High-Level Implementations of Constraint
Handling Rules”

Thom Frithwirth Pascal Brisset
ECRC, Arabellastrasse 17, ENAC, 7, av. Edouard Belin
D-81925 Munich, Germany 31055 Toulouse Cedex, France

thom@ecrc.de pbrisset@eis.enac.dgac.fr

ECRC Technical Report ECRC-TR-95-20, June 1995

Abstract

Constraint handling rules (CHRs) are a high level logic concurrent committed-
choice language for writing constraint systems. Rapid prototyping of novel ap-
plications for constraint techniques is encouraged by the high level of abstraction
and declarative nature of CHRs. In this paper we describe basic principles of
implementing CHRs in logic programming languages and show how they actually
have been implemented in the CHRs library of ECL'PS¢, ECR(C’s constraint logic
programming platform. All three types of multi-headed CHRs can be transformed
into single-headed simplification rules. These rules correspond to guarded rules
used in typical logic concurrent committed-choice languages. We then show how
to implement these guarded rules in sequential (constraint) logic programming
languages. The report contains three appendices involving a generic example and
its translation.

1 Introduction

Constraint handling rules (CHRs) [Fru92, Fru94, FrHa95, Fru95] are a high-level
language extension to write constraint systems. CHRs are essentially a logic
concurrent committed-choice language consisting of guarded rules with multiple
heads. CHRs can be embedded in a given host language (e.g. Prolog, Lisp, ML)
to enrich it with constraint reasoning capabilities.

CHRs provide for the two essential ways of handling constraints. Simplification
replaces constraints by simpler constraints while preserving logical equivalence

*Part of this work was supported by ESPRIT Project 5291 CHIC.

1

(e.g. X>Y,Y>X <=> false). Propagation adds new constraints which are logi-
cally redundant but may cause further simplification (e.g. X>Y,Y>Z ==> X>Z).
Repeatedly applying CHRs incrementally simplifies and finally solves constraints
(e.g. A>B,B>C,C>A leads to false). A third, hybrid kind of rules, called simp-
agation CHRs is usefull for expressing subsumption (e.g. X>Y\X>=Y <=> true)
and relative simplification (e.g. X=T1\X=T2 <=> T1=T2).

The usual abstract formalism to describe a constraint system, i.e. inference
rules, rewrite rules, sequents, formulas expressing axioms and theorems, can be
written as CHRs in a straightforward way. Starting from the executable specifi-
cation obtained from the formalism, the rules can be refined and adapted to the
specifics of the application.

In the next section, we give the syntax and semantics of constraint han-
dling rules. Readers familiar with CHRs can skip this section. Then we discuss
basic principles of for their sequential or concurrent implementations in (concur-
rent) (constraint) logic programming languages (including Prolog) [Sha89, VHOI1,
Sar93, JaMa94]. The compilation from CHRs into clauses of the logic host lan-
guage does not effect any atoms other than the user-defined constraints. The
basic translation proceeds rule by rule and can thus be used for incremental
compilation.

We first show that all three types of CHRs can be transformed into multi-
headed and further into single-headed simplification rules, i.e. in the guarded
rules of a typical logic concurrent committed-choice language - provided it can
access delayed goals and has deep guards. Guards are deep if they allow for
user-defined predicates. Then we implement such guarded rules in a logic pro-
gramming language without guards and committed-choice constructs, i.e. in a
CLP language. We concentrate on languages with a delay-mechanism (coroutin-
ing), since the constraint goals will be modeled as goals that can delay.

The implementation scheme given in this technical report is somewhat biased
towards the most advanced implementation of CHRs utilizing advanced features
of ECL'PS®. In the appendix a comprehensive generic example of the result of
compilation in the actual CHRs library of ECL'PS¢ [B*95] is given and explained.
It differs from the translation scheme described by a number of optimizations,
mainly to exploit head matching and produce more deterministic code. We also
show the result of applying the transformations proposed in this paper to a simple
example in appendix 3. Last but not least, appendix 2 lists the abstracted code
of the first interpreter for CHRs.

2 Syntax and Semantics

In this section we give syntax and semantics for constraint handling rules that
extend a constraint logic programming language (including Prolog) following
[Fru95]. We include syntax and semantics of built-in labeling for the first time. It

should be stressed that the host language for CHRs need not be a CLP language.
Indeed, work has been done at DFKI with LISP as the host language [Her93].

2.1 Syntax

We assume some familiarity with constraint logic programming (CLP). There
are two classes of distinguished predicates, built-in constraints and user-defined
constraints (those written in CHRs). In most CLP languages there is a binary
built-in constraint for syntactic equality over terms, =/2, performing unification.
The built-in constraint true, which is always satisfied, can be seen as an ab-
breviation for 1=1. false (short for 1=2) is the built-in constraint representing
inconsistency.

A CLP+CHR program is a finite set of clauses from the CLP language and
from the language of CHRs. A CLP clause is of the form

H:- By,...B,. (n>0)

where the head H is an atom but not a built-in constraint, the body By,... B,
is a conjunction of literals called goals. A queryis a CLP clause without head.
There are two basic kinds of CHRs. A simplification CHR is of the form

Hla---Hi <=> Gl,G] | Bl,...Bk.

where (¢ > 0,7 > 0,k > 0) and the multi-head Hy,... H; is a conjunction of
user-defined constraints and the guard G4, ... G} is a conjunction of literals.
A propagation CHR is of the form

Hl,...HZ’==>G1,...G]‘|B1,...Bk.
A third, hybrid kind is called simpagation CHR and is of the form
Hl,...HZ’\...H[<=>G1,...G]‘|B1,...Bk. (0<Z<l>

where 7\’ separates the head atoms into two non-empty groups.
When embedded in logic languages with backtracking, CHRs can provide built-
in labeling. A labeling declaration for a user-defined constraint Hj, is of the form

label_with Hy, if Gy,...Gj.

The labeling declaration restricts the use of CLP clauses of user-defined con-
straints for built-in labeling. There can be several labeling declarations for a
constraint.

2.2 Declarative Semantics

Declaratively, CLP programs are interpreted as formulas in first order logic. Ex-
tending a CLP language with CHRs preserves its declarative semantics!.

A CLP+CHR program P is seen as a conjunction of universally quantified
clauses. A CLP clause is an implication

H <+ B AN...B,.

Since we assume that a predicate is defined completely, we can strengthen the
above using Clark’s completion. Let (Hy:= Biyy,... Bn1),...,(Hs 1= Bis, ... Bus),
(1 < s) be all the clauses with the same predicate p in the head. Then the logical
reading of the predicate p is:

HH(H:Hl/\Bll/\Bnl)\/\/(H:HS/\Bls/\BnS)

H is of the form p(Xy,..., X,) where Xy,..., X, are new, different variables.
A simplification CHR is a logical equivalence provided the guard is satisfied

(GyN...Gy) = (HiAN...H; <> By A ... By).

A propagation CHR is an implication provided the guard is satisfied
(GyN...Gy) = (HiAN...H; — By A ... By).

A simpagation CHR is a logical equivalence provided the guard is satisfied
(GyN..Gy) = (HoN H oo H < HiANCH N By AL By).

A labeling declaration is a precondition on the CLP clauses defining a constraint
(H,=H NGy N...G; AN labeling) — (H < (B1 V... By)).

where (H <> By V ... B;) is Clark’s completion of the constraint predicate. The
labeling phase is entered by calling the built-in predicate labeling/0 (that is
why it appears in the premise of the implication).

2.3 Operational Semantics

The operational semantics of CLP4+CHR program can be given by a transition
system. A computation state is a tuple

< Gs,Cy,Cp >,

!Even though guarded rules in general cannot be given a first order declarative semantics,
CHRs admit one when we restrict their use to handling user-defined constraints, see also [Mah87,

Smo91].

where G's is a set of goals, Cy and Cp are constraint stores for user-defined and
built-in constraints respectively. Let a set of atoms represent a conjunction of
atoms. A constraint store is a set of constraints.

The initial state consists of a query (s and empty constraint stores,

< Gs, {},{}>.

A final state is either failed (due to an inconsistent built-in constraint store rep-
resented by the unsatisfiable constraint false),

< Gs,Cpy, {false} >,
or successful (no goals left to solve),
< {}, CU, CB >.

The union of the constraint stores in a successful final state is called conditional
(qualified) answer for the query G's, written answer((G's), meaning that the query
is true under the condition that the conjunction of constraints is true.

The following computation steps are possible to get from one computation
state to the next.

