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Abstract

We introduce polymorphically typed logic programs, an integration of a polymorphic type system with
logic programs. The first-order notion of predicates is extended to parametric predicates, which are pa-
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program. We present a type-checking algorithm for verifying that a program is indeed well-typed. Finally
we discuss some extensions to the type system.
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1 Introduction

Types in logic programming have been used for approximating untyped programs by type inference [BJ88,
Fru89b, HJ90, Mis84, PR89, Zob87] as well as for verifying well-formedness of typed programs by type
checking [Bru82, DH88, Fru90, Han89, Nai87, MO83, Smo88, YS87a]. In the type inference approach,
a type is inferred that is a set of atoms that covers (hence approximates) the success set of the logic
program. In the type checking approach, types are named syntactic objects defined by the user to restrict
the denotation of a predicate. This paper is about type checking.

Type systems for logic programming languages are usually considered to be a tool put on top of the
language. The type language and the typed language are only loosely coupled. In the approach taken in
our paper, we suggest a tight integration of polymorphic types and logic programs into a single language,
polymorphically typed logic programs. This approach makes use of experiences with the type systems of
[YS87a, YS89] and [Fru89a, Fru90]. Its main contributions are:

• A truly polymorphic type language that supports subtypes as well as types as parameters.

• Polymorphic predicates which are parameterized by types (including type variables).

• Types that can be freely incorporated into the program as type conditions.

• Head-only type completion as a way to define semantics for polymorphically typed logic programs
in terms of the semantics of logic programs.

• An intuitive notion of well-typing based on an approximation of the denotation of the program.

• Algorithms for type checking polymorphically typed logic programs.

• As a by-product, fixpoint semantics for the language HiLog [CKW89].

The idea of types in logic programming traces back as early as 1982, when [Bru82] suggested to add
‘useful redundancy’ to logic programs in the form of mode and type declarations. In their classical
paper, [MO83] adopted the outlook of [Mil78] that ‘well-typed programs do not go wrong’, where well-
typing is a well-formedness condition stated through inference rules. They proved for their ML-style type
system, that if the program and the initial goal are well-typed, then variables at each resolution step can
only be instantiated to terms which are allowed by their types. Unfortunately, this property does not
hold for extensions of Mycroft’s and O’Keefe’s type checker like subtypes [DH88, Fru89a, Fru90] or type
declarations for higher-order predicates [Han89]. Smolka [Smo88] developed a typed predicate logic with
subtyping relation. Based on it he defines syntax and semantics of relational programs computing on
polymorphically order-sorted types.

More recently, [YS87a, YS89] introduced the intuitive idea that a program is well-typed if its type dec-
larations approximate the denotation of the program. It has been shown in [YS87a] that abstraction of
the fixpoint semantics provides a useful and intuitive characterization of types and well-typing in logic
programs. This choice of the notion of well-typing is the main factor that makes this work different from
others that were mentioned. In contrast to the work above about subtyping, types are identified with the
sets that they represent. A type is a subset of another type if and only if its denotation is a subset of the
other’s one. Hence subtyping comes for free and is completely unrestricted. However, as the type language
lacks parametric polymorphism, type dependencies between different arguments cannot be expressed and
the definition of types with similar structure turns out to be cumbersome.

This and other recent work on type checking for logic programs has either shown or acknowledged the
need for flexible type languages that support inclusion polymorphism (the possibility to define subtypes)
as well as parametric polymorphism (the possibility to define types with parameters that take types as
arguments). In other words, full polymorphism in the type language is essential for the practicality of
a typed language. This paper brings full polymorphism to logic programs themselves, not only to their
types. Parametric predicates enable a programming style that can take full advantage of type information.
Calling a parametric predicate with specific types creates an instance of the predicate with the appropriate
type conditions enforced on its arguments.
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From the beginning the developments regarding types in logic programming to a great extent parallel
those of types in functional programming (e.g. [MO83] was influenced by [Mil78]). Bearing this in
mind, parametric predicates can be seen as analogous to polymorphic functions in typed lambda calculus
[GLT89, Rey85], where beta reduction is replaced by resolution.

The move from non-parameterized programs to parameterized programs complicates the syntax, the
semantics, the well-typing definition, and the type checking algorithms. We show that the syntax and
the semantics are decidable while admitting a powerful type language. Well-typing a predicate definition
guarantees that in all contexts the predicate will be well-typed, i.e. all its ground type instances, over
any vocabulary, are well-typed. The type checking algorithm combines an extension of the one in [YS87a]
and a novel one that checks inclusion of parameterized types.

