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Abstract

This paper describes an application of constraint handling rules to temporal reasoning
and illustrates the conceptual simplicity and flexibility of the approach. Following the
framework of Meiri, temporal reasoning is viewed as a constraint satisfaction problem
about location of temporal variables along the time line. Temporal variables may be
points or intervals and temporal constraints are disjunctions of qualitative or quantita-
tive primitive binary temporal relations. We use constraint logic programming extended
with constraint handling rules to define an incremental, flexible general purpose solver for
disjunctive binary constraints based on path consistency and backtrack search. We show
how this approach supports rapid prototyping and experimentation with different kinds
of temporal reasoning and constraint satisfaction techniques in general.
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1 Introduction

We have implemented a range of constraint solvers in a constraint logic programming
language extended with constraint handling rules! and believe that our approach forms
an ideal basis for prototyping and implementing new constraints and constraint solvers.
The purpose of this paper is to show how our approach is beneficial for understanding and
developing temporal reasoning and constraint consistency techniques.

Constraint logic programming (CLP) [Jal.a87, Sar89, Coh90, VHI1] combines the advan-
tages of logic programming and constraint solving. In logic programming, problems are
stated in a declarative way using rules to define relations (predicates). Problems are
solved by the built-in logic programming engine (LPE) using nondeterministic backtrack
search. In constraint solving, efficient special-purpose algorithms are used to solve prob-
lems involving distinguished relations referred to as constraints. In current constraint logic
programming languages, constraint solving is usually hard-wired in a built-in constraint
solver (CS). Hard-coding guarantees maximum efficiency for the given set of constraints.
However it has the serious drawback that it is hard to extend and specialize the built-in
CS, combine it with other CS’s and build a CS over a new domain.

Constraint handling rules (CH rules) [Fru92] are a language extension providing the application-
programmer (user) with a declarative and flexible means to introduce user-defined con-
straints (in addition to built-in constraints of the underlying language). CH rules define
stmplification of and propagation over user-defined constraints. Simplification replaces con-
straints by simpler constraints while preserving logical equivalence. Propagation adds new
constraints which are logically redundant (but may cause further simplification). When
repeatedly applied by a CH rule engine (CHE) the constraints may become solved and the
resulting functionality is then that of a user-defined constraint solver.

YA compiler for CH rules including the constraint solver described here is available as a library of
ECLiPSe, ECRC’s constraint logic programming platform.



User-defined constraint control is a very active area of research. CHIP was the first
constraint logic programming language to introduce the necessary constructs. These con-
structs have been called “demon constructs” [D*88] because of their event-driven activa-
tion whenever new information is available. These various constructs have been general-
ized into CH rules. CH rules are essentially multi-headed guarded rules and as such have
their roots in concurrent logic programming languages [Sha89] and can be related to the
Swedish branch of the Andorra family [HaJa90] and Saraswats cc-framework of concurrent
constraint programming [Sar89]. However these general purpose programming languages
lack features essential to define non-trivial constraint evaluation, namely multi-headed
guarded rules and and a way to define constraint propagation by rules, while CH rules
form a special purpose language extension for user-defined constraint solvers.

In our approach, constraints are seen as a computationally efficient incarnation of the pred-
icates defined in the underlying host language, as such CH rules have a logical reading and
thus preserve the declarative semantics of the underlying logic programming language they
extend. This view that provides a tight and sound integration of the host language with
user-defined constraint solvers and also motivates the work of Smolka on Guarded Rules
[Smo91]. The representation of constraint solving in the same formalism as the rest of the
program greatly facilitates the prototyping, extension, specialization and combination of
constraint solvers as well as reasoning about correctness, termination and confluence of a
set of CH rules.

2 Preliminaries

In this section we introduce the framework of Meiri [Mei91]. It integrates many forms of
temporal relations - qualitative and quantitative (metric) over time points and intervals
- by considering them as disjunctive binary constraints. We give the primitive relations
for various forms of temporal constraints. We also describe how different constraints
relate to each other - so we are able to reason over heterogeneous constraint networks.
Temporal reasoning tasks are formulated as constraint satisfaction problems, and are
solved by traditional constraint satisfaction techniques, namely backtrack search and path
consistency.

2.1 Temporal Constraints

A disjunctive binary constraint c,, between two variables X and Y, also written X {ry,...7r,} Y,
is a disjunction (X r Y)V ...V (X r, Y), where each r; is a relation that is applicable

to X and Y. The r; are also called primitive constraints. The converse of a primitive
constraint r between X and Y is the primitive constraint s that holds between Y and

X as a consequence. For simplicity, unary (domain) constraints are modeled as binary
constraints where one variable is fixed. Disjunctive binary constraints allow us to model
various forms of temporal constraints. A {<} B, A {<,>} B, A {<,=,>} B are disjunc-

tive binary constraints cap between A and B. A {<,>} B is the same as A # B.

Qualitative Point Constraints [ViKa86]. Variables represent time points and there are
three primitive constraints <, =,>. < is the converse of > and equality is the converse of



itself.

Quantitative Point Constraints [DMP91]. The primitive constraints restrict the dis-
tance of two time points X and Y to be in an interval a..b, i.e. a < (Y — X) < b
Note that there is an infinite number of constraints. From the meaning it follows that the
converse of an interval a..b is (=b)..(—a). The interval 0..0 corresponds to equality.

Relating Point Constraints [Kala9l]. Qualitative can be mapped into quantitative
point constraints, quantitative constraints can only be approximated by qualitative con-
straints. These mappings are used to solve heterogeneous constraints over the same vari-
ables. Let QUANT (QUAL) be a quantitative (qualitative) temporal constraint.

Ifa.be QUANT, a <0 <bthen eqe QUAL.

Ifa.b e QUANT,  a <0 then ge € QUAL.

