is true at time point t.
We relate a formula to many time points by introducing two new temporal
annotations, th I and in I , where I is a non-empty set of time points.

If a formula A holds throughout a set, i.e. at every time point in I , we writeA th I . The definition is:A th I , 8t (t 2 I ! A at t)
If a formula A holds at some time point(s) (but we don’t know exactly when)
in I we write A in I . This accounts for partial or imprecise information. The
first order definition of the annotated formula is:A in I , 9t (t 2 I ^ A at t)Constraint Theory. Using the first order definitions directly would introduce
quantified temporal variables and implication between constraints as in the
programming language in [Brz93]. Instead we derive the specific instance of the
constraint theory CT(v;t) for temporal annotations from the above definitions:

9

(atth) at t = th ftg
(atin) at t = in ftg
(tht) th I t th J = th (I [J)
(th v) th I v th J , I � J
(in v) in I v in J , I � J

Note that at annotations are incomparable. The (th v) axiom means that if a
formula holds for every element in a set, it also holds for every element in all
subsets. The (in v) axiom means that if a formula holds for some elements in a
set, it also holds for some elements in all supersets. The (tht) axiom means
that if a formula holds for every element of two sets, it holds for every element
of the union of the two sets.

Note that the corresponding axiom (int) is missing. The definitionin I t in J = in (I \ J) that seems dual to (tht) does not respect axiom
(tAnnotation) and the definition of in at the same time. For example,A in f1; 2g ^A in f2; 3g ! A at 2 does not hold even thoughin f1; 2g t in f2; 3g = in f1; 2g \ f2; 3g = in f2g = at 2. One may think
of A meaning “Prof. Lepov gave a talk” and of 1 (2; 3) meaning Monday
(Tuesday,Wednesday). Since Prof. Lepov may have given two talks, one on
Monday and one on Wednesday, it does not follow that he gave a talk on
Tuesday.

This means that the annotations are not closed under t, because for some
annotations of the form in I t in J and th I t in J the result cannot be
represented by an annotation. To overcome this problem, we take the closure
and allow for annotations that include expressions with t. We add the
following two obvious normalization rules to the constraint theory:in I t in J = in J if in I v in Jin I t th J = th J if in I v th JTime Periods. We can model time periods as convex sets of time points. For
that purpose, the time points have to be a partially ordered by a relation �.
The relation has to be included into the constraint theory. We write the interval[r; s] for the convex set ft j r � t � sg. We can also choose intervals which
are open or closed on either side. The definition chosen here allows for the
interval [t; t] which is a duration-less time period that contains a single time
point.

The advantage of intervals is that they provide a finite representation of infinite
convex sets of time-points and that set relations and operations over intervals
can be efficiently implemented by comparison of and computation on the
end-points of the intervals. However, intervals are not closed under union and
complement. This problem is avoided by taking sets of intervals instead of
intervals. By slight abuse of notation, we letf[r1; s1]; : : : ; [rn; sn]g = [r1; s1] [: : : [[rn; sn].

10

Related Work. Temporal ACLP can describe the theory about action and time
as proposed in [Gal90], which is a critical examination of [All84]. In these
works, time is dense (continuous) and linear. Time periods corresponding to
single time-points are excluded. The predicate HOLDS-IN(A; I) can be mapped
into A in I 0, HOLDS-ON(A; I) into A th I 0, and HOLDS-AT(A; t) into A at t,
where I 0 is the convex set of time points denoted by the interval I . Some
additional axioms and temporal constraints have to be added, so that all 13
Allen interval relations are available and not just those that can be derived fromv.Workshop Murder Mystery. We can now express the murder mystery as
TACLP program. We use discrete time of hours and minutes. In terms of
implementation, we may think of “5:35” (5 hours and 35 minutes) as an
abbreviation for “5*60+35”. Inequality constraints over finite domain variables
are identified by adding the “#” character in front, i.e. #<. The program should
be self-explanatory. The idea is that we try to find a person that is involved in
the case and does not have an alibi during the time Prof. Lepov was murdered.% The Workshop Program%...coffee_break th [3:00,3:25]. % (1)talk(1,'Hunon','Algebraic Semantics...','...') th [3:25,3:50].talk(2,'...','...','...') th [3:50,4:15].talk(3,'Maringer','...','...') th [4:15,4:40].talk(4,'Lepov','P=NP','...') th [4:40,5:05].%...% The Murder of Prof. Lepovfound_dead('Lepov') at 5:35. % (2)murdered(X) in [T-(1:30),T-(1:00)] :- % (3)found_dead(X) at T.% Dr. Kosta's Alibiboard_plane('Kosta') at 5:10. % (4)on_shuttle(X) th [T1,T2] :- % (6)T2 #= T1+50, T2 #< T3, T3 #< T2+50,shuttle at T1, board_plane(X) at T3.shuttle at 0:00. % (5)shuttle at T+30 :-0#<=T,T#<11:00, shuttle at T.