A typed logic program includes type definitions for function symbols and type declarations for predicates.
The syntax of logic programs is extended to a simple instance of HiLog [CKW89] in order to accommodate
parametric predicates. We stay in first-order logic with this move, because HiLog provides a second-order
syntax while retaining a first order-semantics [CKW89].

For example, the polymorphic version of the predicate append(L1,L2,L3) that is true if the concatenation
of the lists L1 and L2 yield the list L3 can be defined as:

List(τ) ::= [] ; [ τ |List(τ)].

procedure append(τ)(List(τ),List(τ),List(τ)).

append(τ)([],L,L).

append(τ)([X|L1],L2,[X|L3]) ← append(τ)(L1,L2,L3).

The type definition defines a recursive, polymorphic type List(τ) to be either the empty list [] or the
cons-structure [ | ], where the first argument is a term of type τ and the second argument is a term of
type List(τ). The type of the elements of the list is left open as a type variable τ . The type declaration
declares that the predicate append(τ) takes lists of type τ in its three arguments, where the type of the
elements, τ , is left unspecified. Note that the type variable τ is added to the predicate as type argument.
This expresses that the predicate is polymorphic in the type of the elements of the lists it deals with. In
other words, append(τ) can concatenate two lists as long as their elements have a common type τ . For
example, given the following type definitions for natural and positive numbers:

Nat ::= 0 ; s(Nat).

Pos ::= s(Nat).

we can call the predicate as

← append(Nat)([s(0),s(s(0))],[0],L).

and as

← append(Pos)([s(0),s(s(0))],[0],L).

The first goal will succeed as expected as Nat is a common type for all the elements of the list, while the
second goal is ill-typed and should fail, as the only element of the list [0] is not of type Pos.

The semantics of a typed logic program is defined in terms of the semantics of its type completion, a
transformation from typed programs to untyped programs. Transformation of many-sorted and order-
sorted logic languages to first-order languages is a well-known way to define semantics for the sorted
language in terms of the unsorted language [Llo87]. A standard kind of type completion has been used in
[YS87a, XW88, Nai87]. It turned out that this standard type completion has drawbacks, as it well-types
predicates with non-intuitive type declarations. In [YS89] this problem was overcome by suggesting a
modified type completion which just restricts head-only variables (i.e., variables that appear only in the
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head of a clause) to their types, while standard type completion restricts all arguments of the head. In
this paper, we substantially extend the idea of head-only type completion to polymorphically typed logic
programs.

For example, the head-only type completion of the program for append(τ) is:

list(τ)([]).

list(τ)([X|L]) ← τ(X),list(τ)(L).

append(τ)([],L,L) ← list(τ)(L).

append(τ)([X|L1],L2,[X|L3]) ← τ(X),append(τ)(L1,L2,L3).

Type definitions have been translated into logic clauses and the type declaration has been incorporated
in the predicate via explicit type conditions. In our proposal, the run-time type checks performed by the
type conditions are not seen as annoyance, but as integral part of the typed logic programming language.
Note that exactly the head-only variables are the reason why predicates may be under-specified and these
are the ones for which type conditions are added. For example, the first clause of the usual untyped
append program does not make any statement about the types of the second and the third arguments.
Hence a goal like ← append([],a,a) succeeds — a fact not necessarily intended by the programmer. In
a well-typed program, however, such a goal will fail, because a is not of type List(τ) for any τ .

The rest of the paper is organized as follows: In the next section we define the syntax of typed logic
programs. In section 3 we give the semantics of typed logic programs in terms of their type completion.
Section 4 defines well-typedness of programs, describes an algorithm for type checking and gives a justi-
fication for type completion. Section 5 shortly discusses some extensions of the type language. Section 6
concludes the paper. Finally, the appendix presents the detailed proofs of the two theorems in the paper.

2 Syntax

In this section we define the syntax of type definitions and type declarations as well as of parametric and
typed logic programs. Related terminology is introduced.

We assume a first order language L with a fixed set of (data) variables, function symbols (including
constants) and predicates. We also assume a type language T with a fixed set of type variables1 and type
constructors (including type constants). We use small Greek letters e.g. τ1, τ2, . . . for type variables and
slanted strings beginning with capital letters e.g. Int, Nat, List/1, . . . for type constructors.

As usual, a term is either a variable or a function symbol of arity n applied to n terms (n ≥ 0).

Analogously, a type is either a type variable or a type constructor of arity n applied to n types (n ≥ 0).
A type constant is a type constructor of arity 0. A type is ground if it does not contain type variables.
An example of a ground type is BTree(List(Nat)) and a non-ground type is BTree(τ).