Ifa.b € QUANT,b > 0 then 1le € QUAL.
and conversely

If eq € QUAL then 0..0 € QUANT.

If ge € QUAL then (—0)..0 € QUANT.

If 1e € QUAL then 0..c00 € QUANT.

Interval Constraints [All83]. There are 13 primitive constraints possible between two
intervals, equality and 6 other relations with their converses. These constraints can be
defined in terms of the end-points of the intervals. Let I=[X, Y], J=[U, V].

Iequals JUHX=U<Y =V I before JUH X <Y <U < V.
I during JIf U< X <Y < V. I overlaps Jif X <U <Y < V.
Imeets JiIf X <Y =U<V. Istarts JIf X =U<Y < V.

I finishes JiIf U< X <Y =V
Converses are equals,after,contains,overlapped by,started by,finished by.

Relating Point and Interval Constraints [Kala9l]. Points can be represented by
end-points of intervals. Interval constraints can be approximated by constraints on their
endpoints. Given two points X, Y. Let I=[X, A], J=[Y, B] be intervals.

If X>Y then I {during,finishes,overlapped by,met by,after} J.

If X=Y then I {equals,starts,started by} J.

If X<Y then I {before,meets,finished_by,contains,overlaps} J.
Given two intervals [=[X, Y], J=[U,V]. The approximation is computed by translating
the disjunctive interval constraints into disjunctions of their definitions in terms of their
end-points. The disjunction is then approximated by a conjunction of point inequalities.
E.g., I {equals,before} J=(X=U<Y =V)V( X <Y <U<V)r (X <Y <
VU £ Y, X < U < V). With T {before,after} J =~ (X < Y,U < V) we loose all

information between I, .J.

Point - Interval Constraints [Mei9l]. There are 5 possible primitive constraints be-
tween a point and an interval. Note that there cannot be equality. Again, the primitive
constraints can be defined in terms of the end-points of the interval. Let X be a point,
J=[U, V] an interval.

X before Jif X < U < V.

X after JifU <V < X. X during JUH U < X < V.

X starts Jf X =U < V. X finishes Jif U< X =V.
The converses express interval-point constraints. Translations to intervals and points are

?For simplicity of presentation we do not distingnish between open and closed intervals.



possible analogous to the point-interval translations shown before.

2.2 Constraint Satisfaction

A binary constraint network consists of a set of variables and a set of binary constraints
between them. The network can be represented by a directed constraint graph, where the
nodes denote variables and the arcs are labeled by binary constraints.

A solution of a constraint network is an assignment of values to the variables that satisfies
all the constraints. Such an assignment is called valid. A constraint network is consistent
if there exists a solution. A constraint network is minimal if each primitive constraint is
satisfied in a solution of the network; i.e. there are no primitive constraints that do not
participate in at least one solution. Interesting problems (typically NP-hard) are therefore
to

e determine consistency

e compute the minimal network

e compute one, all or “best” solution(s)

o check validity of an assignment

For the special case of disjunctive binary constraint networks and temporal constraints
in particular we are not so much interested in a particular assignment for temporal vari-
ables, but in choosing primitive constraints from the disjunctions such that the resulting
disjunction-free binary network is consistent. As there is a clear analogy between choos-
ing values for a variable and primitive constraints between two variables, we will use the
established terminology further on.

In the following we will solve the above mentioned constraint satisfaction problems except
optimization (“best” solution) by a single algorithm that combines backtrack search and
path consistency [LaRe92].

Backtrack search. Backtrack search can be used to compute solutions, but has expo-
nential complexity in the number of choices. Search will be therefore more efficient if
we minimize the number of potential choices by computing the minimal network before
making a choice. The overall idea is to interleave computing the minimal network and
making a single choice.
Algorithm to compute one or more solutions of a given network
Compute minimal network
If inconsistent then fail
repeat
Take a new pair of nodes with its disjunctive constraint
Choose a primitive constraint from the disjunction
If no more choice then backtrack
Compute minimal network
If inconsistent then backtrack
until success or failure
If success and more solutions wanted then backtrack.

Path consistency. Unfortunately, in general it is as hard to find the minimal network
as to compute solutions by backtrack search. The good news however is that it is possible



to compute an approximation of the minimal network (one that is “almost” minimal with
some superfluous primitive constraints) in polynomial time by applying local consistency
techniques. The basic idea is to split the problem into overlapping subproblems of bounded
size, solve them, and to repeat computation over all possible subproblems until a fixpoint is
reached. The following operations on disjunctive binary constraints (considered as a set of
primitive constraints) will come in handy for computing path consistency. The operations
are mostly defined using the corresponding operations on the primitive constraints. All
binary operations are associative.

Converse. The converse primitive constraint of r; is written Or;.
ocji=1{r,...r,y J=J{cr,...o i l=J0{s,...su} [ = ¢c;i. (ifsr=s).
Note that © & r;= r;.

Union. By definition of disjunctive binary constraints:

ciWe =1 {ry,...rpy J VI{si, .80} J=1{ri,...ra} U{s1,...5m}) J.

Intersection. If the primitive constraints are pairwise disjoint?:

cij b i=1 {ri,ccorm b I N sty o8t =T Hra,ooorn b 0 {s1, 0080 ) .
Otherwise intersection can be based on pairwise intersection of primitive constraints:

cij @ i=1{ry,...rop J N {s1,...80} J=1{r@s|rdsexists,r € {r,...r,},s €
{s1,...8m}} J, where r @& s denotes the relation defined by r(X,Y) A s(X,Y).

Composition. Based on pairwise composition of primitive constraints:
r @ cp =1 Ar,coorny K ANK {sy,.o.8nt S =1T{r@s | r e {r,...ru},s €
{s1,...8m}} J = ¢ij, where r @ s is the relation between X and Z in r(X,Y) A s(Y, Z).

Note that composition is not necessarily commutative.