Solve
< {C}U Gs,Cy,Cpg > — < GS,CU,C/B >
i (O ACg) & O

The built-in constraint solver updates the constraint store C'g if a new constraint
C' was found in Gs. To wupdate the constraint store means to produce a new
constraint store Cp that is logically equivalent to the conjunction of the new
constraint and the old constraint store.

We will write H =,.; H' to denote equality between the sets H and H’, i.e.
H ={A,,..., A,} and there is a permutation of H', perm(H') = {By,...,B,},
such that A, = B; for all 1 <31 <n.

Introduce
< {H}UGS,CU,CB > — < GS,{H}UCU,CB >

if H is a user-defined constraint

Simplify
<Gs,HUCy,Cg> — <GsUB,Cy,Cg >
if (H<=>G|B)e€ Pand Cp — (H =5 H') N answer(G)

Propagate

<Gs,HUCy,Cg> r— <GsUB,H UCy,Cg >

if (H==>G|B)e€Pand Cp — (H =5t H') N answer(G)
Simpagate

<Gs,HbUH,UCy,Cg > +— <GsUB,HpUCy,Cp >

if (HP\HS <=>(F | B) € Pand Cg — ((HPUHs) et (H]/;UHg))/\

answer(G)

The rules are applied to user-defined constraints in Cpy and G's whenever they
match (they are instances of) the head atoms and the guard is satisfied. A guard
(i is satisfied if the result of its local execution, answer((), is entailed (implied)
by the built-in constraint store C'g. To introduce a user-defined constraint means
to take it from the goal literals Gs and put it into the user-defined constraint
store Cy. To simplify user-defined constraints H' means to replace them by B if
H' matches the head H of a simplification rule (H <=> G | B) and the guard
G is satisfied. To propagate from user-defined constraints H' means to add B to
Gs if H' matches the head H of a propagation rule (H ==> G | B) and G is
satisfied. To simpagate from user-defined constraints H' means to add B to Gs
if H' matches the head composed of Hp and Hg of a simpagation rule (Hp \ Hg
<=> (¢ | B) and to remove the constraints from H’ that match Hg, provided
G 1s satisfied.

The last two transitions deal with don’t know indeterminism in the CLP+CHR
language.

Unfold
<{H'}UGs,Cy,Cg > — <GsUB,Cy,{H=H'} U Cg >
if (H :- B) € P and H is not a user-defined constraint

To unfold an atomic goal H' in GGs means to look for a CLP clause (H: — B) and
to replace the H' by (H = H') and B. As there are usually several clauses for
a goal, unfolding is nondeterministic and thus a goal can be solved in different
ways using different clauses.

The clauses for user-defined constraints can only be unfolded during built-in
labeling to produce choices. The built-in labeling is invoked by calling the CHR
built-in predicate labeling/0 (no arguments).

Label
<labelingUGs, {H'} UCy,Cp > +—
<labelingUGsUB,Cy,{H = H'} UCp >
if (H :- B) € P and (labelwith H"” if (G)€ P and
Cp — (H' = H") N answer(G)

3 Embedding CHRs in CHRs

The operational semantics are still far from the actual workings of an efficient
implementation. In this section we show that every type of CHRs can be trans-
formed into single-headed simplification rules. We require that the concurrent
host language has deep guards and allows to access delayed goals. For simplicity
of presentation, we will transform CHRs with exactly two head atoms. The case
of one head atom is a simple specialization of it, the case of more than two head
atoms a simple generalization. Consequently, we have to deal with the following

three CHRs, one for each kind:

% Simplification CHRs
Headl,Head2 <=> Guard | Body.
% Simpagation CHR
Head1\Head2 <=> Guard | Body.
% Propagation CHRs
Headl,Head2 ==> Guard | Body.

An example application of the transformations described in this section can
be found in appendix 3.

3.1 Embeddings

Simplification and propagation rules can embed each other. First, assume that
we want to implement all kinds of CHRs with propagation rules only. Just replac-
ing simplification by propagation rules preserves failure and logical equivalence.
However, such a naive translation effects efficiency and termination, since con-
straints are no longer removed. The solution is to ignore constraints that should
have been removed with the help of a variable KF representing a kill flag that
is added to each user-defined constraint. We denote the constraint Head with
one extra argument KF added by Head (KF)? The predicate var/1 checks if its
argument is a free (unbound, uninstantiated) variable, kil1/1 just binds the kill
flag variable.

% Headl,Head2 <=> Guard | Body.

Head1(KF1) ,Head2(KF2) ==> % Kill flags not set so far
var (KF1) ,var (KF2),
Guard
|
kill(KF1),kill1(KF2), % Bind kill flags to kill head constraints
Body.

% Head1\Head2 <=> Guard | Body.
Head1(KF1) ,Head2(KF2) ==>
var (KF1) ,var (KF2),
Guard
|
kill(KF2), % Kill second head constraint only
Body.

% Headl,Head2 ==> Guard | Body.
Head1(KF1) ,Head2(KF2) ==>
var (KF1) ,var (KF2),
Guard
|
Body.

2 Actually, this is HiLog [CKW89] syntax, where arbitrary Herbrand terms can be function
and predicate symbols.

In the converse case, which is the typical one for an implementation in a logic
language, we implement every kind of CHR with simplification rules. Logically,
a propagation rule (H — B) is the same as the simplification rule (H < B A
H). However, just adding the head constraint again in the rule body would
cause looping, since the same head constraint is recursively called again and
again. To avoid such trivial non-termination it is remembered - in the constraint
- that a propagation rule fired. We add a list® PL to remember applications of
propagation rules to each user-defined constraint. Furthermore, each rule gets
a unique identifier, n. Initially, the constraints are called with an empty list
Head([]). Simplification rules stay unchanged.

% Head1\Head2 <=> Guard | Body.
Head1(PL1),Head2(PL2) <=>
Guard
|
Body,
Head1(PL1). % no looping, since Head2 is removed

% Headl,Head2 ==> Guard | Body.

Head1(PL1) ,Head2(PL2) <=>
not_member (n-Head2-2,PL1), % rule n with second head Head2 applied 7
not_member (n-Head1-1,PL2), % rule n with first head Headl applied 7

Guard

|

Body,

Head1([n-Head2-2|PL1]), % rule n with second head Head2 applied
Head2([n-Head1-1|PL2]). % rule n with first head Headl applied

The auxiliary predicate not member (E,L) fails if E is an element of the list L
and succeeds otherwise.

not_member(E, []) <=> true.
not_member(E, [E1|L]) <=> not (E=E1), not_member(E,L).

As an optimization the head constraints Headl, Head2 in the propagation
list PL can be replaced by their identifiers.

3.2 Multiple Head Atoms

The difficult part of a CHRs implementation is multiple head atoms, which con-
straint logic programming languages usually do not support. To illustrate the
implementation idea, let us first assume that the concurrent host language pro-
vides for don’t know indeterminism in the form of backtracking that can be used
in guards. The built-in predicate delayed constraint(C) unifies C with a de-
layed constraint goal that matches C. If there are more such goals, it returns

3Whereever we use a list, in practice a more sophisticated data structure can be used to
minimize the cost of searching for elements.

them on backtracking. note that in a concurrent implementation we have to
make sure that constraints are returned even if their guards are currently tried
for satisfaction. The predicate remove/1 removes a delayed constraint. It can be
implemented using the kill flag approach from above, this time really removing
killed constraints with the rule:

Head(KF) <=> not var(KF) | true. % remove killed constraint

Two-headed CHRs are replaced by single-headed ones, one for each head atom
in a rule.

% Headl,Head2 <=> Guard | Body.
Head1(PL1) <=>
delayed_constraint (Head2(PL2)), % find delayed partner constraint
Guard
|
remove (Head2(PL2)), % remove partner constraint
Body.
Head2(PL2) <=> % same for second head constraint
delayed_constraint(Head1(PL1)),
Guard
|
remove(Head1(PL1)),
Body.

% Head1\Head2 <=> Guard | Body.
Head1(PL1) <=>
delayed_constraint (Head2(PL2)),

Guard

|

remove (Head2(PL2)), % remove second head constraint
Body,

Head1(PL1). % revive first head constraint

Head2(PL2) <=>
delayed_constraint(Head1(PL1)),
Guard
|
Body.