We extend predicates to type parametric predicates by adding type arguments, i.e. arguments that can
take types.

Definition. A type parametric predicate of arity n is a first order logic predicate p of arity n parameterized
by zero, one or more types Ti written as:

p(T1,T2,. . .,Tm) (m ≥ 0)

Predicates with a different number of type arguments are considered to be different.

1Also called type parameters in the literature
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2.1 Type Definition

Type definitions and type declarations are given in the BNF-style syntax of [YS87a] which we extend
with type arguments to express parametric polymorphism.

Definition. A type definition for a type constructor c of arity n is of the form

c(τ1,. . .,τn) ::= f1(T 1
1 , . . . , T

1
n1
); . . . ; fk(T k

1 , . . . , T
k
nk
) (n, nj ≥ 0, k ≥ 1)

where the left hand side (l.h.s.) is a type constructor c applied to n type variables τi. The right hand
side (r.h.s.) is a union of k function symbols fj applied to types as arguments.

The type definition states that the type constructor c is polymorphic in n parameters and that its
denotation contains terms of the form fj(t

j
1, . . . , t

j
nj
) provided their arguments are of the type specified.

Example. Given the following type definitions:

Evenlist(τ1, τ2) ::= [] ; [τ1 | Oddlist(τ1, τ2)].

Oddlist(τ1, τ2) ::= [τ2 | Evenlist(τ1, τ2)].

BTree(τ) ::= empty ; tree(τ ,BTree(τ),BTree(τ)).

where the type Evenlist(τ1,τ2) includes all lists of the form [t1, . . . , t2m], such that t2i is of type τ2 and
t2i+1 is of type τ1 for (0 ≥ i ≥ 2m). The type BTree(τ) is the type of all binary trees whose nodes can
take terms of type τ .

In the rest of the paper, we assume well-formed type definitions, which fulfill the following requirements:

1. For each type constructor, there is exactly one type definition.

2. A type variable that occurs on the r.h.s. of a type definition also occurs on its l.h.s.

3. The type variables on the l.h.s. of a type definition are different from each other.

4. The function symbols on the r.h.s. of a type definition are different from each other.

5. The type constructors in a program can be assigned a well-formed ranking (as defined below).

Explanation. Requirement 2 means that there are no local type variables. This requirement is called type
transparency in [HT90] and type preserving in [Han89]. All type variables are assumed to be universally
quantified over all possible types. We do not think that the advantages of local type variables would
justify the resulting complications for both the theory of the typed language and the implementation of
the algorithms.

For the same reasons we restrict the left-hand sides to be most general, i.e. (requirement 3) to be type
constructors applied to different type variables (and not arbitrary types).

Not requiring different function symbols on the r.h.s. of a type definition (requirement 4) would increase
the complexity of the algorithms involving types and would not add to the readability of such type
definitions, although it might be more precise. However, we do allow overloading, i.e. a function symbol
can occur in more than one type definition.

We require the type constructors appearing in a program to have a ranking. The ranking condition
(requirement 5) slightly limits the use of recursion in type definitions so that a decidable class of types is
obtained.

Definition. Given a program P , a ranking r is a function from the type constructors in P to positive
integers. It is well-formed if the rank of each type constructor appearing on the r.h.s. of the type definition
is non-increasing whenever it is applied to type variables only and decreasing otherwise, i.e. it is well-
formed if for every type constructor c in the program whose type definition contains a type constructor
ci on the r.h.s. the following holds:
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• r(c) ≥ r(ci), if ci is applied to type variables,

• r(c) > r(ci), otherwise.

Example. Below we have that r(List) = 1, r(Matrix) = 2 and r(Crazy) = 3.

Matrix(τ) ::= [] ; [List(τ) | List(List(τ)].

Crazy(τ) ::= foo(List(Matrix(List(τ)))).

However, a type like

Cf(τ) ::= [] ; [τ | Cf(T(τ))].

is not well-formed, because the ranking of Cf on the r.h.s. must be less than the ranking of Cf on the
l.h.s., which is a contradiction. As the denotation of types can be represented by automata, equivalence of
such types would correspond to the open problem of the equivalence of deterministic push-down automata
[Sol78].

2.2 Type Declaration

Type declarations relate predicates to the type of their arguments.