Path consistency can be used to approximate the minimal network. A network is path
consistent! if for pairs of nodes (¢,j) and all paths i —i; —iy...7, — j between them,
the direct constraint ¢;; is tighter than the indirect constraint along the path, i.e. the
composition of constraints ¢;;, @...¢;,; along the path. A disjunctive constraint is tighter
if it has less disjuncts. It follows from the definition of path consistency that we can
intersect the direct and indirect constraint to arrive a tighter direct constraint. If the
graph underlying the network is complete it suffices to repeatedly compute paths of length
2 at most. A graph is complete if there is an edge or a pair of arcs, one in each direction,
between every pair of nodes. This means for each triple of nodes (i, k, j) we repeatedly
compute ¢;; = ¢;; @ ¢ @ cg; until a fixpoint is reached. The complexity of such an
algorithm is O(n?), where n is the number of nodes in the network [MaFr85].

For example, given [{<,=} K AN K{<,=}J A I{=,>}J, and taking the triple (i, 7, k), then
¢k @ ¢ results in [{<,=}.J, the result of intersecting with ¢;; is I{=}J. From (j,4, k)
we get J{=}K (we compute ¢;; as the converse of ¢;;). From (k,j,i) we get K{=}1.
Another round of computation causes no more change, so the fixpoint is reached with

J{=}K, K{=}1 (which is also minimal).

One path consistency algorithm was given by [All83]. for use with his temporal interval
constraints. A queue of arcs whose constraint got tighter is used to keep track of the
triangles that have to be reconsidered.

3Holds for temporal constraints except quantitative constraints.
*We can ignore unary constraints in the definition, since we have modeled them as binary constraints.



Q= {(i,j) | i < nj<n}
while @ # {} do
delete a tuple (¢, 7) from Q
for each node k do
Temp :=ciy D c;; O cj
if Temp = {} then inconsistent
if ¢;1. # Temp then
Q:=0 U {(lvk)}
cir = Temp
Temp 1= cp; D g @ ¢
if Temp = {} then inconsistent
if ¢; # Temp then
Q=Q U {(k)}
ck; = Temp
endfor
endwhile

Another classical algorithm named PC-2 was given by [Mac77]. It is an optimization based
on the idea that if needed, ¢;; can be computed as the converse of ¢;;, which saves half of
the computation, and that ¢;; can only be equality. The queue this time keeps track of all
node triples that have to be reconsidered.
Q= {(lvkvj) | 1< J, i Fkk %]}
while @ # {} do
delete a triplet (¢, k,7) from Q
Temp :=c;; O cip O ck;j
if Temp = {} then inconsistent
if ¢;; # T'emp then
Q:=QUAFFECTED((i,j,k))
cij = 1'emp
endwhile
where AFFECTED((¢,7,k)) := {(u,v,w) | v < w,u # v,0 # w} N ({(e,5,m) | m €
NYU{(G,iym) [ m € NYU{(m,i,§) | m € NYU{(m, i) | m € N}).

3 CLP+CH Languages

3.1 Syntax

A CLP+CH program is a finite set of clauses from the CLP language and from the
language of CH rules. Clauses are built from atoms of the form p(ty,...t,) where p is a
predicate symbol of arity n (n > 0) and t1,...1, is a n-tuple of terms. A term is a variable,
e.g. X, or of the form f(t1,...t,) where f is a function symbol of arity n (n > 0) applied
to a n-tuple of terms. Function symbols of arity 0 are also called constants. In this
paper, predicate and function symbols start with lowercase letters while variables start
with uppercase letters. Infix notation may be used for specific predicate symbols (e.g.
X =Y) and functions symbols (e.g. —X +Y). There are two classes of distinguished
atoms, called built-in constraint atoms and user-defined constraint atoms. For short, we



will say constraint instead of constraint atom.

A CLP clause is of the form

H < By,...B,. (n>0)
where the head H is an atom but not a built-in constraint, the body By, ... B, is a con-
junction of atoms called goals. The empty body (n = 0) of a CLP clause may be denoted
by the constraint true, which is always satisfied. false is the constraint representing
inconsistency. A CLP clause with an empty body is called fact, any other clause rule. A
query is a CLP clause without head.

CH rules are essentially multi-headed guarded rules forming a committed-choice (sub)language.
There are two kinds of CH rules and a declaration (to be explained later).

Simplification CH rules are of the form
Hl,...Hi = Gl,...G]‘ | Bl,...Bk,

Propagation CH rules are of the form

Hl,...HZ':> Gl,...G]‘ | Bl,...Bk,

Call declarations for a user-defined constraint H are of the form

callable H if Gy,...Gj,
where (¢ > 0,7 > 0,k > 0) and the multi-head Hi,... H; is a conjunction of user-defined
constraints, the guard G,...G; is a conjunction of atoms which neither are, nor depend
on, user-defined constraints, and the body Bjy,... By is a conjunction of atoms.

Given a clause ('L and an atom A, we say that C'L is a clause of A if the head of C'L
contains an atom with the same predicate symbol p as A. We say that the predicate p is
defined by all its clauses. Note that predicates are defined by CLP clauses and user-defined
constraints by CH rules and CLP clauses.

3.2 Declarative Semantics

Declaratively, CLP languages are interpreted as formulas in first order logic. A CLP+CH
program P is a conjunction of universally quantified clauses. A CLP clause is an implica-
tion

H— By N...B,.

The meaning of a CH rule is dependent on its guard. A simplification CH rule is a logical
equivalence between head and body

(Cl/\...C]‘) — (Al/\AZ HBl/\Bk)
A propagation CH rule is an implication from the head to the body

(Cl/\...C]‘) — (Al/\AZ—>Bl/\Bk)

Call declarations have no declarative reading and do not change the declarative semantics.
Extending a CLP language with CH rules preserves its declarative semantics, as correct
CH rules are logically redundant with regard to the underlying CLP program. CH rules
are not supposed to change the meaning of a program, but the way it is executed.



