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AbstractThis paper describes an application of constraint handling rules to temporal reasoningand illustrates the conceptual simplicity and 
exibility of the approach. Following theframework of Meiri, temporal reasoning is viewed as a constraint satisfaction problemabout location of temporal variables along the time line. Temporal variables may bepoints or intervals and temporal constraints are disjunctions of qualitative or quantita-tive primitive binary temporal relations. We use constraint logic programming extendedwith constraint handling rules to de�ne an incremental, 
exible general purpose solver fordisjunctive binary constraints based on path consistency and backtrack search. We showhow this approach supports rapid prototyping and experimentation with di�erent kindsof temporal reasoning and constraint satisfaction techniques in general.Keywords: Constraint-Based Reasoning, Temporal Reasoning, Logic Programming.This work was supported by ESPRIT Project 5291 CHIC. This report was �rst publishedin January 1993 as ECRC Technical Report CORE-93-08.1 IntroductionWe have implemented a range of constraint solvers in a constraint logic programminglanguage extended with constraint handling rules1 and believe that our approach formsan ideal basis for prototyping and implementing new constraints and constraint solvers.The purpose of this paper is to show how our approach is bene�cial for understanding anddeveloping temporal reasoning and constraint consistency techniques.Constraint logic programming (CLP) [JaLa87, Sar89, Coh90, VH91] combines the advan-tages of logic programming and constraint solving. In logic programming, problems arestated in a declarative way using rules to de�ne relations (predicates). Problems aresolved by the built-in logic programming engine (LPE) using nondeterministic backtracksearch. In constraint solving, e�cient special-purpose algorithms are used to solve prob-lems involving distinguished relations referred to as constraints. In current constraint logicprogramming languages, constraint solving is usually hard-wired in a built-in constraintsolver (CS). Hard-coding guarantees maximum e�ciency for the given set of constraints.However it has the serious drawback that it is hard to extend and specialize the built-inCS, combine it with other CS's and build a CS over a new domain.Constraint handling rules (CH rules) [Fru92] are a language extension providing the application-programmer (user) with a declarative and 
exible means to introduce user-de�ned con-straints (in addition to built-in constraints of the underlying language). CH rules de�nesimpli�cation of and propagation over user-de�ned constraints. Simpli�cation replaces con-straints by simpler constraints while preserving logical equivalence. Propagation adds newconstraints which are logically redundant (but may cause further simpli�cation). Whenrepeatedly applied by a CH rule engine (CHE) the constraints may become solved and theresulting functionality is then that of a user-de�ned constraint solver.1A compiler for CH rules including the constraint solver described here is available as a library ofECLiPSe, ECRC's constraint logic programming platform.1



User-de�ned constraint control is a very active area of research. CHIP was the �rstconstraint logic programming language to introduce the necessary constructs. These con-structs have been called \demon constructs" [D*88] because of their event-driven activa-tion whenever new information is available. These various constructs have been general-ized into CH rules. CH rules are essentially multi-headed guarded rules and as such havetheir roots in concurrent logic programming languages [Sha89] and can be related to theSwedish branch of the Andorra family [HaJa90] and Saraswats cc-framework of concurrentconstraint programming [Sar89]. However these general purpose programming languageslack features essential to de�ne non-trivial constraint evaluation, namely multi-headedguarded rules and and a way to de�ne constraint propagation by rules, while CH rulesform a special purpose language extension for user-de�ned constraint solvers.In our approach, constraints are seen as a computationally e�cient incarnation of the pred-icates de�ned in the underlying host language, as such CH rules have a logical reading andthus preserve the declarative semantics of the underlying logic programming language theyextend. This view that provides a tight and sound integration of the host language withuser-de�ned constraint solvers and also motivates the work of Smolka on Guarded Rules[Smo91]. The representation of constraint solving in the same formalism as the rest of theprogram greatly facilitates the prototyping, extension, specialization and combination ofconstraint solvers as well as reasoning about correctness, termination and con
uence of aset of CH rules.2 PreliminariesIn this section we introduce the framework of Meiri [Mei91]. It integrates many forms oftemporal relations - qualitative and quantitative (metric) over time points and intervals- by considering them as disjunctive binary constraints. We give the primitive relationsfor various forms of temporal constraints. We also describe how di�erent constraintsrelate to each other - so we are able to reason over heterogeneous constraint networks.Temporal reasoning tasks are formulated as constraint satisfaction problems, and aresolved by traditional constraint satisfaction techniques, namely backtrack search and pathconsistency.2.1 Temporal ConstraintsA disjunctive binary constraint cxy between two variablesX and Y , also writtenX fr1; : : : rng Y ,is a disjunction (X r1 Y ) _ : : : _ (X rn Y ), where each ri is a relation that is applicableto X and Y . The ri are also called primitive constraints. The converse of a primitiveconstraint r between X and Y is the primitive constraint s that holds between Y andX as a consequence. For simplicity, unary (domain) constraints are modeled as binaryconstraints where one variable is �xed. Disjunctive binary constraints allow us to modelvarious forms of temporal constraints. A f<g B;A f<;>g B;A f<;=; >g B are disjunc-tive binary constraints cAB between A and B. A f<;>g B is the same as A 6= B.Qualitative Point Constraints [ViKa86]. Variables represent time points and there arethree primitive constraints <;=; >. < is the converse of > and equality is the converse of2