Definition. A type declaration for a predicate p(τ1,. . .,τm) of arity n has the form

procedure p(τ1,. . .,τm)(T1,. . .,Tn). (n,m ≥ 0)

where τi are type variables and Tj are types. The type declaration states that the predicate p(τ1,. . .,τm)
is polymorphic in m parameters and that its j-th argument has type Tj. Again, we only consider well-
formed type declarations, where the τi’s are different and where any type variable that occurs in Ti is one
of τ1,τ2,. . .,τm. Also, for each predicate, there is exactly one type declaration.

Example. A predicate tree to list(τ) that flattens a binary tree into a list could be declared as:

procedure tree to list(τ)(BTree(τ),List(τ)).

Note that a type declaration can be viewed as a kind of type definition for the type procedure. This
interpretation unifies typing for functions and predicates and therefore enables the straightforward typing
of meta-programs [Fru90].

2.3 Typed Logic Programs

The syntax of parametric and typed logic programs is an extension of first-order logic programs in that
type arguments are added to predicates and in that types (including type variables) may be used as unary
predicates. This extension can be easily accommodated in HiLog [CKW89] as a proper subset of it.

The alphabet of a HiLog language contains disjoint sets of logical symbols and variables. Unlike other
logic languages, HiLog does not distinguish between predicates and function symbols.

Definition. A HiLog term is either a logical symbol, a variable or t(t1, . . . , tn), where t, t1, . . . , tn are
HiLog terms. An atomic HiLog formula (atom) is a HiLog term. A HiLog program is a finite set of HiLog
clauses, which are built from HiLog atoms in the usual way [Llo87].

Example. The following is a notorious HiLog term (atom):

Z(b,f(Y,c)(d,X))(r,X(s,t),t(t))
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Within the HiLog language, we can now define parametric and typed logic programs.

Definition. A parametric logic program is a (finite) set of parametric clauses of the form

H ← B1,B2,. . .,Bn. (n ≥ 0)

where the head atom H is of the form

p(τ1,τ2,. . .,τk)(t1,t2,. . .,tr) (k, r ≥ 0)

where τi are different type variables and tj are terms. And where Bi are the body atoms of the form

q(T1,T2,. . .,Tl)(t′1,t
′
2,. . .,t

′
m) (l,m ≥ 0) or T(t′)

where T and Ti are types whose type variables are contained in {τ1, . . . , τk} and t′ and t′j are terms.

Definition. A typed predicate definition for p is the set that consists of a type declaration for p and of
clauses whose head atom has the predicate p. There are no local type variables in the clauses.

We assume that type variables are universally quantified over types and that their scope is a predicate
definition. Data variables are treated as usual: They are universally quantified over terms and their scope
is a program clause.

Example. The predicate tree to list can be defined as

procedure tree to list(τ)(BTree(τ),List(τ)).

tree to list(τ)(empty,[]).

tree to list(τ)(tree(X,LT,RT),[X|L3]) ←

tree to list(τ)(LT,L1),

tree to list(τ)(RT,L2),

append(τ)(L1,L2,L3).

Here is an example that uses a specific instance of the predicate:

sum tree(T,N) ← tree to list(Nat)(T,L), sum list(L,N).

Definition. A typed logic program is a union of typed predicate definitions and type definitions for each
type constructor occurring in the program.

3 Semantics

In this section we define semantics of typed logic programs in terms of their head-only type completion,
which transforms a typed logic program into a parametric logic program. As parametric logic programs are
instances of HiLog programs, we give fixpoint semantics for HiLog programs. We employ the well-known
notion of types based on the concept of tuple-distributivity [Mis84]. A tuple-distributive abstraction of
the fixpoint operator [YS87a] allows us to relate types to the denotation of a parametric logic program.

3.1 Fixpoint Semantics of HiLog

By defining fixpoint semantics of HiLog programs we can give a denotation to type completed logic
programs, as they form a sublanguage of HiLog. The fixpoint semantics is almost identical to the fixpoint
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semantics for first-order logic programs, but the original work on HiLog [CKW89] gave only proof-theoretic
semantics for the language.

The Herbrand universe, HL, of a HiLog language, L is the set of all ground HiLog terms that can be
constructed from the logical symbols of L. Since terms are also atoms and vice versa, the Herbrand base,
BL, is identical to HL.

It follows from Chen et. al. [CKW89] that a ground atom G is in the minimal Herbrand model of a HiLog
program P if and only if there exists a refutation of P ∪ {G}.

Definition. We define an operator TP , which is syntactically identical to van Emden and Kowalski’s
[vEK76], except that it operates on another domain:

TP : 2BL →2BL

TP (I ) = {A ∈ BL | A ← B1,B2,. . .,Bn &L C, C ∈ P, and B1,B2,. . .,Bn ∈ I }.

where A &L B means that A is a ground instance of B over BL.