% Headl,Head2 ==> Guard | Body.
Head1(PL1) <=>
delayed_constraint (Head2(PL2)),
not_member (n-Head2-2,PL1),
not_member (n-Head1-1,PL2),
Guard
|
Body,
Head1([n-Head2-2|PL1]). % revive first head constraint
Head2(PL2) <=>
delayed_constraint(Head1(PL1)),

not_member (n-Head2-2,PL1),
not_member (n-Head1-1,PL2),
Guard

[
Body,
Head2([n-Head1-1|PL2]). % revive second head constraint

Now we do away with the don’t know indeterminism of delayed constraint/1.
This means we have to program the search for a partner constraint ourselves. If
the concurrent host language provides for disjunction, this is trivial. Otherwise,
it complicates the translation. The idea is to create a sub-process for each poten-
tial partner, to check it for applicability, and to quit all processes once a partner
has been found by one of the processes. As soon as one process find a partner, it
sets a shared flag, so that all the other processes can finish and the main process
is notified.

The predicate delayed constraints(L) returns a list of all delayed con-
straints. For each rule n, an instance of the recursive predicate try_each _partner/5
is introduced. The predicate goes through the list of partner constraints and tries
to apply the rule to them. If head matching succeeds and the guard is satisfiable,
the partner constraint found is returned. The guards from the code above,

delayed_constraint (Head2),
Guard % including optional not_member/2 checks

are changed into

delayed_constraints(Head2List),

not Head2List=[], % at least one partner candidate
try_each_partner(n,Headl,Head2List,Head2,FoundFlag),
not var(FoundFlag) % wait for FoundFlag to be set

with

try_each_partner(N,Head1, [Head2|Head2L],Partner,Found) <=>
try_one_partner(N,Headl,Head2,Partner,Found), % try next
try_each_partner(N,Headl,Head2L,Partner,Found) .
try_each_partner(N,Headl, [],Partner,Found) <=> true. Y% all tried
try_each_partner(N,Head1, [],Partner,Found) <=>
not var(Found) | true. % partner already found

try_one_partner(_N,Headl,Candidate,Partner,Found) <=>

not var(Found) | true. % partner already found
try_one_partner(n,Headl,Head2,Partner,Found) <=> % one for each CHR n

var(Found), % partner not found yet

Guard

I

Found=true, % set FoundFlag to notify others

Partner=Head2. % return partner constraint found

10

What is missing from the above implementation is the treatment of the case
that no partner at all has been found. Then the partner search should fail. For
this reason, we introduce an additional argument to try_one partner/5, a flag
that is set if the candidate is not a partner.

try_one_partner(n,Headl,Candidate,Partner,Found,NotFound) <=>

not (% cannot be partner or already found
Candidate=Head2,

var(Found),

Guard)

|

NotFound=true. % set NotFoundFlag

try_one_partner(n,Headl,Head2,Partner,Found,NotFound) <=>
% same as before

The predicate try_one partner/5 could also be implemented using a simple
conditional construct if available (see later section).

In the predicate try_each_partner/6, a NotFoundFlag variable for each sub-
process try_one_partner/6 is created and kept in a list.

try_each_partner(n,Headl, [Head2|Head2L],Partner,Found,NFL) <=>
NFL=[NF|NFL1], % collect NotFoundFlags in list NFL
try_one_partner(n,Headl,Head2,Partner,Found,NF),
try_each_partner(n,Head1l,Head2L,Partner,Found,NFL1).

try_each_partner(n,Headl, [],Partner,Found,NFL) <=> NFL=[]. % close list

To the initial guard we add a negated check that the list consists of set flags
(i.e. true) only. In an actual implementation, the head constraints passed
as arguments can often be replaced by the list of their variables. If available,
try_one partner/6 can also be implemented using a if-then-else construct.

For propagation rules (and the second rule resulting from simpagation rules)
the coding can be substantially optimized by taming the recursive calls of the head
constraint. First note that through this recursion a propagation rule eventually
is correctly applied to all constraints that qualify as a partner, not to just one.
We can therefore collect all partners in a revised predicate try_each partner/6
and execute all the associated bodies after the commit. The collection can be
implemented using a list of fixed length (one element for each candidate) as stream
on which the subprocesses either return a matching partner or a notification that
none has been found.

The recursive call of the head constraint also reconsiders all previous rules
again, whereas one could continue just after the propagation rule that was tried
in the previous round. If the rules are tried in the order of their identifiers, this
behavior can be achieved by only allowing CHRs with the same or higher identifier
in the recursive, continued execution of the head constraint. Optimizing further
this leads away from rule by rule compilation to a global compilation of the whole

11

rule set. See the ECL'PS®implementation in appendix 1 for the final outcome
and appendix 3 for an example following the transformations proposed here.

Regarding program size, the translation scheme only incurres an overhead
for multi-headed CHRs. In that case it introduces a guarded rule (single-headed
simplification CHR) for each head constraint in the CHR and two rules defining
the instance of try_one _partner/6 for each head of multi-headed rules. This
means at three rules for each head constraint in a multi-headed CHRare resulting
from the transformation.

3.3 Propagation CHRs as Conditionals

In this subsection we discuss an alternative way to implement propagation CHRs.
However, in the end it will turn out that it leads to basically the same final trans-
lation. The idea is that propagation CHRs with a single head can be implemented
by conditionals. Such a construct is available in most concurrent logic languages.
A simple conditional is of the form

Condition —> Consequence

where Condition is a guard and Consequence a body. If Condition is sat-
isfied, the Consequence is executed, if Condition does not hold, the conditional
succeeds without further computation. A conditional can be implemented with
simplification CHRs:

(Condition -> Consequence) <=> Condition | Consequence.
(Condition -> Consequence) <=> not Condition | true.

Depending on the overall implementation, the second rule can be specialized
or dropped. The problem with this simple definition is that it makes each variable
occurring in Condition global, since it also occurs in the head of the simplifica-
tion CHR. However, the actual global variables of the conditional are only those
appearing both in the conditional and the surrounding context. To overcome this
problem, we introduce an argument for the global variables and use a predicate
rename local/3 to rename the remaining, local variables into new variables.

GlobalVars: (Condition -> Consequence) <=>
rename_local(GlobalVars,Condition,Conditionl), Y% rename local vars

Condition
I
Condition=Conditionl, % unify old and new local variables
Consequence.
GlobalVars:(Condition —> Consequence) <=> not ... % analogous positive case

In another solution, each call to a conditional, Condition ->Consequence,
can be replaced by a new, auxiliary constraint whose arguments are the global
variables. In the following, for simplicity, we do not mention the global variables
of a conditional explicitly.

A set of n single-headed propagation rules for the constraint c/m

12

Headl ==> Guardil | Bodyl.
Headn ==> Guardn | Bodyn.

can be rewritten as a conjunction of conditionals and placed in the body of a
simplification rule

Head <=> Head’, (Head=Headl,Guardl -> Bodyl),...,(Head=Headn,Guardn -> Bodyn).

Head is of the form c(X1,...Xm) where X1, ...Xm are new, disjoint variables.
Head’ is the same as Head except that c¢/m is renamed to ¢’ /m to avoid a trivial
loop. Consequently, the same renaming has to be applied to the heads of all
simplification rules. Note that the global variables of the conditionals are exactly
the variables occurring in Head.

In the original CHRs, once a simplification rule has been applied to a con-
straint, no subsequent propagation involving this constraint is possible, since it
has been removed by the simplification. This is not the case in the translation
above, since only Head’ will be removed, but not the conditionals associated with
the constraint Head. To simulate the original behavior, we introduce a kill flag
variable in an additional argument of ¢’/m. When a simplification rule applies
to ¢’ /m+1, the kill flag variable is bound. The translation is now as follows:

Head <=> Head’(KF), (var(KF),Head=Headl,Guardl -> Body1l),
.., (var(KF),Head=Headn,Guardn -> Bodyn).

With the kill flag, we can specialize the second simplification rule used to
define the conditional into a more efficient, but more lazy rule:

(Condition -> Consequence) <=> not var(KF) | true.

We have already shown how to implement multi headed CHRs. It may seem
that for propagation rules, conditionals would result in a different translation.
However it turns out that this is not really the case. In the Condition we need
a predicate to try each partner constraint. That means for each potential part-
ner given by delayed constraints/2 the predicate creates a new conditional.
The predicate is very similar thus to try_each partner/6 for propagation CHRs,
except that the rule bodies are not collected but used to form the Consequence
parts of the conditionals. Since delayed constraints/2 may return new can-
didates on a later call, we have to replace Head’ (KF) by a direct recursive call
Head (KF) and once again use a propagation list to avoid trivial loops. Another
possibility would be a variant of delayed constraints/2 that returns a stream
of delayed constraints. The main difference with the previous approach is that
the conjunctive treatment of propagation CHRs with many delayed conditionals
is “more concurrent”. Therefore such a translation seems to be more suitable for
a inherently concurrent logic language, while in sequential CLP languages the
cost of delaying goals is high as compared to backtracking.