itself.Quantitative Point Constraints [DMP91]. The primitive constraints restrict the dis-tance of two time points X and Y to be in an interval a::b, i.e. a � (Y � X) � b2.Note that there is an in�nite number of constraints. From the meaning it follows that theconverse of an interval a::b is (�b)::(�a). The interval 0..0 corresponds to equality.Relating Point Constraints [KaLa91]. Qualitative can be mapped into quantitativepoint constraints, quantitative constraints can only be approximated by qualitative con-straints. These mappings are used to solve heterogeneous constraints over the same vari-ables. Let QUANT (QUAL) be a quantitative (qualitative) temporal constraint.If a::b 2 QUANT; a � 0 � b then eq 2 QUAL.If a::b 2 QUANT; a < 0 then ge 2 QUAL.If a::b 2 QUANT; b > 0 then le 2 QUAL.and converselyIf eq 2 QUAL then 0::0 2 QUANT .If ge 2 QUAL then (�1)::0 2 QUANT .If le 2 QUAL then 0::1 2 QUANT .Interval Constraints [All83]. There are 13 primitive constraints possible between twointervals, equality and 6 other relations with their converses. These constraints can bede�ned in terms of the end-points of the intervals. Let I=[X;Y ], J=[U; V ].I equals J if X = U < Y = V: I before J if X < Y < U < V:I during J if U < X < Y < V: I overlaps J if X < U < Y < V:I meets J if X < Y = U < V: I starts J if X = U < Y < V:I finishes J if U < X < Y = V:Converses are equals,after,contains,overlapped by,started by,finished by.Relating Point and Interval Constraints [KaLa91]. Points can be represented byend-points of intervals. Interval constraints can be approximated by constraints on theirendpoints. Given two points X;Y . Let I=[X;A], J=[Y;B] be intervals.If X>Y then I fduring,finishes,overlapped by,met by,afterg J.If X=Y then I fequals,starts,started byg J.If X<Y then I fbefore,meets,finished by,contains,overlapsg J.Given two intervals I=[X;Y ], J=[U; V ]. The approximation is computed by translatingthe disjunctive interval constraints into disjunctions of their de�nitions in terms of theirend-points. The disjunction is then approximated by a conjunction of point inequalities.E.g., I fequals,beforeg J = (X = U < Y = V ) _ (X < Y < U < V ) � (X < Y �V;U 6= Y;X � U < V ): With I fbefore,afterg J � (X < Y;U < V ) we loose allinformation between I; J .Point - Interval Constraints [Mei91]. There are 5 possible primitive constraints be-tween a point and an interval. Note that there cannot be equality. Again, the primitiveconstraints can be de�ned in terms of the end-points of the interval. Let X be a point,J=[U; V ] an interval.X before J if X < U < V:X after J if U < V < X: X during J if U < X < V:X starts J if X = U < V: X finishes J if U < X = V:The converses express interval-point constraints. Translations to intervals and points are2For simplicity of presentation we do not distinguish between open and closed intervals.3



possible analogous to the point-interval translations shown before.2.2 Constraint SatisfactionA binary constraint network consists of a set of variables and a set of binary constraintsbetween them. The network can be represented by a directed constraint graph, where thenodes denote variables and the arcs are labeled by binary constraints.A solution of a constraint network is an assignment of values to the variables that satis�esall the constraints. Such an assignment is called valid. A constraint network is consistentif there exists a solution. A constraint network is minimal if each primitive constraint issatis�ed in a solution of the network; i.e. there are no primitive constraints that do notparticipate in at least one solution. Interesting problems (typically NP-hard) are thereforeto � determine consistency� compute the minimal network� compute one, all or \best" solution(s)� check validity of an assignmentFor the special case of disjunctive binary constraint networks and temporal constraintsin particular we are not so much interested in a particular assignment for temporal vari-ables, but in choosing primitive constraints from the disjunctions such that the resultingdisjunction-free binary network is consistent. As there is a clear analogy between choos-ing values for a variable and primitive constraints between two variables, we will use theestablished terminology further on.In the following we will solve the above mentioned constraint satisfaction problems exceptoptimization (\best" solution) by a single algorithm that combines backtrack search andpath consistency [LaRe92].Backtrack search. Backtrack search can be used to compute solutions, but has expo-nential complexity in the number of choices. Search will be therefore more e�cient ifwe minimize the number of potential choices by computing the minimal network beforemaking a choice. The overall idea is to interleave computing the minimal network andmaking a single choice.Algorithm to compute one or more solutions of a given networkCompute minimal networkIf inconsistent then failrepeatTake a new pair of nodes with its disjunctive constraintChoose a primitive constraint from the disjunctionIf no more choice then backtrackCompute minimal networkIf inconsistent then backtrackuntil success or failureIf success and more solutions wanted then backtrack.Path consistency. Unfortunately, in general it is as hard to �nd the minimal networkas to compute solutions by backtrack search. The good news however is that it is possible4