11

% Dr. Maringer's Alibicopying('Maringer') th I :- % (7)I=[T1,T2], T2 #= T1+5+5+15+5,talk(2,_,_,_) th I.% Whodunnit ?murder(X,Y) :- % (8)murdered(Y) in I,involved(X), not (alibi(X) th I).involved('Kosta').involved('Lepov').involved('Maringer').alibi(X) th I :-on_shuttle(X) th I ;copying(X) th I ;talk(_,X,_,_) th I.
3.2 Implementing Temporal ACLP

We are now ready to implement temporal ACLP and solve our murder mystery.
For our implementation, we will use only a subset of temporal ACLP (TACLP)
as introduced in the previous section. For simplicity of the presentation, we
will only annotate atomic formulas and simplify the annotations. We present
the resulting constraint theory which can be mapped onto existing constraint
solvers. We then implement TACLP as an instance of the generic interpreter.Annotations. The simplification is that we only allow convex sets in
annotations. For th annotations, this is not a loss of generality, but means to
introduce least upper bounds, e.g. th`f[1; 2]; [4; 7]g is represented byth [1; 2] t th [4; 7]. However, for in annotations, convexity amounts to a
restriction. In general, we can only approximate an in annotation by a convex
set. For example, in f[1; 2]; [4; 7]g is approximated by in [1; 7].
We can represent an annotated formula A th I1 t : : : t in In by an equivalent
conjunction A th I1 ^ : : : ^A in In. When this transformation is applied to
clauses, the head formula may contain a conjunction, i.e.(A th I1 ^ : : : ^A in In) B. Such formulas can be rewritten into a set of
clauses A th I1 B; : : : ; A in In B. The disadvantage of this approach is
that some unnecessary choices (between the rewritten clauses) and repeated
work (through the conjunctions) may be introduced. However, in many
applications, the number of conjuncts is rather small. The advantage is that the

12

constraint theory is simpler, in particular, the inference rule (tAnnotation)
(performing the closure) needs only be applied to th annotations.Constraint Theory. We could now map the temporal constraint theory onto
set constraints. However, we would like to use a more common and richer
constraint theory, that also allows us to reflect the structure of time. It is a
common choice to map time points onto numbers so that the resulting
constraints are arithmetic expressions. The advantages of this mapping are that
we can express rather complex relationships between time points and that we
can reason about the bounds and duration of time periods. In strict linear time,
integers are a popular choice as annotations for discrete time, and real or
rational numbers are usually used for continuous (dense) time. For the former,
we may use a finite domain constraint solver, and for the latter a constraint
solver implementing the Simplex algorithm for solving linear inequalities.

We now specialize the constraint theory to the simplified representation (wheret; t1; t2 are time points and I = [s1; s2], J = [r1; r2]):
(ththt) th I t th J = th [min(s1; r1);max(s2; r2)] , s1 � r2 ^ r1 � s2
(thth v) th I v th J , r1 � s1 ^ s2 � r2
(that v) th I v at t , t = s1 ^ s2 = t
(thin v) th I v in J , r1 = r2 ^ r1 = s1 ^ s2 = r2
(atth v) at t v th J , r1 � t ^ t � r2
(atat v) at t1 v at t2 , t1 = t2
(atin v) at t v in J , r1 = r2 ^ r1 = t
(inth v) in I v th J , r1 � t ^ t � r2 ^ s1 � t ^ t � s2
(inat v) in I v at t , s1 � t ^ t � s2
(inin v) in I v in J , r1 � s1 ^ s2 � r2The Interpreter. The generic interpreter for ACLP can be specialized to