13

3.4 Built-In Labeling

Last but not least, we show how to implement built-in labeling in a CHR. Labeling
is the only point which requires the host language to offer don’t know indeter-
minism. Assume that a form of disjunction denoted by the binary operator or/2
is available. Let (H < B; V ...Bs) be Clark’s completion of the constraint
predicate. From a labeling declaration

label_with Head if Guard.

and Clark’s completion of the associated constraint predicate, a simplification
rule involving the built-n predicate labeling/0 is produced:

labeling, Head <=> Guard | Head=H, (B1 or ... Bs), labeling.

Note the use of recursion in labeling/0 to enforce further labeling after
executing the disjunction which has introduced some choices and subsequent
constraint handling. This formulation relies on the left-to-right execution model
common to logic programming languages. A simpagation CHR with the same
declarative semantics as the above simplification CHR can be written. However,
the operational semantics differ, since there is no guarantee that the simpagation
rule is executed only after all other rules for all constraints have been tried.

4 Implementing Guarded Rules in CLP

In this section we show how to implement guarded rules (corresponding to single-
headed simplification CHRs), i.e. a committed-choice language, in a CLP lan-
guage without guards. Such translations have been investigated before, i.e. com-
pilation of matching in committed-choice languages, L. Naish’s successive imple-
mentations of delaying declarations [Nai85], S. K. Debray’s efficient implemen-
tation of QD-Janus [Deb93] in Prolog. The translation proposed in this section
is based on ideas of Joachim Schimpf and is geared towards ECL‘PS®and the
actual implementation. It requires that the CLP language is equipped with a
delay-mechanism.

A delay-mechanism can be implemented in any logic programming language
by passing the list of delayed goals around in additional arguments of each pred-
icate (a DCG grammar could be used). A complete delay mechanism can be
implemented this way - at the cost of efficiency, of course.

The only built-in predicates needed are for delaying a goal on variables and
for accessing the delayed goals. The built-in predicate delay(L,G) delays a goal
G on the variables in the list L until one of the variables is touched. A variable
is touched if takes part in a unification or if it gets more constrained by built-in
constraints.

14

In a sequential CLP implementation, backtracking is efficient while delaying
is usually more expensive than in inherently concurrent languages. Therefore
it is more efficient to reexecute guards instead of delaying them and executing
them incrementally. In our ECL'PS® implementation we also found that there
is no gain in distinguishing between failure and delaying of a guard. If a guard
is not satisfiable, it simply fails. Overall, using this approach in ECL'PS® we
gained about one order of magnitude in speed as compared to a fully concurrent
implementation we were initially aiming at. The efficiency tradeoff may no longer
hold for very complex guards or other host languages.

Under these assumptions, a constraint goal fails if no rule was applicable (all
guards failed). In such a case, we redelay the goal on its variables. When a
variable is touched, the goal will be resumed and reexecuted. To achieve this
behavior, for each constraint Head, the last clause is:

Head :- extract_vars(Head,VarList),delay(VarList,Head).

where the predicate extract vars(T,L) returns the list L of free variables of
the term T.

We now implement head matching and guard execution. Head matching can
be made explicit by adding the goal Goal=Head to the guard. Instead of the
guarded rule

c(tl,...tn) <=> Guard | Body.

we use the guarded rule

c(X1,...Xn) <=> c(X1,...Xn)=c(t1,...tn), Guard | Body.

where X1,..Xn are new, disjoint variables. If we do not delay guards, the
equality can be optimized by using a built-in predicate like instance (Goal,Head)
that checks if Goal is an instance (i.e. matches) Head and then unifies them. Since
Head is known at compile-time the call to instance/2 can be further optimized.
In ECL'PS®, there is no need for a transformation, since head matching is directly
supported.

Clearly if the execution of a guard further constrains global variables (those
from the head(s) of the rule), it cannot be satisfied at the moment and has to
delay. A variable is more constrained if it is touched or if new goals delay on it.
Since we also fail a delayed guard, we would like to fail in those cases.

One way to protect the global variables from being touched is to replace them
with new variables in the execution of the guard. The predicate copy_term/2
copies a term with new variables. Then we could use the following translation

HeadC <=> copy_term(HeadC,Head), Guard, instance(HeadC,Head) | Body.

15

where HeadC is a copy of Head with new variables. Once again, the instance
check can be optimized. The problem with this translation is that the whole
Guard is executed before it is checked that global variables have been touched.
Since touching global variables may cause a cascade of constraint handling, this
solution is too expensive. Remember that if a variable is touched, all the goals
that delay on it are woken. Thus we can delay a failing goal, i.e. simply false,
on the global variables to avoid that they are touched.

extract_vars(Head,GlobalVars),delay(GlobalVars,false),Guard,remove(false)

Note that the two goals will prefix every Guard and thus can be factored out
using an auxiliary predicate Head’ for the rest of the code.

Head :- extract_vars(Head,GlobalVars), delay(GlobalVars,false), Head’.

To detect if delayed goals have been added, we check whether the list of de-
layed goals is still the same. We use the built-in predicate delayed constraints/1
to compare the list of delayed goals before and after the execution of the guard.
At this point, we reach the border-line of where a high-level implementation can
go, since a low-level check will be considerably more efficient and independent of
the size of the list of delayed goals.

c(X1,...Xn)’ :-
c(X1,...Xn)’=Head’, % match the head with the actual goal
delayed_constraints(CL) % get all delayed constraint goals
Guard, % execute guard
delayed_constraints(CL) % no new delayed constraint added
remove(false), % no global vars have been touched
', % commit by cutting
Body.

5 Existing Implementations

The first implementation of CHRs in 1991 was an interpreter written in ECRC’s
constraint logic programming platform ECL'PS(see appendix 1). At the mo-
ment, there exist two sequential implementations, one prototype in LISP [Her93],
and one fully developed CHRs library in ECL'PS¢[B*95]. At DFKI Saarbriicken,
an implementation of CHRsin the concurrent object-oriented language O7 [SmTr94]
is on the way.

The LISP implementation does not provide for simpagation rules, but of-
fers some interesting extensions. First, rules can be given priorities (encoded
as integers). Second, indeterminism is introduced by disjunction in rule bodies.
This extension also allows to express Prolog clauses. Rules with disjunction are
translated into simplification rules explicitly creating choice-points and perform-
ing backtracking. Rules with disjunction usually get the lowest priority. The

16

algorithm for executing CHRs is somewhat similar to the first implementation of
CHRs in Prolog (see appendix 2). However, matching a head constraint in a rule
with several heads dynamically adds a new rule with the matched head removed
and the variables instantiated as in the matching. In [B*95], constraint handlers
for terminological reasoning with negation and concrete domains, further equality
over Herbrand terms, inequalities, finite domains, linear polynomial inequalities
using Fouriers algorithm and an implementation of the terminological language
TAXLOG are described as applications.

In the CHRs library in ECL‘PS®, ECL'PS® and CHRs statements can be freely
combined. A complete committed-choice language is available as a side-effect.
The library includes a compiler, a run-time system with two debuggers, many
example solvers as well as a full color demo using geometric constraints in a real-
life application for wireless telecommunication. The compiler is about 450 clauses,
2700 lines, 26kB of code, the run-time system is about 360 clauses, 1900 lines,
17kB of code including comments. The code produced by the compiler from a
comprehensive rule set can be found in the appendix. About 20 constraint solvers
currently come with the release (see figure 1) - among them solvers for finite do-
mains over arbitrary ground terms, reals and pairs, incremental path consistency,
temporal reasoning (quantitative and qualitative constraints over time points and
intervals [Fru94]), for solving linear polynomials over the reals and rationals, and
last but not least for terminological reasoning [FrHa95]. A successful real-life
application making essential use of CHRs is described in [MBF95].

Typically it took only a few days to produce a reasonable prototype solver,
since one can directly express how constraints simplify and propagate without
worrying about implementation details. The average number of rules in a con-
straint solver is as low as 24.