3.3 Operational Semantics

The operational semantics of CLP4+CH can be described by a transition system. In the
following we do not distinguish between sets and conjunctions of atoms. A constraint store
represents a set of constraints. Let Cpy and Cp be two constraint stores for user-defined
and built-in constraints respectively. Let Gis be a set of goals. A computation state is a
tuple

< Gs,Cy,Cp >.
The initial state consists of a query (s and empty constraint stores,

< Gs, {},{} >

A final state is either successful (no goals left to solve),
< {}7 CU7 CB >,

or failed (due to an inconsistent constraint store),
< Gs,false,(Cp > or < (Gs,(Cy,false >.

The union of the constraint stores in a successful final state is called conditional answer
for the query G's, written answer(Gs).

The built-in CS works on built-in constraints in C'g and Gs, the user-defined CS on user-
defined constraints in Cpy and G's using CH rules and the LPE on goals in Gs and Cpy
using CLP clauses.

The following computation steps are possible to get from one computation state to the
next
Solve - Built-In CS
< {C} UGs,Cy,Cg > — < GS,CU,C/B >
if (CANCg)« Ch
Simplify - CHE with simplification CH rules
<H UGs,H'UCy,Cg > — <GsUB,Cy,Cg >
if(H& G| B)e P, (Cg— H=(H UH")Aanswer(())
Propagate - CHE with propagation CH rules
<HUGs, H'UCy,Cg > — <GsUB, HUH"UCy,Cg >
if(H= G| B)e P, (Cg — H=(H UH")Aanswer(())
Nondeterministic Unfold - LPE with CLP clause
<{H'}UGs,Cy,Cg> — <GsUB,Cy,{H=H'} U Cg>
if (H«— B) € P and H is not a user-defined constraint
< GS,{H’}UCU,CB > = < GSUB,CU,{H: H’} U Cp >
if (H— B) € P(H+ B),(callable H" if G) € PN (Cg — {H' = H"} Nanswer(())

During computation either the built-in CS updates the constraint store BC if a new
constraint was found in G, or the user-defined CS simplifies and propagates from user-
defined constraints in UC if a new user-defined constraint was found in G or the built-in
constraint store had been updated, or the LPE unfolds non-constraint goals in G and
callable user-defined constraints in UC. Constraint solving has priority over goal unfolding,
and built-in constraint solving over user-defined constraint solving.

CS. A CS is a determinate and incremental procedure that updates a persistent constraint
store. To update the constraint store means to produce a new constraint store that is
logically equivalent to the conjunction of the new constraint and the old constraint store.
Determinate means that exactly one new constraint store is produced (even if there is a



don’t care choice between equivalent stores).

CHE . Similarly to a CS, the CHE is a determinate and incremental procedure with a
persistent constraint store. There is don’t care indeterminism in choosing a CH rule to
apply, but if application is possible, the CHE commits to the choice. To simplify user-
defined constraints Cy means to replace it by B if Cy match the head H of a simplification
CHrule H & G | B and G is satisfied. To propagate from user-defined constraint Cy
means to add B if Cpy match the head H of a propagation CHrule H = G | B and G
is satisfied. A guard G is satisfied if its execution does not involve user-defined constraints
and results in a successful local computation state where the local built-in constraints are
entailed by the global built-in constraint store. According to the ask and tell language
framework of (Saraswat 1989) we may also say that we ask if C holds in the current
constraint store, while posing a constraint means to tell ( add) it to the constraint store.

LPE. The LPE is a indeterminate procedure with a persistent goal store.To unfold a
goal (s means to looks for a clause H< B with a head with the same predicate symbol
as (s, to replace the Gs by (G'= H), B. As there are usually several clauses for a goal,
unfolding is nondeterministic and thus a goal can be solved in different ways. Chronological
backtracking over clause choices is used in the LPE to search (depth first) for successful
computations. A user-defined constraint goal H is callable if there is a call declaration

H 1f G and no CH rule applies and G is satisfied.

3.4 Example

In the following we illustrate the behavior of Prolog extended with CH rules with an
example that defines an inequality constraint.

% Constraint Declaration

(1a) constraint X<Y.

(1b) callable X<Y if ground(X).
(1b) callable X<Y if ground(Y).

% Constraint Definition

(2a) X<Y « leq(X,Y).

(2b) leq(0,Y).

(2¢) leq(s(X),s(¥)) + leq(X,Y).

% Constraint Handling

(3a) XY & X=Y | true. ¥ reflexivity
(3b) X<Y,¥<X & X=Y. % identity

(3c) X<Y,Y<Z = X<Z. % transitivity

In clause (2a), < is defined by a predicate 1eq which is defined by the two CLP clauses
(2b) and (2¢). The CH rules of (3) specify how < simplifies and propagates as a constraint.
CH rule (3a) states that X<X is logically true. Hence, whenever we see the goal X<X we
can simplify it to true. Similarly, CH rule (3b) means that if we find X<Y as well as X<Y
in the current goal, we can replace it by the logically equivalent X=Y. CH rule (3a) detects
satisfiability of a constraint, and CH rule (3b) solves a conjunction of constraints returning
a substitution. CH rule (3c) states that the conjunction X<Y,Y<Z implies X<Z. The call



declaration (1) states that we may call X<Y as a predicate if both X and Y are bound.

— X<y, X=Y.
% by CH rule 3a
true.

— X<y, Y<X.
% by CH rule 3b
X=Y.

— A<B,C<A,B<C.

% C<A,A<B propagates C<B by 3c.

% C<B,B<C simplifies to B=C by 3b.

% B<A,A<B simplifies to A=B by 3b.
A=B,B=C.