to compute an approximation of the minimal network (one that is \almost" minimal withsome super
uous primitive constraints) in polynomial time by applying local consistencytechniques. The basic idea is to split the problem into overlapping subproblems of boundedsize, solve them, and to repeat computation over all possible subproblems until a �xpoint isreached. The following operations on disjunctive binary constraints (considered as a set ofprimitive constraints) will come in handy for computing path consistency. The operationsare mostly de�ned using the corresponding operations on the primitive constraints. Allbinary operations are associative.Converse. The converse primitive constraint of ri is written 	ri.	cij := I fr1; : : : rng J = J f	 r1; : : :	 rng I = J fs1; : : : sng I = cji. (if 	 ri = si).Note that 		 ri= ri.Union. By de�nition of disjunctive binary constraints:cij ] c0ij := I fr1; : : : rng J _ I fs1; : : : smg J = I (fr1; : : : rng [ fs1; : : : smg) J .Intersection. If the primitive constraints are pairwise disjoint3:cij � c0ij := I fr1; : : : rng J ^ I fs1; : : : smg J = I (fr1; : : : rng \ fs1; : : : smg) J .Otherwise intersection can be based on pairwise intersection of primitive constraints:cij � c0ij := I fr1; : : : rng J ^ I fs1; : : : smg J = I fr � s j r � s exists; r 2 fr1; : : : rng; s 2fs1; : : : smgg J , where r � s denotes the relation de�ned by r(X;Y ) ^ s(X;Y ).Composition. Based on pairwise composition of primitive constraints:cik 
 ckj := I fr1; : : : rng K ^ K fs1; : : : smg J = I fr 
 s j r 2 fr1; : : : rng; s 2fs1; : : : smgg J = cij, where r � s is the relation between X and Z in r(X;Y ) ^ s(Y;Z).Note that composition is not necessarily commutative.Path consistency can be used to approximate the minimal network. A network is pathconsistent4 if for pairs of nodes (i; j) and all paths i � i1 � i2 : : : in � j between them,the direct constraint cij is tighter than the indirect constraint along the path, i.e. thecomposition of constraints cii1 
 : : : cinj along the path. A disjunctive constraint is tighterif it has less disjuncts. It follows from the de�nition of path consistency that we canintersect the direct and indirect constraint to arrive a tighter direct constraint. If thegraph underlying the network is complete it su�ces to repeatedly compute paths of length2 at most. A graph is complete if there is an edge or a pair of arcs, one in each direction,between every pair of nodes. This means for each triple of nodes (i; k; j) we repeatedlycompute cij := cij � cik 
 ckj until a �xpoint is reached. The complexity of such analgorithm is O(n3), where n is the number of nodes in the network [MaFr85].For example, given If<;=gK^Kf<;=gJ ^If=; >gJ , and taking the triple (i; j; k), thencik 
 ckj results in If<;=gJ , the result of intersecting with cij is If=gJ . From (j; i; k)we get Jf=gK (we compute cji as the converse of cij). From (k; j; i) we get Kf=gI.Another round of computation causes no more change, so the �xpoint is reached withJf=gK;Kf=gI (which is also minimal).One path consistency algorithm was given by [All83]. for use with his temporal intervalconstraints. A queue of arcs whose constraint got tighter is used to keep track of thetriangles that have to be reconsidered.3Holds for temporal constraints except quantitative constraints.4We can ignore unary constraints in the de�nition, since we have modeled them as binary constraints.5



Q := f(i; j) j i � n; j � ngwhile Q 6= fg dodelete a tuple (i; j) from Qfor each node k doTemp := cik � cij 
 cjkif Temp = fg then inconsistentif cik 6= Temp thenQ := Q [ f(i; k)gcik := TempTemp := ckj � cki 
 cijif Temp = fg then inconsistentif ckj 6= Temp thenQ := Q [ f(k; j)gckj := TempendforendwhileAnother classical algorithm named PC-2 was given by [Mac77]. It is an optimization basedon the idea that if needed, cij can be computed as the converse of cji, which saves half ofthe computation, and that cii can only be equality. The queue this time keeps track of allnode triples that have to be reconsidered.Q := f(i; k; j) j i < j; i 6= k; k 6= jgwhile Q 6= fg dodelete a triplet (i; k; j) from QTemp := cij � cik 
 ckjif Temp = fg then inconsistentif cij 6= Temp thenQ := Q [AFFECTED((i; j; k))cij := Tempendwhilewhere AFFECTED((i; j; k)) := f(u; v; w) j u < w; u 6= v; v 6= wg \ (f(i; j;m) j m 2Ng [ f(j; i;m) j m 2 Ng [ f(m; i; j) j m 2 Ng [ f(m; j; i) j m 2 Ng).3 CLP+CH Languages3.1 SyntaxA CLP+CH program is a �nite set of clauses from the CLP language and from thelanguage of CH rules. Clauses are built from atoms of the form p(t1; :::tn) where p is apredicate symbol of arity n (n � 0) and t1; :::tn is a n-tuple of terms. A term is a variable,e.g. X, or of the form f(t1; :::tn) where f is a function symbol of arity n (n � 0) appliedto a n-tuple of terms. Function symbols of arity 0 are also called constants. In thispaper, predicate and function symbols start with lowercase letters while variables startwith uppercase letters. In�x notation may be used for speci�c predicate symbols (e.g.X = Y ) and functions symbols (e.g. �X + Y ). There are two classes of distinguishedatoms, called built-in constraint atoms and user-de�ned constraint atoms. For short, we6



will say constraint instead of constraint atom.A CLP clause is of the formH  B1; : : :Bn: (n � 0)where the head H is an atom but not a built-in constraint, the body B1; : : : Bn is a con-junction of atoms called goals. The empty body (n = 0) of a CLP clause may be denotedby the constraint true, which is always satis�ed. false is the constraint representinginconsistency. A CLP clause with an empty body is called fact, any other clause rule. Aquery is a CLP clause without head.CH rules are essentially multi-headed guarded rules forming a committed-choice (sub)language.There are two kinds of CH rules and a declaration (to be explained later).Simpli�cation CH rules are of the formH1; : : :Hi , G1; : : : Gj j B1; : : :Bk,Propagation CH rules are of the formH1; : : :Hi ) G1; : : : Gj j B1; : : :Bk,Call declarations for a user-de�ned constraint H are of the formcallable H if G1; : : : Gj,where (i > 0; j � 0; k � 0) and the multi-head H1; : : :Hi is a conjunction of user-de�nedconstraints, the guard G1; : : :Gj is a conjunction of atoms which neither are, nor dependon, user-de�ned constraints, and the body B1; : : : Bk is a conjunction of atoms.Given a clause CL and an atom A, we say that CL is a clause of A if the head of CLcontains an atom with the same predicate symbol p as A. We say that the predicate p isde�ned by all its clauses. Note that predicates are de�ned by CLP clauses and user-de�nedconstraints by CH rules and CLP clauses.3.2 Declarative SemanticsDeclaratively, CLP languages are interpreted as formulas in �rst order logic. A CLP+CHprogram P is a conjunction of universally quanti�ed clauses. A CLP clause is an implica-tion H ! B1 ^ : : :Bn.The meaning of a CH rule is dependent on its guard. A simpli�cation CH rule is a logicalequivalence between head and body(C1 ^ : : :Cj)! (A1 ^ : : :Ai $ B1 ^ : : :Bk).A propagation CH rule is an implication from the head to the body(C1 ^ : : :Cj)! (A1 ^ : : :Ai ! B1 ^ : : :Bk).Call declarations have no declarative reading and do not change the declarative semantics.Extending a CLP language with CH rules preserves its declarative semantics, as correctCH rules are logically redundant with regard to the underlying CLP program. CH rulesare not supposed to change the meaning of a program, but the way it is executed.7