Following Lloyd [Llo87] it can easily be shown that the least fixpoint of TP is identical to the minimal
Herbrand model (denotation) of the program.

3.2 Head-Only Type Completion

Head-only type completion translates type definitions into program clauses and adds type conditions,
which are derived from type declarations, to the body of existing clauses. This idea was proposed in
[YS89] for a non-parametric type system. In subsection 4.1 we will define well-typing of a typed program
as a condition on the type completed program.

Type definitions are translated into unary HiLog predicates, a representation suggested in [Fru89a].

Definition. The type completion of a type definition of the form

T ::= f1(T 1
1 , . . . , T

1
n1
); . . . ; fk(T k

1 , . . . , T
k
nk
)

is a set of parametric clauses defining the type predicate T :

For each fi(Ti
1,. . .,T

i
ni
) a type clause of the form

T(fi(X1,. . .,Xni)) ← Ti1(X1),. . .,T
i
ni
(Xni).

is constructed, where Xi are different data variables.

Definition. The head-only type completion of a typed program is a parametric program, called head-only
type completed program, which is defined as follows:

• Each type definition is translated into a type predicate as defined above.

• Each type declaration is removed, as it is incorporated into the program clauses.

• Each program clause (H ← B) is transformed into a clause
H ← T1(X1),T2(X2),. . .,Tn(Xn),B. (n ≥ 0). A type condition Ti(Xi) is added for each head-
only occurrence of a data variable Xi, where Ti is the type of Xi according to the type declaration

We use the algorithm for induced types (specified in subsection 4.2) to find out the right Ti. If there is
no induced type for a variable, then no type condition is added for that variable2.

2The clause is ill-typed in this case, as we will see in subsection 4.2
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The run-time effect of type conditions is that of type checking the instances of head-only variables,
restricting the denotation of the transformed predicates. Together with a definition of well-typing this
guarantees that ill-typed goals can never succeed as they either will not unify with any clause head or
will not pass the type conditions.

Example. The head-only type completion of the program for tree to list is:

BTree(τ)(empty).

BTree(τ)(tree(X,Y,Z)) ← τ(X),Btree(τ)(Y),BTree(τ)(Z).

list(τ)([]).

list(τ)([X|L]) ← τ(X),list(τ)(L).

tree to list(τ)(empty,[]).

tree to list(τ)(tree(X,LT,RT),[X|L3]) ←

τ(X),

tree to list(τ)(LT,L1),

tree to list(τ)(RT,L2),

append(τ)(L1,L2,L3).

append(τ)([],L,L) ← list(τ)(L).

append(τ)([X|L1],L2,[X|L3]) ← τ(X),append(τ)(L1,L2,L3).

Remark. Type completed logic programs can be easily translated into first-order logic programs by
applying the following transformation:

• Each type atom3 of the form T(t), where T is a type and t is a term, is replaced by type(T,t),
where type is a new binary predicate.

• Each other atom of the form p(τ1,τ2,. . .,τk)(t1,t2,. . .,tr) is replaced by
pred(p(τ1,τ2,. . .,τk),t1,t2,. . .,tr), where pred is a set of new predicate symbols of arity r + 1
(k, r ≥ 0).

3.3 Regular Types

One way to approximate the denotation of a program uses the notion of tuple-distributivity [Mis84]. The
tuple distributive closure of a set is an approximation of the initial set where argument dependencies are
eliminated.

Definition. (Adapted from [HJ90]). Let S be a set of ground HiLog terms. The tuple distributive closure
(or cartesian closure) of S, written α(S), is recursively defined as:

α(S) := {c : c is a constant, c ∈ S} ∪ {f(t1,. . . , tn) : ti ∈ α(f
−1
n,i (S)), 1 ≤ i ≤ n}.

where f ranges over the HiLog function symbols in S and f−1
n,i(S) is defined as {ti : f(t1, . . . , ti,. . . , tn) ∈ S}.

The recursive application of α takes care of nested terms.

A set S is tuple distributive if S = α(S).

Example. Let S be {f(a,b),f(c,d)} then α(S) = {f(a,b),f(a,d),f(c,b),f(c,d)}.

3I.e. atoms in type predicates and atoms appearing as type conditions in program clauses
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For the practical purpose of type checking, we are interested in algorithms for intersection, tuple-
distributive union and equivalence of (the sets denoted by) types, which do not exist for tuple-distributive
languages4. Therefore we restrict our attention to a well-known subclass of tuple-distributive sets, the so-
called regular sets. Algorithms for the intersection, union and equivalence of regular languages [AHU74]
are known.