— s(s(0))<A,A<s(s(s(0))).
h s(s(0))<A,A<s(s(s(0))) propagates s(s(0))<s(s(s(0))) by 3c.
% s(s8(0))<s(s(s(0))) is callable and succeeds.
% s(s(0))<A is callable and succeeds with A=s(s(X)).
% A<s(s(s(0))) is callable and succeeds with X=0.
A=s(s(0)).
% 0On backtracking A<s(s(s(0))) succeeds with X=s(0).
A=s(s(s(0))).
% On backtracking A<s(s(s(0))) fails.
false.

4 Temporal Reasoning in CLP+CH

We use Prolog4+CH to define a constraint satisfaction algorithm for complete disjunctive
binary constraint networks. Prolog provides for backtracking, while CH rules are used to
implement path consistency at a high level of abstraction.

4.1 Incremental Constraint Satisfaction

Let the constraint ¢;; be represented by the predicate ctr(I,J,C) where C is the list
of primitive relations forming the disjunctive constraint. The basic operation of path
consistency is ¢;; := ¢;; P ¢, @ ¢xj, which can be implemented by one CH rule performing
the composition yielding an indirect constraint newc and another CH rule performing the
intersection.

ctr(I,K,C1),ctr(K,J,C2) = composition(C1,C2,C3) | newc(I,J,C3).
newc(I,J,C1),ctr(I,J,C2) & intersection(C1,C2,C3) | ctr(I,J,C3).

We will see later on that the splitting into the two operations offers a high degree of
flexibility. It separates the propagation step (first CH rule) and the simplification step
(second CH rule). Furthermore, this formulation supports fine-grained concurrency in

10



that the second rule need not be executed directly after producing newc(I,J,C3). Indeed,
in the meantime the “old” ctr(I,J,C2) may be used by the first CH rule to produce a
newc for another pair of nodes. Termination is guaranteed because the simplification CH
rule replaces C2 of ctr by the result C3 of intersecting it with C1 of newc. C3is thus either
smaller or the same as C2. There is only a bounded number of times C2 can get smaller.
The latter case also poses no problem, as the implementation of CH rules will not add a
new constraint but keep the old one in case of identity. Finally, propagation CH rules are
never repeated for the same constraint goals.

A simple modification suffices to arrive at a incremental algorithm for incomplete networks.
By incremental we mean that with every new constraint that arrives, the algorithm does
the same amount of path consistency as in the complete(d) network where missing con-
straints are modeled as redundant constraints. Above, the intersection in CH rule (3)
cannot be performed, because the ctr is missing. Furthermore, subsequent propagations
from the resulting ctr are inhibited. The solution is to safely approximate the ctr as
the redundant constraint, and thus the resulting new ctr would be identical to newc. So
we can replace newc by ctr in the above implementation. If the simplification step is
performed (sufficiently often) before a propagation step, then termination is guaranteed.

Algorithm. The complete algorithm below takes the optimizations of PC-2 [Mac77] into
account. The optimization is based on the idea that if needed, ¢;; can be computed as
the converse of ¢;;, which saves about half of the computation, and that ¢;; can only be
equality. Note that unlike PC-2, there is no need for a queue of modified constraints, as
the new constraint goal itself will trigger new applications of the propagation CH rule.

% Constraint Declaration and Definition

(1a) comstraint ctr(I,J,C).

(1b) callable ctr(I,J,C) if not singleton(C).
(1c) ctr(I,J,C) < choose(B,C),ctr(I,J,B).

% Special Cases

(2a) ctr(I,J,C) & bound(I),bound(J) | check ctr(I,J,K).
(2b) ctr(I,J,C) & empty(C) | false.

(2¢) ctr(I,I,C) & contains_equality(C).

% Intersection
(3) ctr(1,J,C1),ctr(I,J,C2) & intersection(C1,C2,C3) | ctr(I,J,C3).

% Composition

(4a) ctr(I,K,C1),ctr(X,J,C2) = I<J,composition(C1,C2,C3) | ctr(I,J,C3).
(4b) ctr(X,I,C1l),ctr(X,J,C2) = I<J,composition(C1,C3,C2) | ctr(I,J,C3).
(4¢) ctr(I,K,C1l),ctr(J,K,C2) = I<J,composition(C3,C2,C1) | ctr(I,J,C3).

The predicate ctr(I,J,C) is declared as a constraint (la) and may be called if C rep-
resents a disjunction of primitive relations (1b). If the corresponding Prolog clause is
executed (1c), the predicate choose(B,C) nondeterministically chooses one primitive con-
straint B from the disjunctive constraint C. This implements the backtrack search part of
the algorithm. Special cases are simplification CH rules - (2a) that checks the validity
of an assignment to variables, (2b) that detects inconsistent constraints and (2c) that
removes constraints between the same nodes. The predicates empty and singleton are
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simply defined as the corresponding list operations, while contains equality depends
on a predicate equality that gives the right kind of equality relation depending on the
type of primitive relations in the list. Simplification CH rule (3) performs the intersection,
propagation CH rules (4) the composition. Three CH rules are needed to cover all possible
combinations of constraints while keeping the nodes I,J ordered.

The converse operation needed for (4b) and (4c) is implicit in how the composition predi-
cate is used, producing an input from the other input and the output. This illustrates the
declarative nature of logic programming that naturally supports converses. Intersection
is simply defined as list intersection®, while composition is defined in terms of pairwise
combining the primitive relations. as defined by the predicate comp. As an example we
give the table of CLP facts for composition of primitive qualitative point constraints.

comp(le,le,le). comp(le,eq,le).
comp(le,ge,le). comp(le,ge,eq). comp(le,ge,ge).
comp(eq,le,le). comp(eq,eq,eq). comp(eq,ge,ge).
comp(ge,le,le). comp(ge,le,eq). comp(ge,le,ge).
comp(ge,eq,ge). comp(ge,ge,ge).