To reflect the complexity of a program in the number of CHRs, at most two
head constraints are allowed in a rule. This forces the programmer to rewrite
a rule with more than two head constraints into several two-headed rules. The
restriction to two head atoms makes complexity for search of the head constraints
of a single CHR quadratic in the worst case. On average, linear complexity can
be achieved based on the observation that usually the head atoms are connected
through common variables appearing in both head atoms, which means that
only the constraint goals that delay on a particular variable have to be searched.
Complexity can be reduced by using a more sophisticated data structure than
lists for the delaying constraints.

On a range of solvers and examples, the slow-down for our declarative and
high-level approach turned out to be within an order of magnitude in comparison
to dedicated built-in solvers (if available). On some examples (e.g. those involving
finite domains with the element-constraint), our approach is faster, since one can
exactly define the amount of constraint handling that is needed. For performance
and simplicity the solver can be kept as incomplete as the application allows it.
Some solvers (e.g. disjunctive geometric constraints in the phone demo) would

17

be very hard to recast in existing CLP languages.

‘ Domain ‘ Algorithm ‘ C? ‘ Library File ‘ Si ‘ Sp ‘ Pr ‘
Term Manipul. yes | term 0] 81 7
Terminologies no | kl-one 25 4113
Rational Trees Unification no | tree 91 2| 1
Lists Extend. Unification | no | list 91 0 0
Sets Consistency no | set 181 10 | 13
Comparisons Algebraic Laws yes | minmax 11]22(6
Equalities Gaussian Elimin. yes | math-gauss Ty 1] 0
Inequalities Gaussian + Slacks | no | math-lazy 191 6 0
Inequalities Gaussian + Slacks no | math-eager 19 6 0
Inequalities Gaussian + Fourier | yes | math-fourier | 21 | 6| 1
Booleans Value Propagation | no | bool 56119 0
Finite Domains Forward Checking no | domain 61| 7|14
Binary Relations | Path Consistency no | time-pc 0] 11 3
Time Path Consistency no | time-point 41 0 2
Time Path Consistency no | time 0] 21 0
Space yes | geons 0 11 0
Prime Numbers primes 111 31 0
Sound Control control 6| 0| O

‘ Rounded Average ‘ ‘ no ‘ ‘ 16 ‘ 5 ‘ 3 ‘

i

Figure 1 The constraint solvers of the CHRs library in ECL'PS®.

6 Conclusions

Constraint handling rules (CHRs) are a language extension for implementing user-
defined constraints. We have given basic principles on how to implement CHRs
in logic programming languages and we have shown what the result of compiling
CHRs into ECRC’s constraint logic programming platform ECL'PS® is. It turned
out that CHRs can be easily implemented in any constraint logic programming
language, be it concurrent or sequential.

According to our experience, efficiency depends mainly on updating delayed
constraint goals and the search for a partner constraint. Both issues can be
tackled by using a more sophisticated data structure than a list of delayed goals.
To avoid redundant computations in the guards, they could be compiled into
decision graphs. Furthermore, the constraints generated by propagation CHRs
could be garbage collected (i.e. removed from the constraint store) when the
constraints they were generated from have been rewritten or unfolded.

4C? stands for Complete?; Si, Sp, Pr are the numbers of Simplification, Simpagation and
Propagation rules respectively.

18

The CHRs language offers a high potential for implementation on multi-
processor systems, as guards can be processed and rules be applied concurrently
and different choices can be processed independently in or-parallel mode. The
latter is the topic of some ongoing experiments with the new parallel release of

ECL‘PSe.

Acknowledgements

Joachim Schimpf contributed with ideas and suggestions. Comments from anony-
mous referees on a short version of this paper were taken into account.

References

[B*95] P. Brisset et al., ECL'PS® 3.5.1 Extensions User Manual, ECRC Mu-
nich, Germany, April 1995.

[CKW89] Chen, W. and Kifer, M. and Warren, D. S., HiLog: A First-Order Se-
mantics for Higher-Order Logic Programming Constructs, Proceeding

of the North American Conference on Logic Programming, Cleveland,

Ohio, October 1989, pp. 1090-1114.

[Deb93] S. K. Debray, QD-Janus : A Sequential Implementation of Janus in
Prolog, Software—Practice and Experience, Volume 23, Number 12,

December 1993, pp. 1337-1360.

[Fru92] T. Frihwirth, Constraint Simplification Rules, Technical Report
ECRC-92-18, ECRC Munich, Germany, July 1992 (revised version
of Internal Report ECRC-LP-63, October 1991), available by anony-
mous ftp from ftp.ecrc.de, directory pub/ECRC_tech_reports/reports,
file ECRC-92-18.ps.7).

[Fru94] T. Frihwirth, Temporal Reasoning with Constraint Handling Rules,
Technical Report ECRC-94-05, ECRC Munich, Germany, Febru-
ary 1994 available by anonymous ftp from ftp.ecrc.de, directory
pub/ECRC_tech_reports/reports, file ECRC-94-5.ps.Z.

[FrHa95] T. Frihwirth and P. Hanschke, Terminological Reasoning with Con-
straint Handling Rules, Chapter in Principles and Practice of Con-
straint Programming (P. Van Hentenryck and V.J. Saraswat, Eds.),
MIT Press, April 1995, (revised version of Technical Report ECRC-
94-6, ECRC Munich, Germany, February 1994, available by anony-
mous ftp from ftp.ecrc.de, directory pub/ECRC_tech_reports/reports,

file ECRC-94-6.ps.7).

19

[Fru9s]

[Her93]

T. Fruhwirth, Constraint Handling Rules, Chapter in ”Constraint Pro-
gramming: Basics and Trends” (A. Podelski, ed.), Springer LNCS 910,
March 1995, pp. 90ft.

B. Herbig, Eine homogene Implementierungsebene fuer einen hybriden
Wissensreprasentationsformalismus, Master Thesis, in German, Uni-
versity of Kaiserslautern, Germany, August 1993.

[JaMa94] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey,

[Mah87]

[MBF95]

[Nai85]

[Sar93]

[Shag9]

[Smo91]

Journal of Logic Programming, 1994:19,20:503-581.

Maher M. J., Logic Semantics for a Class of Committed Choice Pro-
grams, Proc of the Fourth Intl Conf on Logic Programming MIT Press
1987, pp. 858-876.

J.-R. Molwitz, P. Brisset and T. Fruhwirth, Planning Cordless Busi-
ness Communication Systems, I[EEE Expert Magazine, Special Track
on Intelligent Telecommunications, to appear December 1995.

Naish L., Prolog control rules, Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, California,

September 1985, pp. 720-722.

V. A. Saraswat, Concurrent Constraint Programming, MIT Press,

Cambridge, 1993.

E. Shapiro, The Family of Concurrent Logic Programming Languages,
ACM Computing Surveys, 21(3):413-510, September 1989.

G. Smolka, Residuation and Guarded Rules for Constraint Logic Pro-
gramming, Digital Equipment Paris Research Laboratory Research Re-
port, France, June 1991.

[SmTr94] Gert Smolka and Ralf Treinen (ed.), DFKI Oz Documentation Series,

[VH91]

Deutsches Forschungszentrum fur Kinstliche Intelligenz, Stuhlsatzen-
hausweg 3, D-66123 Saarbriicken, Germany, 1994, available via WWW
from http://ps-www.dfki.uni-sh.de/oz/.

P. van Hentenryck, Constraint Logic Programming, The Knowledge

Engineering Review, Vol 6:3, 1991, pp 151-194.

20

Appendix 1 - Complete Compilation Example

Compiling the following generic CHR code (which contains all types of rules)

% all options are turned off for simplicity

?- nodbgcomp. % no code for debugger produced
option(check_guard_bindings, off). % simple guard check
option(already_in_store, off).

option(already_in_heads, off).

constraints p/3,q/3.

rulel @ p(a,X,Y) ==> guard(a,X,Y,G) | body(a,X,Y,G,B).
rule2 @ p(b,X,Y) <=> guard(b,X,Y,G) | body(b,X,Y,G,B).
rule3 @ p(c,X,Y),q(c,Y,Z) ==> guard(c,X,Y,Z2,G) | body(c,X,Y,Z,G,B).
rule4 @ p(d,X,Y),q(d,Y,Z) <=> guard(d,X,Y,Z,G) | body(d,X,Y,Z,G,B).
rule5 @ p(e,X,¥)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).

label_with p(£f,X,Y) if guard(f,X,Y,G).
p(g,X,Y) :- body(g,X,Y,B).

yields the code given below (edited for readability, all directives have been
removed, some predicates renamed, comments have been added, variables have
been renamed automatically). Turning the option check guard bindings off
means that it is not checked if global variables are touched. The optional 'rulel
@’ piece of syntax allows to give names to rules.