temporal ACLP in a straightforward way: The standard clauses are the same as
in the general case. The clause dealing with the inference rules of annotated
formulas can be specialized using the constraint theory developed above.
Because the upper bound is only defined for th annotations, in all other cases
we can take the clausesolve(A �) � v � ^ clause(A �;B) ^ solve(B)
and generate a specific version for each v definition in the constraint theory.
For example, the instance of the above clause for (inin v) issolve(A in [r1; r2]) r1 � s1 ^ s2 � r2 ^ clause(A in[s1; s2]; B) ^ solve(B)
Only for the thth case we need to take the clause that performs the closure
and replace the lattice operations accordingly to arrive at:solve(A th [t1; t2]) min(s1; r1) � t1 ^ t2 � max(r1; r2) ^ s1 � r2 ^ r1 � s2^

13

clause(A th [s1; s2]; B) ^ solve(B)^ ((s1 = r1 ^ s2 = r2)_(:(r1 � t1 ^ t2 � r2) ^ :(s1 � t1 ^ t2 � s2) ^ :(s1 = r1 ^ s2 = r2)^solve(A th [r1; r2])))
Without loss of generality, we can require that s1 � r1 � s2 � r2 and get the
negation-free clause:solve(A th [t1; t2]) s1 � t1 ^ t2 � r2 ^ s1 � r1 ^ r1 � s2 ^ s2 � r2^clause(A th [s1; s2]; B) ^ solve(B)^ ((s1 = r1 ^ s2 = r2)_(r1 > t1 ^ t2 > s2 ^ solve(A th [r1; r2])))
The actual interpreter for TACLP as implemented in the constraint logic
programming platform ECLiPSe [MaSch94] is given below. The clauses solving
for the same kind of annotation have been merged using disjunctions and the
order of the constraints has been optimized:solve(A):- constraint(A),call(A).solve(not A):- not solve(A).solve((A,B)):- solve(A),solve(B).solve((A;B)):- solve(A);solve(B).solve(A):- non_annotated(A),clause(A,B),solve(B).solve(A in [T1,T2]):-T1#<=T2,(clause(A in [T3,T4],B),T3#<=T4 % (inin);clause(A at T3,B),T3=T4 % (inat);clause(A th [T5,T6],B),T5#<=T3,T3=T4,T4#<=T6), % (inth)T1#<=T3,T4#<=T2,solve(B).solve(A at T):-(clause(A at T1,B),T1#=T % (atat);clause(A in [T1,T2],B),T1#=T,T#=T2 % (atin);clause(A th [T1,T2],B),T1#<=T,T#<=T2), % (atth)solve(B).solve(A th [T1,T2]):-T1#<=T2,(clause(A th [T3,T4],B),T3#<=T1,T1#<=T4 % (thth);clause(A at T4,B),T4#=T1 % (that);clause(A in [T3,T4],B),T4#=T1,T3#=T4), % (thin)solve(B),(T2#<=T4 ; solve(A th [T4+1,T2])). % closureThe Murder Mystery Solved. Asking :- solve(murder(X,Y)) returns two
solutions X = 'Lepov', Y = 'Lepov' and X = 'Maringer', Y = 'Lepov'.

14

The first one means that Prof. Lepov could have committed suicide. This
unexpected solution is found because Prof. Lepov does not have an alibi for
the time of his death. Dr. Maringer could be the murderer, because his alibi
does not hold. Analysis of the failure of alibi('Maringer') th I reveals that
“Maringer” gave a wrong alibi, because the copying would have taken 30
minutes, so it cannot have happened during a talk of 25 minutes. Dr. Kostas
alibi holds.

15

4 Conclusions

We integrated GAP and constraint logic programming (CLP) into annotated
constraint logic programs (ACLP). With ACL we proposed a first order logic
with constraints where formulas can be annotated. We implemented a generic
optimized interpreter for ACLP in CLP. We illustrated the unifying power of the
ACL paradigm with an instance of ACLP for reasoning about time. Temporal
ACLP is conceptually simple while covering substantial parts of temporal logic.
Annotations avoid the proliferation of variables and quantifiers of the standard
first order logic approach.

Our work at this stage can only be the starting point. For example, we want to
provide nested annotations. We are aiming at a generic compiler for ACL. The
simplicity of the interpreter indicates that compilation is simple as well, and
indeed we already have achieved some promising preliminary results.