The predicate check ctr is implemented by trying the primitive constraints in the dis-
junction until one is found for which the assignment of the variables is valid. The check for
validity is performed by simply using the definition of the primitive temporal constraints
as CLP clauses. For example, in the case of point-interval constraints, we have

check p i c(X,[U,V],before) « X <U < V.
check p.i c(X,[U,V],after) « U<V < X.
checkp_i_c(X,[U,V],during) + U< X < V.
check p.i c(X,[U,V],starts) « X =U<V.
check p_i c(X,[U,V],finishes) «+ U< X =V.

Example. Consider the query ctr(X,Y, [le,eql), ctr(Y,Z, [ge,eql), ctr(X,Z,[1el).
Applying CH rule (4a) to ctr(X,Y, [le,eql) ,ctr(Y,Z, [ge,eql) adds ctr(X,Z, [1e,eq,gel).
As the intersection with ctr(X,Z, [1e]l) in CH rule (3) yields [1e] again, only ctr is re-
moved, but ctr is kept. Applying CH rule (4b) to ctr(X,Y,[1le,eql), ctr(X,Z,[1e])
adds ctr(Y,Z,[le,eq,gel). Again, the corresponding ctr is not influenced. Applying
CH rule (4¢) to ctr(X,Z, [1el),ctr(Y,Z, [ge,eql) adds ctr(X,Y, [1el). This time CH
rule (3) simplifies ctr(X,Y,[1e]l),ctr(X,Y,[le,eql) to ctr(X,Y,[le]l. The new ctr
triggers application of CH rules (4a) and (4b) again. Once more, only redundant ctr are
produced. No new ctris added, no new CH rules are triggered and thus a nondeterministic
unfolding step initiated. The only callable goal left is ctr(Y,Z, [ge,eql). It is unfolded
and choose executed resulting in a new constraint ctr(Y,Z, [gel). The new constraint
triggers two propagations, but again the resulting ctr do not change the correspond-
ing ctr. All constraints have singleton relation lists now, thus none is callable and the
computation terminates with ctr(X,Y,[1lel), ctr(Y,Z,[gel), ctr(X,Z,[1le]) . On
backtracking, choose chooses the other primitive relation eq and in an analogical way,
the result ctr(X,Y, [le]l), ctr(Y,Z,[leql), ctr(X,Z,[le]) is produced. No other so-
lution exists. Of course, applying the propagation CH rules in a different order (or in
parallel) would have avoided the initial redundant computations involving CH rules (4a)

and (4b).

>For quantitative constraints, a special implementation has to be used
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4.2 Flexibility

In this subsection we illustrate how CH rules support rapid prototyping and easy modifi-
cation. First we consider some optimizations, then modifications and specializations.

Special Cases. A redundant constraint is one that does not impose any restrictions on the
relation between its variables, it is logically equivalent to true. By definition, intersection
with a redundant constraint will just return the other constraint and composition with
a redundant constraint will result in another redundant constraint. Therefore we can
safely remove redundant constraints by adding the following simplification CH rule to our
implementation:

ctr(I,J,C) & redundant(C) | true.

If two variables are constrained to be equal, we can actually make them equal by using
the built-in CS for equality (the unification algorithm) of Prolog. Again, this is a logically
sound simplification that does not influence the result of the constraint solving, but can
significantly reduce the number of rule applications. The simplification corresponds to
merging the corresponding nodes in the network.

ctr(I,J,C) & equality(C),singleton(C) | I=J.

Backtracking. Another optimization, which is also used in [LaRe92], deals with the
backtrack search. The idea follows the first fail principle in choosing more constraining
primitive relations first. This can be achieved by a modification of the choose predicate.
The most constraining primitive relation is equality. For constraints over intervals, rela-
tions that equate end-points of intervals are more constraining (e.g. starts, finishes,
meets). In quantitative constraints intervals with a smaller length (especially single val-
ues) are considered first.

Depending on the class of network, the interaction between path consistency and backtrack
search can be modified as well. So far, the implementation strictly prefers consistency
checking over backtrack search. By restricting the applicability of the propagation CH
rules earlier backtracking can be introduced. In experiments this has proven useful for
almost minimal, inconsistent or under-constrained networks. It suffices to restrict one of
the constraints involved in a propagation to be disjunction-free, i.e. to add to the guard
a check that the relation list is a singleton. This not only reduces the average size of
the resulting constraint but also makes composition more efficient. Though the cost is
bounded, it is proportional to the product of the size of the involved constraints. So if
one constraint is primitive, the cost is linear in the size of the other constraint.

We can also use backtracking to enhance the quality of propagation. For example it is
known that for so-called convexr constraints path consistency produces the minimal net-
work. An important class of convex constraints are qualitative point constraints without
inequality. Thus an inequality [1e,ge] is split. The idea then is to split a constraint into
a disjunction of several convex constraints and to backtrack between them. It has also
been observed by Reinefeld, that these so-called “pointisable” interval constraints should
be preferred.

Propagation. Another very effective way® to avoid too much propagation is based on

50ur experiments showed a dramatic improvement in almost all cases
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the observation that composition is an associative operation. Thus, given e.g. three
constraints sharing variables, it does not matter if we first propagate from the first two,
and then use the result to propagate from the third, or if we propagate and the last two
and use the result to propagate from the first. Because of associativity of composition
we can restrict the propagation CH rules to involve at least one direct constraint. We
can distinguish the two kinds of constraints by introducing an additional argument that
contains the information.

Another optimization avoids direct back-propagation which is always redundant. The
effect is as follows: If we propagate from two constraints, the new constraint (if it is
not simplified) may immediately propagate from one of the direct constraints. Clearly the
resulting constraint cannot be more specific than the corresponding direct constraint. This
useless propagation can be avoided by remembering for propagation constraints “where
they came from”, i.e. to keep the third variable that was involved in the propagation
and to dissallow any new propagation that involves this variable. This method could be
refined by remembering the complete path for indirect constraints and avoiding any nodes
therein, however the additional space requirement and time needed to inspect the paths
may outweigh the gain of the extension. On the other hand, a path can also serve as an
explanation how the constraints were indirect.