3.3 Operational SemanticsThe operational semantics of CLP+CH can be described by a transition system. In thefollowing we do not distinguish between sets and conjunctions of atoms. A constraint storerepresents a set of constraints. Let CU and CB be two constraint stores for user-de�nedand built-in constraints respectively. Let Gs be a set of goals. A computation state is atuple< Gs;CU ; CB >.The initial state consists of a query Gs and empty constraint stores,< Gs; fg; fg >.A �nal state is either successful (no goals left to solve),< fg; CU ; CB >,or failed (due to an inconsistent constraint store),< Gs; false; CB > or < Gs;CU ; false>.The union of the constraint stores in a successful �nal state is called conditional answerfor the query Gs, written answer(Gs).The built-in CS works on built-in constraints in CB and Gs, the user-de�ned CS on user-de�ned constraints in CU and Gs using CH rules and the LPE on goals in Gs and CUusing CLP clauses.The following computation steps are possible to get from one computation state to thenext Solve - Built-In CS< fCg [Gs;CU ; CB > 7�! < Gs;CU ; C 0B >if (C ^ CB)$ C 0BSimplify - CHE with simpli�cation CH rules< H 0 [Gs;H 00 [ CU ; CB > 7�! < Gs [B;CU ; CB >if (H, G j B) 2 P ; (CB ! H = (H 0 [H 00) ^ answer(G))Propagate - CHE with propagation CH rules< H 0 [Gs;H 00 [ CU ; CB > 7�! < Gs [B;H 0 [H 00 [ CU ; CB >if (H) G j B) 2 P ; (CB ! H = (H 0 [H 00) ^ answer(G))Nondeterministic Unfold - LPE with CLP clause< fH 0g [Gs;CU ; CB > 7�! < Gs [B;CU ; fH = H 0g [ CB >if (H B) 2 P and H is not a user-de�ned constraint< Gs; fH 0g [ CU ; CB > 7�! < Gs [B;CU ; fH = H 0g [ CB >if (H B) 2 P (H B); (callable H 00 if G) 2 P ^ (CB ! fH 0 = H 00g^answer(G))During computation either the built-in CS updates the constraint store BC if a newconstraint was found in G, or the user-de�ned CS simpli�es and propagates from user-de�ned constraints in UC if a new user-de�ned constraint was found in G or the built-inconstraint store had been updated, or the LPE unfolds non-constraint goals in G andcallable user-de�ned constraints in UC. Constraint solving has priority over goal unfolding,and built-in constraint solving over user-de�ned constraint solving.CS. A CS is a determinate and incremental procedure that updates a persistent constraintstore. To update the constraint store means to produce a new constraint store that islogically equivalent to the conjunction of the new constraint and the old constraint store.Determinate means that exactly one new constraint store is produced (even if there is a8



don't care choice between equivalent stores).CHE . Similarly to a CS, the CHE is a determinate and incremental procedure with apersistent constraint store. There is don't care indeterminism in choosing a CH rule toapply, but if application is possible, the CHE commits to the choice. To simplify user-de�ned constraints CU means to replace it by B if CU match the head H of a simpli�cationCH rule H , G | B and G is satis�ed. To propagate from user-de�ned constraint CUmeans to add B if CU match the head H of a propagation CH rule H ) G | B and Gis satis�ed. A guard G is satis�ed if its execution does not involve user-de�ned constraintsand results in a successful local computation state where the local built-in constraints areentailed by the global built-in constraint store. According to the ask and tell languageframework of (Saraswat 1989) we may also say that we ask if C holds in the currentconstraint store, while posing a constraint means to tell ( add) it to the constraint store.LPE. The LPE is a indeterminate procedure with a persistent goal store.To unfold agoal Gs means to looks for a clause H B with a head with the same predicate symbolas Gs, to replace the Gs by (G = H); B. As there are usually several clauses for a goal,unfolding is nondeterministic and thus a goal can be solved in di�erent ways. Chronologicalbacktracking over clause choices is used in the LPE to search (depth �rst) for successfulcomputations. A user-de�ned constraint goal H is callable if there is a call declarationH if G and no CH rule applies and G is satis�ed.3.4 ExampleIn the following we illustrate the behavior of Prolog extended with CH rules with anexample that de�nes an inequality constraint.% Constraint Declaration(1a) constraint X�Y.(1b) callable X�Y if ground(X).(1b) callable X�Y if ground(Y).% Constraint Definition(2a) X�Y  leq(X,Y).(2b) leq(0,Y).(2c) leq(s(X),s(Y))  leq(X,Y).% Constraint Handling(3a) X�Y , X=Y | true. % reflexivity(3b) X�Y,Y�X , X=Y. % identity(3c) X�Y,Y�Z ) X�Z. % transitivityIn clause (2a), � is de�ned by a predicate leq which is de�ned by the two CLP clauses(2b) and (2c). The CH rules of (3) specify how � simpli�es and propagates as a constraint.CH rule (3a) states that X�X is logically true. Hence, whenever we see the goal X�X wecan simplify it to true. Similarly, CH rule (3b) means that if we �nd X�Y as well as X�Yin the current goal, we can replace it by the logically equivalent X=Y. CH rule (3a) detectssatis�ability of a constraint, and CH rule (3b) solves a conjunction of constraints returninga substitution. CH rule (3c) states that the conjunction X�Y,Y�Z implies X�Z. The call9