Note that in the compiled code the order of the rules has changed, single
head atoms are moved ahead of multiple head atoms and simplification CHRs
ahead of propagation CHRs for efficiency reasons. The code is cluttered since
introduces a number of auxiliary predicates due to optimizations like exploiting
head matching and indexing as much as possible and avoiding nondeterministic
code. Furthermore, conjunctions are kept is short is possible by moving right
hand side subgoals down into the definitions of left hand side subgoals where
possible. The implementation of built-in labeling has not been optimized.

The built-in predicates used are =/2, var/1 and nonvar/1. The low-level
predicates used are execute guard/1, delay/2, get_delayed goals/2 and
check_and mark_applied/2. Their code is not given here. execute_guard/1 ba-
sically wraps a low-level check (that the delayed goals did not change) around
the execution of a guard. To optimize the search for a partner constraint,
get_delayed_goals/2 gets only the goals that delay on a variable occurring in
the first argument. The code of 1abeling/0 is not given here, it makes use of the
label with/3 clauses produced for each constraint. Code starts on next page.

21

%%% The following code has been produced by the CHR compiler

% constraints p/3,q9/3.
p(a, B, C) :- % entry point for constraint call
p_3(p(A, B, C), KillFlag, FiredPropagationCHRsList, Identifier).
% Identifier used in debuggers only

q(A’ B’ C) e
q_3(q(4, B, C), D, E, F).

%%% Label_with declaration for p / 3

% label_with p(£,X,Y) if guard(f,X,Y,G).
label_with(p(f, A, B), C, D) 7-
execute_guard(guard(f, A, B, E)), % check the guard

|
B

C = clause_p(f, A, B). % return associated Prolog predicate
%#h% Prolog clauses for p / 3

% p(g,X,¥Y) :- body(g,X,Y,B).
clause_p(g, A, B) :- % Prolog clause for constraint
body(g, A, B, C).

%h% CHR Rules for p / 3

p_3(p(4, B, C), D, E, F) :-
nonvar (D), % KillFlag set, constraint removes itself
]
% rule2 @ p(b,X,Y) <=> guard(b,X,Y,G) | body(b,X,Y,G,B).
p_3(p(b, A, B), C, D, E) 7-
execute_guard(guard(b, A, B, F)),
]
C = true, % set KillFlag
body(b, A, B, F, G). % execute body
% rule4 @ p(d,X,Y),q(d,Y,Z) <=> guard(d,X,Y,Z,G) | body(d,X,Y,Z,G,B).
p_3(p(d, A, B), C, D, E) 7-
get_delayed_goals(B, F), % get constraints delaying on B
p_3_1(F, [B], [G], H), % look for partner constraint
execute_guard(guard(d, A, B, G, I)),
]
C = true,
body(d, &, B, G, I, J).
p_3(p(4, B, C), D, E, F) :- % go for propagation CHRs
p_3_0(p(A, B, C), D, E, F).

p_3_1([q_3(q(d, A, B), C, D, E)IF], [Al, [G], H) 7- % found partner in list

var(C), % KillFlag of partner has not been set
[c, B, E] = [true, G, H]. % kill partner, return its arguments, id
p_3_1([AlB], C, D, E) :- % search for partner in constraints list

p_3_1(B, C, D, E).

22

% rulel @ p(a,X,Y) ==> guard(a,X,Y,G) | body(a,X,Y,G,B).

p_3_0(p(a, A, B), C, D, E) 7-
var(C), % KillFlag has not been set
check_and_mark_applied(p_3_0, D), % check if rule has been applied

% before, if not, add info to list D

execute_guard(guard(a, A, B, F)),
!
p_3_2(p(a, A, B), C, D, E), % try other CHRs
body(a, A, B, F, G).

p_3_0(A, B, C, D) 7- % previous propagation CHR not applicable
p_3_2(4, B, C, D). % try other propagation CHRs

% ruleb @ p(e,X,Y)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).
p_3_2(p(e, A, B), C, D, E) 7-

var(C),

',

get_delayed_goals(B, F), % get constraints delaying on B

p_3_2_4(F, C, p(e, A, B), D, E). % look for partner constraints
p_3_2(p(A, B, C), D, E, F) :- % previous propagation CHR not applicable

p_3_2_5(p(4, B, C), D, E, F). % try other propagation CHRs

p_3_2_4([q_3(q(e, &, B), C, D, E)IF], G, p(e, H, A), I, J) 7- % found partner
var(C), % KillFlag of partner has not been set
execute_guard(guard(e, H, 4, B, K)),
!
C = true, % kill partner
p_3_2_4(F, G, p(e, H, A), I, J), % try to apply rule to other partners
body(e, H, A, B, K, L).

p_3_2_4([AIB], C, D, E, F) :- Y% search for partner in list of constraints
p_3_2_4(B, ¢, D, E, F).
p_3_2_4([1, 4, B, C, D) :- % all constraints tried, continue with next CHR

p_3_2_5(B, A, C, D).

% rule3 @ p(c,X,Y),q(c,Y,Z) ==> guard(c,X,Y,Z,G) | body(c,X,Y,Z,G,B).
p_3_2_5(p(c, A, B), C, D, E) 7-
var(C),
|
get_delayed_goals(B, F),
p_3_2_5_6(F, C, p(c, A, B), D, E).
p_3_2_5(p(4, B, C), D, E, F) :-
p_3_2_5_7(p(A, B, C), D, E, F).
p_3_2_5_6([q_3(q(c, A, B), C, D, E)IF], G, p(c, H, A), I, J) ?-
var(C),
check_and_mark_applied(rule3, G, C, I, D), % check if rule has been
% applied before, if not, add info to lists I and D
execute_guard(guard(c, H, 4, B, K)),

|
’

p_3_2_5_6(F, G, p(c, H, 4), I, J),
body(c, H, A, B, K, L).

23

p_3_2_5_6([AlB], C, D, E, F) :-
p_3_2_5_6(B, C, D, E, F).
p_3_2_5_6([1, &, B, C, D) :-

p_3._2_5_7(B, A, C, D).

% last clause for redelaying the constraint
p_3_2_5_7(p(4, B, C), D, E, F) :-

(
var(D) % KillFlag still not set

->
delay([D, &, B, €1, p_3(p(4, B, C), D, E, F)) % delay constraint
true

).

%%% Rules handling for q / 3

% Compiled for q/3 are rule3, rule4 and ruleb
% Analogous to p/3 except for ruleb

% ruleb @ p(e,X,Y)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).
q_3(q(e, A, B), C, D, E) 7-

get_delayed_goals(A, F),

q_3_10(F, [Al, [G], H),

execute_guard(guard(e, G, 4, B, I)),

|

C = true,

body(e, G, A, B, I, J).
q_3(q(A, B, C), D, E, F) :-

q_3_8(q(A, B, C), D, E, F). % continue...

q_3_10([p_3(p(e, 4, B), C, D, E)IF], [B], [G], H) 7-
var(C),
[A, E] = [G, H].

q_3_10([AIB], C, D, E) :-
q_3_10(B, C, D, E).

% In the run-time system, built-in labeling is defined

labeling :-
(delayed_constraint(Constraint, KF),

label_with(Constraint, Goal, Nb),
|

KF = true,

call(Goal),

labeling

true

24

Appendix 2 - First Implementation

Here we shortly present an abstracted Prolog code for the first - now obsolete -
implementation of CHRs, a combination of a simple compiler and an interpreter
written in ECL‘PS® in summer 1991. There were no simpagation CHRs. First
simplification and propagation CHRs are preprocessed as follows, distinguishing
between single- and multi-headed rules:

Propagation Chrs
Single-headed
Head => Guard | Body
chr(propag,Guard,Body)
Multi-headed
Head,Partner => Guard | Body
chr(propag,CommonVar ,Partner,Guard,Body)

Simplification Chrs
Single-headed
Head <=> Guard | Body
chr(simplif,Guard,Body)
Multi-headed
Head,Partner <=> Guard | Body
chr(simplif,CommonVar,Partner,Guard,Body)

For each user-defined constraint occurring as a head of a CHR, the following
constraint goal is produced

constraint(ConstraintGoal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice))

where Schrs is the list of single-headed rules, and Mchrs the list of multi-
headed rules in the chr format as given above.

A constraint goal is activated if a variable in it or one of the flags Fired,
Multi, Choice gets bound.