Specialization. If a temporal constraint network consists of only disjunction-free (prim-
itive) initial constraints, then we can choose one node as start node k and the precise
indirect constraint between any two nodes 7,j can be computed from ¢;; and ¢; (by a
single propagation). In the general case this propagation would only result in an approx-
imation of the actual constraint. This means that we can restrict the indirect constraints
used during constraint satisfaction to include the start node. Given n nodes, instead of n?
indirect constraints, n suffice, and the number of propagation steps is reduced accordingly.

Based on this observation we give an example of specialization to quantitative constraints
over single intervals as considered in [DMP91]. Their notation for ctr(I,J,[A..B]) is
A=<I-J=<B. The starting node is specified by the constraint start.

constraint start(X). % gives starting node
constraint A=<X-Y=<B. % direct constraint
constraint A=<*X-Y=<*B. % indirect constraint

start (X) ,A=<X-Y=<B
start (X) ,A=<Y-X=<B

=> A=<*Y=<xB.
=> (-B)=<*X-Y=<*(-4).

A=<*X-Y=<*B <=> A>=B | false.
A=<*X-Y=<*B <=> A=(-inf) ,B=(+inf) | true.
A=<*¥-X=<*B <=> A=<0,0=<B.

A=<*X-Y=<*B <=> A=0,B=0 | X=Y.

A=<*X-Y=<*B,C=<*X-Y=<*D <=> AC is max(A,C),BD is min(B,D) |
AC=<*xX-Y=<*BD.

A=<*X-Y=<*B,C=< Y-Z=< D ==> AC is A+C ,BD is B+D | AC=<*X-Z=<x*BD.

A=<*X-Y=<*B,C=< Z-Y=< D ==> AC is A-D ,BD is B-C | AC=<*X-Z=<x*BD.

Finite domains are unary quantitative constraints. They can be modeled by binary con-
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straints whose first argument is zero. Because of this, no propagation is necessary. The
treatment of equality is different. We use the notation I::C of CHIP [D*88] instead of
ctr(0,I,C). The choice for backtrack search is modified. Instead of choosing a primitive
constraint, a value from the quantitative constraint is chosen.

% Constraint Declaration and Definition constraint I::C.
callable I::C if not singleton(C).
I::C < choose(B,C), I::B.

% Special Cases

::C & C=[] | false.

::C & C=[J],singlevalue(J) | I=J.
I::C & redundant(C) | true.

H H

% Intersection
I::C1,I::C2 & intersection(C1,C2,C3) | I::C3.

Modification. Finally, a modification of the path consistency algorithm to compute
the shortest paths between any pair of nodes is presented next. Instead of a disjunctive
constraint, the third argument contains the cost.

constraint path(I,J,C).

path(I,J,C1),path(I,J,C2) & minimum(C1,C2,C3) | path(I,J,C3).
path(I,K,Cl),path(K,J,CQ) = I<J,add(C1,C2,C3) | path(I,J,C3).
path(K,I,Cl),path(K,J,CQ) = I<J,add(C1,C3,C2) | path(I,J,C3).
path(I,K,Cl),path(J,K,CQ) = I<J,add(C3,C2,C1) | path(I,J,C3).

5 Conclusions

Regarding temporal reasoning as constraint satisfaction problem, we have illustrated that
constraint logic programming extended with constraint handling rules provided for

a level of abstraction suited for integration of different representations
an incremental path consistency algorithm

backtracking search through integration with logic programming
preservation of declarative semantics of logic programming

flexibility supporting rapid prototyping and ease of modification

A class of modifications we have not considered so far is to take the topology of the
constraint graph into account. For example, a tree as temporal constraint network is
always path consistent and minimal. We are also looking at extension to take durations
of intervals into account [All83].

While our approach cannot match the speed of hard-coded constraint solvers, we think
it is still suitable for sparse heterogeneous networks as they are likely appear in real-life
(scheduling). If necessary, a constraint solver defined by CH rules once fully tested and
found correct, can always be rewritten in a low-level language to improve efficiency. We
are experimenting with compilation of CH rules into the host language.
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A constraint solver defined by confluent CH rules can run concurrently if the underlying
CHE executes the applications of CH rules concurrently. This is a topic of on-going re-
search. Future work will look at applications of temporal constraint logic programming
in planning, scheduling and temporal deductive databases.

Acknowledgements: Thanks to Alex, Carmen, Mark, Pascal, Sury and Thierry for
discussions and comments on the work presented in this paper.
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Appendix I - Extended Implementation

In this appendix we present an efficient extended implementation and in the next appendix
some examples of using it.

The constraint ctr is extended by some arguments that carry additional useful infor-
mation. The initial constraints in addition hold the type of the two temporal variables
in the last argument, This is necessary as Prolog is an untyped language. These initial
constraints are then replaced by ones with more information. The first argument now
gives the size of the disjunctive constraints (the number of primitive constraints, i.e. the
size of the list). The last argument holds the length of the shortest path from which the
constraint was derived. This is also used to distinguish between direct (path length equals
1) and indirect constraints. This is the basis of an optimization used in the composition.
Instead of requiring that the constraint variables are ordered, Intersection is therefore ex-
tended by another CH rule to deal with conflicting ordering of variables in the arguments.
This variant proved to be faster than the one introduced in the paper. Also various special
cases as discussed in the main body of the paper are taken into account.

% Constraint Definition

constraint ctr(X,Y,Rels,Type).

constraint ctr(RelsSize,X,Y,Rels,Type,Pathl).
callable ctr(N,X,Y,L,T,I) if N>1.

ctr(N,X,Y,L,T,I) < member(R,L),ctr(1,X,Y,[R],T,I).