declaration (1) states that we may call X�Y as a predicate if both X and Y are bound. X�Y, X=Y.% by CH rule 3atrue. X�Y, Y�X.% by CH rule 3bX=Y. A�B,C�A,B�C.% C�A,A�B propagates C�B by 3c.% C�B,B�C simplifies to B=C by 3b.% B�A,A�B simplifies to A=B by 3b.A=B,B=C. s(s(0))�A,A�s(s(s(0))).% s(s(0))�A,A�s(s(s(0))) propagates s(s(0))�s(s(s(0))) by 3c.% s(s(0))�s(s(s(0))) is callable and succeeds.% s(s(0))�A is callable and succeeds with A=s(s(X)).% A�s(s(s(0))) is callable and succeeds with X=0.A=s(s(0)).% On backtracking A�s(s(s(0))) succeeds with X=s(0).A=s(s(s(0))).% On backtracking A�s(s(s(0))) fails.false.4 Temporal Reasoning in CLP+CHWe use Prolog+CH to de�ne a constraint satisfaction algorithm for complete disjunctivebinary constraint networks. Prolog provides for backtracking, while CH rules are used toimplement path consistency at a high level of abstraction.4.1 Incremental Constraint SatisfactionLet the constraint cij be represented by the predicate ctr(I,J,C) where C is the listof primitive relations forming the disjunctive constraint. The basic operation of pathconsistency is cij := cij � cik 
 ckj , which can be implemented by one CH rule performingthe composition yielding an indirect constraint newc and another CH rule performing theintersection.ctr(I,K,C1),ctr(K,J,C2) ) composition(C1,C2,C3) | newc(I,J,C3).newc(I,J,C1),ctr(I,J,C2) , intersection(C1,C2,C3) | ctr(I,J,C3).We will see later on that the splitting into the two operations o�ers a high degree of
exibility. It separates the propagation step (�rst CH rule) and the simpli�cation step(second CH rule). Furthermore, this formulation supports �ne-grained concurrency in10



that the second rule need not be executed directly after producing newc(I,J,C3). Indeed,in the meantime the \old" ctr(I,J,C2) may be used by the �rst CH rule to produce anewc for another pair of nodes. Termination is guaranteed because the simpli�cation CHrule replaces C2 of ctr by the result C3 of intersecting it with C1 of newc. C3 is thus eithersmaller or the same as C2. There is only a bounded number of times C2 can get smaller.The latter case also poses no problem, as the implementation of CH rules will not add anew constraint but keep the old one in case of identity. Finally, propagation CH rules arenever repeated for the same constraint goals.A simplemodi�cation su�ces to arrive at a incremental algorithm for incomplete networks.By incremental we mean that with every new constraint that arrives, the algorithm doesthe same amount of path consistency as in the complete(d) network where missing con-straints are modeled as redundant constraints. Above, the intersection in CH rule (3)cannot be performed, because the ctr is missing. Furthermore, subsequent propagationsfrom the resulting ctr are inhibited. The solution is to safely approximate the ctr asthe redundant constraint, and thus the resulting new ctr would be identical to newc. Sowe can replace newc by ctr in the above implementation. If the simpli�cation step isperformed (su�ciently often) before a propagation step, then termination is guaranteed.Algorithm. The complete algorithm below takes the optimizations of PC-2 [Mac77] intoaccount. The optimization is based on the idea that if needed, cij can be computed asthe converse of cji, which saves about half of the computation, and that cii can only beequality. Note that unlike PC-2, there is no need for a queue of modi�ed constraints, asthe new constraint goal itself will trigger new applications of the propagation CH rule.% Constraint Declaration and Definition(1a) constraint ctr(I,J,C).(1b) callable ctr(I,J,C) if not singleton(C).(1c) ctr(I,J,C)  choose(B,C),ctr(I,J,B).% Special Cases(2a) ctr(I,J,C) , bound(I),bound(J) | check ctr(I,J,K).(2b) ctr(I,J,C) , empty(C) | false.(2c) ctr(I,I,C) , contains equality(C).% Intersection(3) ctr(I,J,C1),ctr(I,J,C2) , intersection(C1,C2,C3) | ctr(I,J,C3).% Composition(4a) ctr(I,K,C1),ctr(K,J,C2) ) I<J,composition(C1,C2,C3) | ctr(I,J,C3).(4b) ctr(K,I,C1),ctr(K,J,C2) ) I<J,composition(C1,C3,C2) | ctr(I,J,C3).(4c) ctr(I,K,C1),ctr(J,K,C2) ) I<J,composition(C3,C2,C1) | ctr(I,J,C3).The predicate ctr(I,J,C) is declared as a constraint (1a) and may be called if C rep-resents a disjunction of primitive relations (1b). If the corresponding Prolog clause isexecuted (1c), the predicate choose(B,C) nondeterministically chooses one primitive con-straint B from the disjunctive constraint C. This implements the backtrack search part ofthe algorithm. Special cases are simpli�cation CH rules - (2a) that checks the validityof an assignment to variables, (2b) that detects inconsistent constraints and (2c) thatremoves constraints between the same nodes. The predicates empty and singleton are11