Definition. A set of terms is regular iff it is the denotation of a type constant in some set of type
definitions.

Note that the type definition of a type constant is in standard BNF-syntax. Their type completion are
regular unary predicate logic programs [Yar87b], they can also be represented by finite automata [AHU74]
(suggested by [Mis84]) as well as deterministic root-to-frontier tree automata [Tha73]. Note that regular
sets are closed under intersection and tuple-distributive union (but not under union).

Definition. Given a program P . The denotation of a ground type T in P is defined by
[[T ]]P = {t | T (t) is true in the type completion of the type definitions in P}.

Theorem 1. The denotation of a ground type is regular.

Proof Outline. Given a type completed program P , we show with the help of the ranking condition that
only a finite number of type ground instances of type definitions is needed to compute the denotation of
any ground type. By mapping each ground type occurring in these instances to new type constants, we
arrive at a finite set of type definitions.

Lemma. Given a program P and a ground type T , then the set of types occurring in any derivation of
T is finite.

Proof Outline. (Full proof in the appendix). The idea is to construct a finite set of types ST , that
includes T , such that every derivation step applied to any element in the set yields only elements in the
set, i.e. the set is closed under derivation.

The importance of the theorem lies in the fact that it supports the basic idea for tackling general types
in type checking. The idea is to look at all their ground instances, so that we get rid of type variables.

3.4 Abstraction of TP

.

We recall the approximation of TP introduced in [YS87a], which relates types to the denotation of typed
logic programs.

Definition. Let P be a program and S a set of atoms. Then:

Tα
P (S)

def
== α(TP (S))

We say that Tα
P (S) is inferred by P relative to S.

Lemma. Tα
P is monotonic and continuous over the set of tuple distributive elements in 2BL .

Proof. Analogous to the proof for TP in standard logic programming theory [Llo87].

The least fixpoint of a program Tα
P is Tα

P ↑ ω, and is denoted by [[P ]]α.

Example. Let P be the program:

p(a,b). q(e) ← p(a,d).

p(c,d).

Then
4For example, the set of all prime numbers represented by natural numbers is tuple-distributive

9



[[P ]]= {p(a,b),p(c,d)}.

α([[P ]]) = {p(a,b),p(a,d),p(c,b),p(c,d)} = α(TP ↑1 ) = Tα
P ↑1

[[P ]]α = {p(a,b),p(a,d),p(c,b),p(c,d),q(e)} = Tα
P ↑2

Note that [[P ]]subseteq α([[P ]]) subseteq [[P ]]α holds for every program P.

4 Well-Typing and Type Checking

We extend the notion of well-typing of [YS89], which relates the type declarations of a typed program
to its fixpoint approximation, to parametric predicates. Type checking determines whether a program is
well-typed by its type declarations. We suggest an algorithm for type checking of typed logic programs.
Based on these results we give a justification for head-only type completion.

4.1 Well-Typing

A type completed program is well-typed with respect to its type definitions and declarations if the fixpoint
approximation of each predicate yields exactly the types it is declared for.

Definition. An atom is type ground if it does not contain type variables. A predicate is type ground if
all its type arguments are ground types.

Example. The atom append(Nat)([1,2],[X,4],L) is type ground and so is the predicate append(Nat),
while the atom append(List(τ))([[a],[b]],[[c]],[[a],[b],[c]]) is not.

Notation. Let S be a subset of the Herbrand base and p(T1, . . . , Tk) be a type ground predicate of arity
n. Then S/p(T1,...,Tk) = {p(T1, . . . , Tk)(t1, . . . , tn) | p(T1, . . . , Tk)(t1, . . . , tn) ∈ S}, where the ti’s are terms
and the Tj ’s are ground types.

Definition. The denotation of a type declaration procedure p(τ1, . . . , τk)(T1,. . .,Tn) in a program P is
the set

{p(U1, . . . , Uk)(t1, . . . , tn) | tj ∈ [[Tj [τ1 → U1, . . . , τk → Uk]]]P , U1, . . . , Uk are ground types}.

Notation. Let SP be the denotation of all the type declarations and ground types in a typed program
P .

Notation. Let T be a ground type. Then def (T ) is the set of type definitions needed to define T .

We first define well-typing for type ground predicates and then for arbitrary parametric predicates by
considering all their type ground instances.