% Fired flag got bound

constraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-

nonvar(Fired),
]

% Choice flag got bound

constraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-

nonvar (Choice),

|
’

(label_with_ok(Call) —>
Fired=fired,
call(Call)

25

true
),
constraint (Goal,Schrs,Mchrs,Call,
flags(Fired,Multi,Choicel))).

% Variable in constraint got bound

constraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-

got_bound(Goal),

]
do_single(Schrs,Fired,Schrsi),
constraint(Goal,Fired,Schrsi,Mchrs,Call,

flags(Fired,Multi,Choice)).

do_single(Schrs,Fired,Schrsi):- nonvar(Fired),!,
Schrsi1=[].
do_single([],Fired,Schrs1):-
Schrsi1=[].
do_single([Schr|Schrs],Fired,Schrsi):-
Schr=chr(Kind,Guard,Body),
evaluate(Guard,Result),
(Result=success —>
(Kind=simplif ->
Fired=fired

true

),

Schrsi=Schrsb,

call(Body)
;Result=suspend —>

Schrsi1=[Schr|Schrs2])
;Result=failure ->

Schrsi1=Schrs2

),
do_single(Schrs,Fired,Schrs2).

% Multi flag got bound

constraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-

nonvar (Multi),

|
do_multi(Mchrs,Fired,Multi,Mchrs1),
constraint (Goal,Schrs,Mchrsi,Call,

flags(Fired,Multil,Choice)).

do_multi(Mchrs,Fired,Multi,Mchrs1):—

nonvar(Fired),

N

Mchrsi=[].
do_multi([],Fired,Multi,Mchrs1):-

Mchrsi=[].

26

do_multi([Mchr|Mchrs],Fired,Multi,Mchrsl):-
Mchr=chr(Xind,Var,Partner,Guard,Body),
copy_term(Mchr,MchrCopy),
delayed_constraints(Var,Constraints),
find_goal(Partner,FiredPartner,Constraints),
evaluate(Guard,Result),
(Result=success —>
Multi=multi(fired),
(Kind=simplif ->
Fired=fired,FiredPartner=fired,
Mchrsi=Mchrs2
;Kind=propag ->
MchrCopy=chr(Kind, Var,PartnerC,GuardC,BodyC),
GuardCi=(PartnerC=\=Partner,GuardC),
Mchrsi=
[chr(Kind,Var,PartnerC,GuardC1i,BodyC) |Mchrs2]
),
call(Body)

Mchrsi=[Mchr|Mchrs2]

),
do_multi(Mchrs,Fired,Multi,Mchrs2).

In the interpreter, first all single-headed CHRs are executed, then all mutli-
headed rules and last the built-in labeling routine. This is achieved by a goal for
schedule/0 that is added to the end of each query and that activates constraint
goals to reduce with multi-headed rules or by built-in labeling by setting the
appropriate flags.

% Scheduling CHRs and Built-In Labeling (Making Choices)
% ?- Query,schedule.

schedule:- wake_multi,make_choice.
% Activate multi_headed Chrs

wake_multi:-
delayed_constraints(Constraints),
wake_multi(Signal,Constraints). % activate a constraint to reduce
% with multi-headed rules

wake_multi(Signal,Constraints):-
get_candidate(flags(Fired,Multi,Choice),Constraints,Constraintsl),
var(Fired), % constraint not killed yet

var(Multi), % multi-headed rules not applied yet

|
B

Multi=multi(Signal), % activate constraint for multi-headed rules

wake_multi(Signal,Constraintsi). % look for more constraints
wake_multi(Signal, _Constraints):- % no more constraints found
(var(Signal) -> true ; wake_multi). % restart if a rule fired

27

% Make a choice
% analoguous to wake_multi/O

make_choice: -
delayed_constraints(Constraints),
make_choice(Constraints).

make_choice(Constraints):-
get_candidate(flags(Fired,Multi,Choice),Constraints,Constraintsl),
var(Fired),

var(Choice),

|

Choice=choice,

(var(Fired) -> make_choice(Constraintsl) ; schedule). % If constraint
% not killed, find other constraint to label, else restart schedule

make_choice(_Constraints). % no more constraints for labeling found

28

Appendix 3 - Example

In this appendix we show the result of applying the translations to guarded rules
proposed in section 3 to three CHRs taken from a solver for inequalities (minmax).
The translation may differ in minor, unessential details from the one proposed
in the main body of the paper. All code is written in ECL'PS®using the CHRs
library.

handler trchr. % declare name of constraint handler

% original set of sample CHRs for inequalities ————-——-—-—=—=————=—————————————

constraints 1t/2,le/2. % declare constraints

1t(X,Y),1le(Y,X) <=> writeln(fail) | fail.

1t(X,¥)\1le(X,Y) <=> writeln(true) | true.

1t(X,Y),1e(Y,Z) ==> writeln(trans) | 1t(X,Z).

% a test query

:- subcall((1t(A,B),1le(B,C),1e(A,C),(true;1le(C,A))) ,R) ,writeln(R) ,fail ; true.

% CHRs embedded in propagation rules —————=———=——=—=—————————————— -

% KillFlag introduced

1t(A,B):- 1t(A,B,).
le(A,B):- le(A,B,).

constraints 1t/3,1le/3.

% Headl,Head2 <=> Guard | Body.

1t(X,Y,KF1),le(Y,X ,KF2) == % Kill flags not set so far
var (KF1) ,var (KF2) ,
writeln(fail)
|
dead=(KF1) ,dead=(KF2), % Bind kill flags to kill head constraints
fail.

% Head1\Head2 <=> Guard | Body.
1t(X,Y,KF1),le(X,Y ,KF2) ==
var (KF1) ,var (KF2) ,
writeln(true)

I
dead=(KF2), % Kill second head constraint only
true.

% Headl,Head2 ==> Guard | Body.
1t(X,Y,KF1),le(Y,Z KF2) ==
var (KF1) ,var (KF2) ,
writeln(trans)
|
1t(X,Z,KF3).

% CHRs embedded in simplification rules ——-——-—-——=-—=———————————————————————————
% PropagationList introduced

1t(4,B):- 1t(4,B,[1).
le(A,B):- 1e(A,B,[1).

constraints 1t/3,1le/3.

29

1t(X,Y,PL1),le(Y,X,PL2) <=>
writeln(fail)
|
fail.

% Head1\Head2 <=> Guard | Body.
1t(X,¥,PL1),le(X,Y,PL2) <=>
writeln(true)
|
true,
1t(X,Y,PL1).

% Headl,Head2 ==> Guard | Body.
1t(X,Y,PL1),le(Y,Z,PL2) <=>
not_member (trans-1le(Y,Z)-2,PL1), % rule n with second head Head2 applied ?
not_member (trans-1t(X,Y)-1,PL2), % rule n with first head Headl applied ?
writeln(trans)
|
1t(X,z,[1),
1t(X,Y,[trans-1e(Y,Z)-2|PL1]),
le(Y,Z,[trans-1t(X,Y)-1|PL2]).

not_member(E,[]) ?- true.
not_member (E,[E1|L]) ?- not (E==E1), not_member(E,L).

% CHRs as guarded rules with search by backtracking in guard -----------------
% delayed_constraint/2 introduced

1t(4,B):- 1t(4,B,[1).
le(A,B):- 1e(A,B,[1).

constraints 1t/3,1le/3.

16(X,Y,PL1) <=>
delayed_constraint(le(Y,X,PL2) ,KF),
writeln(fail)
|
dead=KF,
fail.

1e(Y,X,PL2) <=>
delayed_constraint(1t(X,Y,PL1) ,KF),
writeln(fail)
|
dead=KF,
fail.

% Head1\Head2 <=> Guard | Body.
1t(X,Y,PL1) <=>
delayed_constraint(le(X,Y,PL2) ,KF),
writeln(true)
|
dead=KF,
true,
1t(X,¥,PL1).

le(X,Y,PL2) <=>
delayed_constraint (1t(X,Y,PL1),_KF),
writeln(true)

true.

% Headl,Head2 ==> Guard | Body.
1t(X,Y,PL1) <=>

30

delayed_constraint(le(Y,Z,PL2),_KF),
not_member (trans-le(Y,Z)-2,PL1),
not_member (trans-1t(X,Y)-1,PL2),
writeln(trans)
|
1t(X,Z,[1),
1t(X,Y,[trans-1le(Y,Z)-2|PL1]) .