The mapping of temporal logics into annotated constraint logic and its
limitations have to be further investigated. The relationship to other theories
about time such as event calculus and situation calculus has to be examined.
We are also considering extending the available temporal constraints along the
lines of [DMP91, Mei91, Fru94a], but have to consider carefully the interaction
with annotations.Acknowledgements. Thanks to Joachim Schimpf for suggesting the use of a
murder mystery example to illustrate the power of TACLP and for his
comments. Thanks to James Lu for discussing the paper and its topics in detail.
Thanks to anonymous referees for their helpful comments.

16

Bibliography

[AbMa89] M. Abadi and Z. Manna, Temporal Logic Programming, Journal of
Symbolic Computation (1989) 8, pp 277-295.

[All84] J. F. Allen, Towards a General Theory of Action and Time, Artificial
Intelligence, Vol. 23, 1984, pp 123-154.

[Ben83] J.F.A.K. van Benthem, The Logic of Time, Synthese Library, Vol. 156,
D. Reidel Pub., Holland, 1983.

[BoKo82] K. A. Bowen and R. A. Kowalski, Amalgamating Language and
Metalanguage in Logic Programming, In Logic Programming, K.A.
Clark and S.A. Tarnlund (eds), pp. 153-173, Academic Press, 1982.

[Brz93] Ch. Brzoska, Temporal Logic Programming with Bounded Universal
Goals, 10th ICLP, Budapest, Hungary, MIT Press, 1993.

[DMP91] R. Dechter, I. Meiri and J. Pearl, Temporal Constraint Networks,
Artificial Intelligence, Vol. 49, pp. 61-95, 1991.

[FiOw92] M. Fisher and R. Owens, From the Past to the Future: Executing
Temporal Logic Programs, LPAR 92, St. Petersburg, Russia, Springer
LNCS 624, July 1992, pp 369-380.

[FrSc91] A. M. Frisch and R. B. Scherl, A General framework for Modal
Deduction, 2nd KR ’91, pp. 196-207, Cambridge, Mass., Morgan
Kaufmann, 1991.

[Fru93] T. Frühwirth, Temporal Annotated Constraint Logic Programming,
Workshop on Executable Modal and Temporal Logics at IJCAI 93,
Chambery, France, August 1993.

[Fru94a] T. Frühwirth, Temporal Reasoning with Constraint Handling Rules,
Technical Report ECRC-94-05, ECRC Munich, Germany, January
1994.

[Fru94b] T. Frühwirth, Annotating Formulas with Temporal Information,
Workshop on Logic and Change at ECAI 94, Amsterdam, The
Netherlands, August 1994.

[Gal87] A. Galton (ed), Temporal Logics and Their Applications, Academic
Press, 1987.

[Gal90] A. Galton, A Critical Examination of Allen’s Theory of Action and
Time, Artificial Intelligence, Vol. 42, 1990, pp. 159-188.

17

[JaMa94] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey,
Journal of Logic Programming, to appear.

[KiSu92] M. Kifer and V.S. Subrahmanian, Theory of Generalized Annotated
Logic Programming and its Applications, Journal of Logic
Programming, April 1992.

[LeLu94] S. M. Leach and J. J. Lu, Computing Annotated Logic Programs:
Theory and Implementation, 11th ICLP, Santa Margherita Ligure,
Italy, MIT Press, 1994.

[MaSch94] M. Meier, J. Schimpf et al., ECLiPSe 3.4 User Manual and Extensions
User Manual, ECRC Munich, Germany, January 1994.

[McD82] D. McDermot, A Temporal Logic for Reasoning about Processes and
Plans, Cognitive Science 6:101-155, 1982.

[Mei91] I. Meiri, Combining Qualitative and Quantitative Constraints in
Temporal Reasoning, AAAI 91, July 1991, pp 260-267.

[Mos86] B. Moszkowski, Executing Temporal Logic Programs, Cambridge
University Press, 1986.

[StSh94] L. Sterling and E. Shapiro, “Interpreters”, Chapter 17, The Art of
Prolog, Second Edition, MIT Press, 1994.

[VH91] P. van Hentenryck, Constraint Logic Programming, The Knowledge
Engineering Review, Vol 6:3, 1991, pp 151-194.

18