Definition. Let P be a typed logic program and PH its head-only type completion. A type ground
predicate p(T1, . . . , Tm) (m ≥ 0) in P is well-typed by some set of ground atoms S, if:

1. Tα
PH

(S)/p(T1,...,Tm) = S/p(T1,...,Tm).

2. For every clause C of the predicate p(τ1, . . . , τm), T{C}(S)/p(T1,...,Tm) )= ∅.

We introduce condition 2 for practical purposes. This non-emptiness condition requires each clause to
contribute at least one atom to the approximation. Clauses violating this condition are called useless
[YS87a]. The type-checker should report on useless clauses, as they usually indicate a programming error.

We would like the composition of well-typed programs to yield a well-typed program. This is important for
large programs, which are usually structured by some module system, as it allows each module to be type
checked separately. In other words, this means that our definition of well-typing should be independent
of the programs vocabulary and types. This is reflected in considering arbitrary types in the following
definition.
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Input: A type ground predicate p(T1,. . .,Tk) and a regular set S

For each clause C in the definition of p(T1,. . .,Tk) do
Type each body atom computing the induced types.
If failed then fail.
For each variable X that appears in C do
Intersect all the induced types for X getting the type of X

od
Construct the inferred type TC denoting Tα

{C}(S ).
If TC = φ then fail .

od
Find the tuple-distributive closure of the union of the TC ’s.
If the result is equal to S/p(T1,...,Tk) then succeed else fail .

Figure 4.1: A type checking algorithm for type ground predicates

Definition. A predicate p(τ1, . . . , τk) (k ≥ 0) in a typed program P is well-typed if for every non-
empty ground types T1, . . . , Tk (not necessarily in the program’s vocabulary), p(T1, . . . , Tk) is well-typed
by SP∪{def (T1),...,def (Tk)}. A typed logic program P is well-typed if and only if each of its predicates is
well-typed.

Definition. A ground atom is called proper if all its type arguments are types. Given a set S of ground
atoms we define the function pro : 2BL →2BL to be

pro(S) = {A ∈ S | A is proper}

Lemma. Given a well-typed typed logic program P and its head-only type completion PH . Then
SP = pro(Tα

PH
(SP )).

Proof. Obvious, as a logic program is a union of predicate definitions.

In subsection 4.4 we show that whenever the program is well-typed under head-only type completion, it
is well-typed under standard type completion, as the two different type completions produce equivalent
programs in that case.

4.2 Type Checking Type Ground Predicates

We check whether a type ground predicate p(T1, . . . , Tk) in a typed program P is well-typed by a regular
set S according to the algorithm in figure 4.1, which is basically the one considered in [YS87a]. The
differences between the algorithm presented in [YS87a] and the one presented here are that the latter
checks well-typing predicate-wise and type checks type ground predicates while the former type checks
all the predicates in the entire program simultaneously and is restricted to first order predicates.

A Type Checking Algorithm. Let P be a head-only type completed program and S a regular set.
We check whether a type ground predicate, p, is well-typed by S as follows: For each clause C of p we
compute Tα

{C}(S ), the maximal set of atoms that can be inferred relative to S . The set Tα
{C}(S ) will be

represented as the denotation of the so-called inferred type of C, written TC . Then we find the tuple-
distributive union of all inferred types (provided their denotation is non-empty) and check if it equals
S .

Next we show how to type an atom and then how to obtain the inferred type TC .

Typing an atom means to find out if its arguments are in the types prescribed by the declaration for the
corresponding predicate and to find the so-called induced types for the variables in the atom. Induced
types are the maximal types such that all ground instances of the atom (where each variable is substituted
to a ground term of its induced type) are in the denotation of its type declaration. The algorithm is based
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on the idea that given a term and its expected type we can find out the types of its subexpressions, as a
function symbol with a given type together with its type definition determines the types of its arguments.

Subalgorithm for Induced Types. The algorithm takes an atom and the type declarations and type
definitions in a program P and returns the induced types for the variables occurring in the atom or fails
if the atom cannot be typed.

• If p(T1,. . .,Tk)(t1,. . .,tn) is an atom and there is a type declaration procedure
p(τ1,. . .,τk)(U1,. . .,Un), then recursively type each ti with its induced type Ui[τ1 +→T1,. . .,τk +→Tk].

• If f(t1,t2,. . .,tn) is a term with type t(T1,. . . ,Tk) and there is a type definition t(τ1,. . .,τk)
::= f1(T 1

1 , . . . , T
1
n1
); . . . ; f(U1, . . . , Un); . . . ; fm(Tm

1 , . . . , Tm
nm

) then recursively type each ti with its
induced type Ui[τ1 +→T1,. . .,τk +→Tk].