1e(Y,Z,PL2) <=>

delayed_constraint (1t(X,Y,PL1),_KF),
not_member (trans-le(Y,Z)-2,PL1),
not_member (trans-1t(X,Y)-1,PL2),
writeln(trans)
|
1t(X,Z,[1),
le(Y,Z,[trans-1t(X,Y)-1|PL2]).

not_member(E,[]) ?- true.
not_member (E,[E1|L]) ?- not (E==E1), not_member(E,L).

delayed_constraint(Constraint, KF) :-
delayed_goals(DG),
member (C, DG),
C =.. [_Pred, Constraint, KF, _PA, _Nb].

% CHRs as guarded rules with explicit search for partner constraint -----------
% delayed_constraints/1, try_each_partner/4, try_one_partner/4 introduced

option(check_guard_bindings, off). % needed for nested guards

1t(4,B):- 1t(4,B,[1).
le(A,B):- 1e(A,B,[1).

constraints 1t/3,1le/3.

fail @ 1t(X,Y,PL1) <=>
delayed_constraints(List),
try_each_partner(fail,1t(X,Y,PL1),List,1le(Y,X,PL2)-KF) ,nonvar(PL2)
|
dead=KF,
fail.

fail @ le(Y,X,PL2) <=>
delayed_constraints(List),
try_each_partner(fail,le(Y,X,PL2),List,1t(X,Y,PL1)-KF) ,nonvar(PL1)
|
dead=KF,
fail.

% Head1\Head2 <=> Guard | Body.

true @ 1t(X,Y,PL1) <=>

delayed_constraints(List),

try_each_partner(true,1t(X,Y,PL1),List,1e(X,Y,PL2)-KF) ,nonvar(PL2)
|

dead=KF,
true,

1t(X,Y,PL1).

true @ le(X,Y,PL2) <=>

delayed_constraints(List),

try_each_partner(true,le(X,Y,PL2),List,1t(X,Y,PL1)-KF) ,nonvar(PL1)
|

31

true.

% Headl,Head2 ==> Guard | Body.
trans @ 1t(X,Y,PL1) <=>
delayed_constraints(List),
try_each_partner(trans1,1t(X,Y,PL1),List,le(Y,Z,PL2)-KF) ,nonvar(PL2)
|
1t(X,z,[D,
1t(X,Y, [trans-1e(Y,Z)-2|PL1]) .

trans @ le(Y,Z,PL2) <=>
delayed_constraints(List),
try_each_partner(trans2,le(Y,Z,PL2),List,1t(X,Y,PL1)-KF) ,nonvar(PL1)
|
1t(X,Z,[D),
le(Y,Z,[trans-1t(X,Y)-1|PL2]).

not_member(E,[]) ?- true.
not_member (E,[E1|L]) ?- not (E==E1), not_member(E,L).

delayed_constraints(List) :-
delayed_goals(DG),
delayed_constraints(DG,List).

delayed_constraints([1,[]1).
delayed_constraints([CIDG], [Constraint-KF|List]) :-
C =.. [_Pred, Constraint, KF, _PA, _Hib],
1
delayed_constraints(DG,List).
delayed_constraints([CIDG],List) :-
delayed_constraints(DG,List).

constraints try_each_partner/4, try_one_partner/4.

try_each_partner(ll,Headl, [H|HL] ,Partner) <=>
try_one_partner(ll ,Headl ,H,Partner), % try next candidate
try_each_partner(l,Head1,HL,Partner) .

try_each_partner(ll,Headl, [],Partner) <=> true. Y% all candidates tried

isfree(le(_,_,PL)-_KF) 7- var(PL).
isfree(1t(_,_,PL)-_KF) 7- var(PL).

try_one_partner(ll ,Headl ,Head2,Partner) <=>
not isfree(Partner) | true. % partner already found

try_one_partner(fail,1t(X,Y,PL1),1le(Y,X,PL2)-KF,Partner) <=> isfree(Partner),

writeln(fail)

|

Partner=le(Y,X,PL2)-KF. % return partner constraint found
try_one_partner(fail,1t(X,Y,PL1) ,H-KF,Partner) <=>

not (% H was not the appropriate partner

==le(Y,X,PL2),

writeln(fail))

|

true.
try_one_partner(fail,le(X,Y,PL1),1t(Y,X,PL2)-KF,Partner) <=> isfree(Partner),

writeln(fail)

|

Partner=1t(Y,X,PL2)-KF.
try_one_partner(fail,le(X,Y,PL1) ,H-KF,Partner) <=>

not (

==1t(Y,X,PL2),

writeln(fail))

32

true.

try_one_partner(true,1t(X,Y,PL1),1le(X,Y,PL2)-KF,Partner) <=> isfree(Partner),
writeln(true)
|
Partner=le(X,Y,PL2)-KF.
try_one_partner(true,l1t(X,Y,PL1) ,H-KF ,Partner) <=>
not (
==1e(X,Y,PL2),
writeln(true))
|
true.
try_one_partner(true,le(X,Y,PL1),1t(X,Y,PL2)-KF ,Partner) <=> isfree(Partner),
writeln(true)
|
Partner=1t(X,Y,PL2)-KF.
try_one_partner(true,le(X,Y,PL1) ,H-KF ,Partner) <=>
not (
==1t(X,Y,PL2),
writeln(true))
|

true.

try_one_partner(transl,1t(X,Y,PL1),1le(Y,Z,PL2)-KF,Partner) <=> isfree(Partner),

not_member (trans-le(Y,Z)-2,PL1),

not_member (trans-1t(X,Y)-1,PL2),

writeln(trans)

|

Partner=le(Y,Z,PL2)-KF.
try_one_partner(transil,1t(X,Y,PL1) ,H-KF,Partner) <=>

not (

not_member (trans-le(Y,Z)-2,PL1),

not_member (trans-1t(X,Y)-1,PL2),

==1e(Y,Z,PL2),

writeln(trans))

|

true.
try_one_partner(trans2,le(Y,Z,PL2) ,1t(X,Y,PL1)-KF,Partner) <=> isfree(Partner),

not_member (trans-le(Y,Z)-2,PL1),

not_member (trans-1t(X,Y)-1,PL2),

writeln(trans)

|

Partner=1t(X,Y,PL1)-KF.
try_one_partner(trans2,le(Y,Z,PL2) ,H-KF ,Partner) <=>

not (

not_member (trans-le(Y,Z)-2,PL1),

not_member (trans-1t(X,Y)-1,PL2),

==1t(X,Y,PL1),

writeln(trans))

|

true.
% Propagation CHRs as conditionals ———=————=——=—— == === ————————— -

% Simple Conditional

% does not provide for local variables
constraints ifthen/2.

ifthen(Condition,Consequence) <=> call(Condition) | call(Consequence).

% does provide for local variables
constraints ifthen/3.

33

ifthen(GlobalVars,Condition,Consequence) <=>
copy_term(GlobalVars-Condition,GlobalVars-Conditionl), % new local vars
call(Conditionl)
I
Condition=Conditionl, % unify old and new local variables
call(Consequence) .

constraints 1t/2,le/2.
constraints 1t1/2,lel/2. % internal names

1t1(X,Y) <=>
delayed_constraint(le1(Y,X) ,KF),
writeln(fail)
I
dead=KF,
fail.

1e1(Y,X) <=>
delayed_constraint(1t1(X,Y) ,KF),
writeln(fail)
I
dead=KF,
fail.

% Head1\Head2 <=> Guard | Body.
1t1(X,Y) <=>
delayed_constraint(lel(X,Y),KF),
writeln(true)
|
dead=KF,
true,
1t1(X,Y).

lel1(X,Y) <=>
delayed_constraint(1t1(X,Y),_KF),
writeln(true)
I

true.

% Headl,Head2 ==> Guard | Body.
1t(4,B) <=>
1t1(A,B),
ifthen(
1t(A,B),
(
1t(A,B)=1t(X,Y),
delayed_constraint(lel(Y,Z),_KF),

writeln(trans)
),
1t(A,2)

).

le(A,B) <=>

lei(A,B),

ifthen(

le(A,B),

(

le(A,B)=1le(Y,Z),
delayed_constraint(1t1(X,Y),_KF),
writeln(trans)

),
1t(X,2)

34

delayed_constraint(Constraint, KF) :-
delayed_goals(DG),
member(C, DG),
C =.. [_Pred, Constraint, KF, _PA, _Iib].
% Built-In Labeling —————===—== === == e

constraints labeling/0.

% label_with le(X,Y) if writeln(label).
% le(A,B):- A=B ; 1t(A,B).

labeling, lel(X,Y) <=> writeln(label) | le(X,Y)=1le(A,B), (A=B ; 1t(A,B)), labeling.

% End of handler trchr

35