% Initialize
ctr(X,Y,L,T) & length(L,N) | ctr(N,X,Y,L,T,1).

% Special cases

ctr (N,X,Y,L,T,I) & empty(N,L,T) | false.
ctr(N,X,Y,L,T,I) < redundant(N,L,T) | true.
ctr(N,X,Y,L,T,I) & X=Y | contains equality(L,T).
ctr(N,X,Y,L,T,I) < singleton(N,L),equality(L,T) | X=Y.

% Intersection

ctr(N1,X,Y,L1,0-V,I),ctr(N2,X,Y,L2,U-V,]) &
inter(L1,L2,L3,U-V),length(L3,N3), K is min(I,J) | ctr(N3,X,Y,L3,U-V,K).
ctr(N1,Y,X,L1,0-V,I),ctr(N2,X,Y,L,V-U,]) &
equality([Eq],V-V),comp(L,L2,[Eq],V-U-V), inter(L1,L2,L3,U-V),length(L3,N3),
K is min(I,J) | ctr(N3,Y,X,L3,U-V,K).
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% Composition

ctr(N1,X,Y,L1,U-V,I),ctr(N2,Y,Z,L2,V-W,J) = J=1,
comp(L1,L2,L3,U-V-W),length(L3,M), K is I+J | ctr(M,X,Z,L3,U-W,K).
ctr(N1,X,Y,L1,U-V,I),ctr(N2,X,Z,L3,U-W,J) = J=1,
comp(L1,L2,L3,U-V-W),length(L2,M), K is I+J | ctr(M,Y,Z,L2,V-W,K).
ctr(N1,X,Y,L3,U-V,I),ctr(N2,Z,Y,L2,W-V,J) = J=1,
comp(L1,L2,L3,U-W-V),length(L1,M), K is I+J | ctr(M,X,Z,L1,U-W,K).

Appendix II - Examples

The examples are taken from actual runs of the program in appendix 1. sirs_only means
that only the CH rules are run (to approximate the minimal network by path consistency),
but no choices are made. This execution mode is supported by the underlying CHE. It is
shown how many single and multi-headed propagation and simplification CH rules have
fired. In the types, p (1) stands for points (intervals).

Example for Points. Instead of <,=,> (a..b) the notation le,eq,ge (a-b) is used.

¢ sirs_only

ctr(X,Y,[le,eql,p-p),
ctr(Y,Z, [eql ,p-p),

ctr(X,Z,[le],p-p) -
PropS/PropM/SimpS/SimpM = 3 / 0 / 1 / 1
YES Z =Y,

ctr(1l, X, Y, [le], p-p, 1).

¢ sirs_only
ctr(X,Y,[0-0,1-2,4-5],p-p),
ctr(Y,z,[0-0,3-4],p-p),
ctr(X,z,[1-1],p-p) .
PropS/PropM/SimpS/SimpM = 3 / 2/ 1/ 3
YES Z = Y,

ctr(1l, X, Y, [1-1], p-p).

¢ sirs_only

ctr(X,Y, [eq,le]l,p-p),

ctr(Y,Z,[1le]l,p-p),
ctr(Z,wW,[1-1,3-7],p-p),
ctr(Y,W,[0-3],p-p).
PropS/PropM/SimpS/SimpM = 4 / 256 / 5 / 18
YES ,

ctr(l, X, W, [1-oo], p-p, 2),

ctr(l, X, Y, [0-c], p-p, 1),

ctr(1, X, Z, [sup-col, p-p, 2),
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ctr(l, Y, W, [1-3], p-p, 1),
ctr(1, Z, Y, [-2--sup]l, p-p, 1),
ctr(2, Z, W, [1-1, 3-3], p-p, 1).

Example for Intervals. This example illustrates that path consistency does not neces-
sarily compute the minimal network.

¢ sirs_only

PT=i-1,

Li=[during,contains,overlaps,overlapped by, meets,finishes,finished by],
L2=[equals,before,contains,overlaps,starts, started by,finished by],
L3=[before,during,overlaps,finishes,finished by],
L4=[before,during,overlaps,starts],

ctr(D,A,L1,PT), ctr(B,A,L1,PT),

ctr(B,C,L1,PT), ctr(A,C,L2,PT),

ctr(D,B,L3,PT), ctr(D,C,L4,PT). PropS/PropM/SimpS/SimpM = 6 / 20 / 14 / 6
No change.

First solution.

PropS/PropM/SimpS/SimpM = 6 / 87 / 41 / 46
ctr(1, A, C, [contains], i-1i, 1),

ctr(1, B, A, [during], i-i, 1),

ctr(1, B, C, [during], i-i, 1),

ctr(1, D, A, [during], i-i, 1),

ctr(1, D, B, [beforel], i-i, 1),

ctr(1, D, C, [before], i-i, 1).

Add ctr(B,A, [meets] ,PT), CH rules only
PropS/PropM/SimpS/SimpM = 7 / 15 / 2 / 10
false.

Example Point-Intervals. The last example uses all types of temporal constraints in-
troduced in this paper.

¢ sirs_only

ctr(X,Y, [before,starts] ,p-1),

ctr(X,Z, [starts,during] ,p-i),

ctr(Y,Z, [before,contains,after] ,i-1).
PropS/PropM/SimpS/SimpM = 3 / 7 / 3 / 4
YES ,

ctr(1,X,Y, [before],p-1,1),

ctr(1,Z,Y, [before],i-1,1),

ctr(2,X,Z, [starts,during] ,p-1,1).

¢ sirs_only
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ctr(V,U,[0-1,3-4],p-p),

ctr(U,Y, [before,starts] ,p-1),

ctr(Z,V, [contains,started byl ,i-p),
ctr(Y,Z, [before,contains] ,i-1).
PropS/PropM/SimpS/SimpM = 4 / 4 / 1 / 1
false.
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