simply de�ned as the corresponding list operations, while contains equality dependson a predicate equality that gives the right kind of equality relation depending on thetype of primitive relations in the list. Simpli�cation CH rule (3) performs the intersection,propagation CH rules (4) the composition. Three CH rules are needed to cover all possiblecombinations of constraints while keeping the nodes I,J ordered.The converse operation needed for (4b) and (4c) is implicit in how the composition predi-cate is used, producing an input from the other input and the output. This illustrates thedeclarative nature of logic programming that naturally supports converses. Intersectionis simply de�ned as list intersection5, while composition is de�ned in terms of pairwisecombining the primitive relations. as de�ned by the predicate comp. As an example wegive the table of CLP facts for composition of primitive qualitative point constraints.comp(le,le,le). comp(le,eq,le).comp(le,ge,le). comp(le,ge,eq). comp(le,ge,ge).comp(eq,le,le). comp(eq,eq,eq). comp(eq,ge,ge).comp(ge,le,le). comp(ge,le,eq). comp(ge,le,ge).comp(ge,eq,ge). comp(ge,ge,ge).The predicate check ctr is implemented by trying the primitive constraints in the dis-junction until one is found for which the assignment of the variables is valid. The check forvalidity is performed by simply using the de�nition of the primitive temporal constraintsas CLP clauses. For example, in the case of point-interval constraints, we havecheck p i c(X,[U,V],before)  X < U < V:check p i c(X,[U,V],after)  U < V < X:check p i c(X,[U,V],during)  U < X < V:check p i c(X,[U,V],starts)  X = U < V:check p i c(X,[U,V],finishes)  U < X = V:Example. Consider the query ctr(X,Y,[le,eq]), ctr(Y,Z,[ge,eq]), ctr(X,Z,[le]).Applying CH rule (4a) to ctr(X,Y,[le,eq]),ctr(Y,Z,[ge,eq]) adds ctr(X,Z,[le,eq,ge]).As the intersection with ctr(X,Z,[le]) in CH rule (3) yields [le] again, only ctr is re-moved, but ctr is kept. Applying CH rule (4b) to ctr(X,Y,[le,eq]), ctr(X,Z,[le])adds ctr(Y,Z,[le,eq,ge]). Again, the corresponding ctr is not in
uenced. ApplyingCH rule (4c) to ctr(X,Z,[le]),ctr(Y,Z,[ge,eq]) adds ctr(X,Y,[le]). This time CHrule (3) simpli�es ctr(X,Y,[le]),ctr(X,Y,[le,eq]) to ctr(X,Y,[le]. The new ctrtriggers application of CH rules (4a) and (4b) again. Once more, only redundant ctr areproduced. No new ctr is added, no new CH rules are triggered and thus a nondeterministicunfolding step initiated. The only callable goal left is ctr(Y,Z,[ge,eq]). It is unfoldedand choose executed resulting in a new constraint ctr(Y,Z,[ge]). The new constrainttriggers two propagations, but again the resulting ctr do not change the correspond-ing ctr. All constraints have singleton relation lists now, thus none is callable and thecomputation terminates with ctr(X,Y,[le]), ctr(Y,Z,[ge]), ctr(X,Z,[le]) . Onbacktracking, choose chooses the other primitive relation eq and in an analogical way,the result ctr(X,Y,[le]), ctr(Y,Z,[eq]), ctr(X,Z,[le]) is produced. No other so-lution exists. Of course, applying the propagation CH rules in a di�erent order (or inparallel) would have avoided the initial redundant computations involving CH rules (4a)and (4b).5For quantitative constraints, a special implementation has to be used12



4.2 FlexibilityIn this subsection we illustrate how CH rules support rapid prototyping and easy modi�-cation. First we consider some optimizations, then modi�cations and specializations.Special Cases. A redundant constraint is one that does not impose any restrictions on therelation between its variables, it is logically equivalent to true. By de�nition, intersectionwith a redundant constraint will just return the other constraint and composition witha redundant constraint will result in another redundant constraint. Therefore we cansafely remove redundant constraints by adding the following simpli�cation CH rule to ourimplementation:ctr(I,J,C) , redundant(C) | true.If two variables are constrained to be equal, we can actually make them equal by usingthe built-in CS for equality (the uni�cation algorithm) of Prolog. Again, this is a logicallysound simpli�cation that does not in
uence the result of the constraint solving, but cansigni�cantly reduce the number of rule applications. The simpli�cation corresponds tomerging the corresponding nodes in the network.ctr(I,J,C) , equality(C),singleton(C) | I=J.Backtracking. Another optimization, which is also used in [LaRe92], deals with thebacktrack search. The idea follows the �rst fail principle in choosing more constrainingprimitive relations �rst. This can be achieved by a modi�cation of the choose predicate.The most constraining primitive relation is equality. For constraints over intervals, rela-tions that equate end-points of intervals are more constraining (e.g. starts, finishes,meets). In quantitative constraints intervals with a smaller length (especially single val-ues) are considered �rst.Depending on the class of network, the interaction between path consistency and backtracksearch can be modi�ed as well. So far, the implementation strictly prefers consistencychecking over backtrack search. By restricting the applicability of the propagation CHrules earlier backtracking can be introduced. In experiments this has proven useful foralmost minimal, inconsistent or under-constrained networks. It su�ces to restrict one ofthe constraints involved in a propagation to be disjunction-free, i.e. to add to the guarda check that the relation list is a singleton. This not only reduces the average size ofthe resulting constraint but also makes composition more e�cient. Though the cost isbounded, it is proportional to the product of the size of the involved constraints. So ifone constraint is primitive, the cost is linear in the size of the other constraint.We can also use backtracking to enhance the quality of propagation. For example it isknown that for so-called convex constraints path consistency produces the minimal net-work. An important class of convex constraints are qualitative point constraints withoutinequality. Thus an inequality [le,ge] is split. The idea then is to split a constraint intoa disjunction of several convex constraints and to backtrack between them. It has alsobeen observed by Reinefeld, that these so-called \pointisable" interval constraints shouldbe preferred.Propagation. Another very e�ective way6 to avoid too much propagation is based on6Our experiments showed a dramatic improvement in almost all cases13



the observation that composition is an associative operation. Thus, given e.g. threeconstraints sharing variables, it does not matter if we �rst propagate from the �rst two,and then use the result to propagate from the third, or if we propagate and the last twoand use the result to propagate from the �rst. Because of associativity of compositionwe can restrict the propagation CH rules to involve at least one direct constraint. Wecan distinguish the two kinds of constraints by introducing an additional argument thatcontains the information.Another optimization avoids direct back-propagation which is always redundant. Thee�ect is as follows: If we propagate from two constraints, the new constraint (if it isnot simpli�ed) may immediately propagate from one of the direct constraints. Clearly theresulting constraint cannot be more speci�c than the corresponding direct constraint. Thisuseless propagation can be avoided by remembering for propagation constraints \wherethey came from", i.e. to keep the third variable that was involved in the propagationand to dissallow any new propagation that involves this variable. This method could bere�ned by remembering the complete path for indirect constraints and avoiding any nodestherein, however the additional space requirement and time needed to inspect the pathsmay outweigh the gain of the extension. On the other hand, a path can also serve as anexplanation how the constraints were indirect.Specialization. If a temporal constraint network consists of only disjunction-free (prim-itive) initial constraints, then we can choose one node as start node k and the preciseindirect constraint between any two nodes i; j can be computed from cki and ckj (by asingle propagation). In the general case this propagation would only result in an approx-imation of the actual constraint. This means that we can restrict the indirect constraintsused during constraint satisfaction to include the start node. Given n nodes, instead of n2indirect constraints, n su�ce, and the number of propagation steps is reduced accordingly.Based on this observation we give an example of specialization to quantitative constraintsover single intervals as considered in [DMP91]. Their notation for ctr(I,J,[A..B]) isA=<I-J=<B. The starting node is speci�ed by the constraint start.constraint start(X). % gives starting nodeconstraint A=<X-Y=<B. % direct constraintconstraint A=<*X-Y=<*B. % indirect constraintstart(X),A=<X-Y=<B ==> A=<*Y=<*B.start(X),A=<Y-X=<B ==> (-B)=<*X-Y=<*(-A).A=<*X-Y=<*B <=> A>=B | false.A=<*X-Y=<*B <=> A=(-inf),B=(+inf) | true.A=<*X-X=<*B <=> A=<0,0=<B.A=<*X-Y=<*B <=> A=0,B=0 | X=Y.A=<*X-Y=<*B,C=<*X-Y=<*D <=> AC is max(A,C),BD is min(B,D) |AC=<*X-Y=<*BD.A=<*X-Y=<*B,C=< Y-Z=< D ==> AC is A+C ,BD is B+D | AC=<*X-Z=<*BD.A=<*X-Y=<*B,C=< Z-Y=< D ==> AC is A-D ,BD is B-C | AC=<*X-Z=<*BD.Finite domains are unary quantitative constraints. They can be modeled by binary con-14



straints whose �rst argument is zero. Because of this, no propagation is necessary. Thetreatment of equality is di�erent. We use the notation I::C of CHIP [D*88] instead ofctr(0,I,C). The choice for backtrack search is modi�ed. Instead of choosing a primitiveconstraint, a value from the quantitative constraint is chosen.% Constraint Declaration and Definition constraint I::C.callable I::C if not singleton(C).I::C  choose(B,C), I::B.% Special CasesI::C , C=[] | false.I::C , C=[J],single value(J) | I=J.I::C , redundant(C) | true.% IntersectionI::C1,I::C2 , intersection(C1,C2,C3) | I::C3.Modi�cation. Finally, a modi�cation of the path consistency algorithm to computethe shortest paths between any pair of nodes is presented next. Instead of a disjunctiveconstraint, the third argument contains the cost.constraint path(I,J,C).path(I,J,C1),path(I,J,C2) , minimum(C1,C2,C3) | path(I,J,C3).path(I,K,C1),path(K,J,C2) ) I<J,add(C1,C2,C3) | path(I,J,C3).path(K,I,C1),path(K,J,C2) ) I<J,add(C1,C3,C2) | path(I,J,C3).path(I,K,C1),path(J,K,C2) ) I<J,add(C3,C2,C1) | path(I,J,C3).5 ConclusionsRegarding temporal reasoning as constraint satisfaction problem, we have illustrated thatconstraint logic programming extended with constraint handling rules provided for� a level of abstraction suited for integration of di�erent representations� an incremental path consistency algorithm� backtracking search through integration with logic programming� preservation of declarative semantics of logic programming� 
exibility supporting rapid prototyping and ease of modi�cationA class of modi�cations we have not considered so far is to take the topology of theconstraint graph into account. For example, a tree as temporal constraint network isalways path consistent and minimal. We are also looking at extension to take durationsof intervals into account [All83].While our approach cannot match the speed of hard-coded constraint solvers, we thinkit is still suitable for sparse heterogeneous networks as they are likely appear in real-life(scheduling). If necessary, a constraint solver de�ned by CH rules once fully tested andfound correct, can always be rewritten in a low-level language to improve e�ciency. Weare experimenting with compilation of CH rules into the host language.15



A constraint solver de�ned by con
uent CH rules can run concurrently if the underlyingCHE executes the applications of CH rules concurrently. This is a topic of on-going re-search. Future work will look at applications of temporal constraint logic programmingin planning, scheduling and temporal deductive databases.Acknowledgements: Thanks to Alex, Carmen, Mark, Pascal, Sury and Thierry fordiscussions and comments on the work presented in this paper.
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icting ordering of variables in the arguments.This variant proved to be faster than the one introduced in the paper. Also various specialcases as discussed in the main body of the paper are taken into account.% Constraint Definitionconstraint ctr(X,Y,Rels,Type).constraint ctr(RelsSize,X,Y,Rels,Type,PathL).callable ctr(N,X,Y,L,T,I) if N>1.ctr(N,X,Y,L,T,I)  member(R,L),ctr(1,X,Y,[R],T,I).% Initializectr(X,Y,L,T) , length(L,N) | ctr(N,X,Y,L,T,1).% Special casesctr(N,X,Y,L,T,I) , empty(N,L,T) | false.ctr(N,X,Y,L,T,I) , redundant(N,L,T) | true.ctr(N,X,Y,L,T,I) , X=Y | contains equality(L,T).ctr(N,X,Y,L,T,I) , singleton(N,L),equality(L,T) | X=Y.% Intersectionctr(N1,X,Y,L1,U-V,I),ctr(N2,X,Y,L2,U-V,J) ,inter(L1,L2,L3,U-V),length(L3,N3), K is min(I,J) | ctr(N3,X,Y,L3,U-V,K).ctr(N1,Y,X,L1,U-V,I),ctr(N2,X,Y,L,V-U,J) ,equality([Eq],V-V),comp(L,L2,[Eq],V-U-V), inter(L1,L2,L3,U-V),length(L3,N3),K is min(I,J) | ctr(N3,Y,X,L3,U-V,K).18



% Compositionctr(N1,X,Y,L1,U-V,I),ctr(N2,Y,Z,L2,V-W,J) ) J=1,comp(L1,L2,L3,U-V-W),length(L3,M), K is I+J | ctr(M,X,Z,L3,U-W,K).ctr(N1,X,Y,L1,U-V,I),ctr(N2,X,Z,L3,U-W,J) ) J=1,comp(L1,L2,L3,U-V-W),length(L2,M), K is I+J | ctr(M,Y,Z,L2,V-W,K).ctr(N1,X,Y,L3,U-V,I),ctr(N2,Z,Y,L2,W-V,J) ) J=1,comp(L1,L2,L3,U-W-V),length(L1,M), K is I+J | ctr(M,X,Z,L1,U-W,K).Appendix II - ExamplesThe examples are taken from actual runs of the program in appendix 1. sirs onlymeansthat only the CH rules are run (to approximate the minimal network by path consistency),but no choices are made. This execution mode is supported by the underlying CHE. It isshown how many single and multi-headed propagation and simpli�cation CH rules have�red. In the types, p (i) stands for points (intervals).Example for Points. Instead of <;=; > (a..b) the notation le,eq,ge (a-b) is used. sirs onlyctr(X,Y,[le,eq],p-p),ctr(Y,Z,[eq],p-p),ctr(X,Z,[le],p-p).PropS/PropM/SimpS/SimpM = 3 / 0 / 1 / 1YES Z = Y,ctr(1, X, Y, [le], p-p, 1). sirs onlyctr(X,Y,[0-0,1-2,4-5],p-p),ctr(Y,Z,[0-0,3-4],p-p),ctr(X,Z,[1-1],p-p).PropS/PropM/SimpS/SimpM = 3 / 2 / 1 / 3YES Z = Y,ctr(1, X, Y, [1-1], p-p). sirs onlyctr(X,Y,[eq,le],p-p),ctr(Y,Z,[le],p-p),ctr(Z,W,[1-1,3-7],p-p),ctr(Y,W,[0-3],p-p).PropS/PropM/SimpS/SimpM = 4 / 25 / 5 / 18YES ,ctr(1, X, W, [1-1], p-p, 2),ctr(1, X, Y, [0-1], p-p, 1),ctr(1, X, Z, [sup-1], p-p, 2), 19



ctr(1, Y, W, [1-3], p-p, 1),ctr(1, Z, Y, [-2--sup], p-p, 1),ctr(2, Z, W, [1-1, 3-3], p-p, 1).Example for Intervals. This example illustrates that path consistency does not neces-sarily compute the minimal network. sirs onlyPT=i-i,L1=[during,contains,overlaps,overlapped by, meets,finishes,finished by],L2=[equals,before,contains,overlaps,starts, started by,finished by],L3=[before,during,overlaps,finishes,finished by],L4=[before,during,overlaps,starts],ctr(D,A,L1,PT), ctr(B,A,L1,PT),ctr(B,C,L1,PT), ctr(A,C,L2,PT),ctr(D,B,L3,PT), ctr(D,C,L4,PT). PropS/PropM/SimpS/SimpM = 6 / 20 / 14 / 6No change.First solution.PropS/PropM/SimpS/SimpM = 6 / 87 / 41 / 46ctr(1, A, C, [contains], i-i, 1),ctr(1, B, A, [during], i-i, 1),ctr(1, B, C, [during], i-i, 1),ctr(1, D, A, [during], i-i, 1),ctr(1, D, B, [before], i-i, 1),ctr(1, D, C, [before], i-i, 1).Add ctr(B,A,[meets],PT), CH rules onlyPropS/PropM/SimpS/SimpM = 7 / 15 / 2 / 10false.Example Point-Intervals. The last example uses all types of temporal constraints in-troduced in this paper. sirs onlyctr(X,Y,[before,starts],p-i),ctr(X,Z,[starts,during],p-i),ctr(Y,Z,[before,contains,after],i-i).PropS/PropM/SimpS/SimpM = 3 / 7 / 3 / 4YES ,ctr(1,X,Y,[before],p-i,1),ctr(1,Z,Y,[before],i-i,1),ctr(2,X,Z,[starts,during],p-i,1). sirs only 20



ctr(V,U,[0-1,3-4],p-p),ctr(U,Y,[before,starts],p-i),ctr(Z,V,[contains,started by],i-p),ctr(Y,Z,[before,contains],i-i).PropS/PropM/SimpS/SimpM = 4 / 4 / 1 / 1false.
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