• If X is a variable with type T , then T is the induced type for X .

• Otherwise fail.

Remark. Remember that type variables are regarded to be universally quantified. Since no non-variable
term can be of all possible types, typing a non-variable term with a type variable will fail.

By typing each body atom in C we compute the induced type of each occurrence of each variable. Since
occurrences of the same variable in the body mean that they are to be instantiated to the same terms,
we have to intersect the induced types to get the maximal type of the variable (call it the body type of the
variable).

Let the inferred type TC of a clause C be the inferred type of its head constructed according to the
following algorithm.

Subalgorithm for inferred type. To construct the inferred type T of a term (or atom) f(t1, . . . , tn)
define T ::= f(T1, . . . ,Tn) and for each i, i ≤ 1 ≤ n do:

• If ti is a variable, then let Ti be the body type of the variable.

• If ti is not a variable, then let Ti be a new type and recursively construct the inferred type Ti of ti.

Note that this construction parallels the function ‘build’ in [PR89].

Claim. Let S be a regular set. Then p(T1, . . . , Tk) is well-typed by S iff the type checking algorithm
succeeds.

Proof. Analogous to the proof in [YS89]

4.3 Type Checking Parametric Predicates

Now we introduce a type checking algorithm for parametric predicates.

Theorem 2. A parametric predicate p(τ1, . . . , τk) in a typed program P is well-typed iff

1. p(T1, . . . , Tk) is well-typed in the program P ∪ {def (T1), . . . , def (Tk)}, where T1 ::= c1,. . .,Tk ::=
ck, and c1, . . . ,ck are different constants not in the program’s vocabulary.

2. For every clause C in the head-only type completion of the procedure of p(τ1, . . . , τk), we have that
Tα
{C}(SP∪{def (U1),...,def (Uk)})/p(U1,...,Uk) ⊆ SP∪{def (U1),...,def (Uk)}/p(U1,...,Uk) for any set of ground

types {U1, . . . , Uk}.

Proof Outline. (Full proof is presented in the appendix).

(=⇒) Trivial from the definition of well-typing.
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(⇐=) In the appendix we prove that condition 1 implies that
Tα
P (SP∪{def (U1),...,def (Uk)})/p(U1,...,Uk) ⊇ SP∪{def (U1),...,def (Uk)}/p(U1,...,Uk) for any set of ground types

{U1, . . . , Uk}. Together with condition 2 the theorem follows.

Next we present a simplification of the decision algorithm for the second condition. It is enough to check
that the induced type of each variable occurrence in the head contains the body type of the variable.
Since the body type of a variable is the intersection of the induced types of its occurrences in the body,
we suggest a polymorphic intersection algorithm. This algorithm is a straightforward extension of the
standard algorithms for intersection of regular sets in order to deal with type variables. Whenever a type
variable is encountered, the algorithm stops and returns the intersection as a partial result.

Algorithm for Intersection.

Let F ::= f1(F 1
1 , . . . , F

1
n1
); . . . ; fm(Fm

1 , . . . , Fm
nm

); r1(R1
1, . . . , R

1
l1
); . . . ; rk(Rk

1 , . . . , R
k
lk
).

and G ::= g1(G1
1, . . . , G

1
j1
); . . . ; gi(Gi

1, . . . , G
i
ji
); r1(S1

1 , . . . , S
1
l1
); . . . ; rk(Sk

1 , . . . , S
k
lk
).

be type definitions generalized by intersections with type variables, where all function symbols are differ-
ent. Each argument on the right-hand side is of the form τ1 . . . ∩ . . . τr ∩ T1 . . . ∩ . . . Tq. If the right-hand
side is empty, we call it an empty type, whose denotation is the empty set.

The intersection of F and G denoted by F ∩G is defined by the rules generated by:

F ∩G ::= RHS

where RHS′ = r1(R1
1 ∩ S1

1 , . . . , R
1
l1
∩ S1

l1
); . . . ; rk(Rk

1 ∩ Sk
1 , . . . , R

k
lk
∩ Sk

lk
)

and RHS is the same as RHS’ after removing expressions ru(Ru
1 ∩ Su

1 , . . . , R
u
lu

∩ Su
lu
) that include empty

types.

Algorithm for Condition 2. Let T be the induced type for a variable in a clause head and let R be
the body type of that variable. Note that the inclusion has to hold for all instances of the type variables,
as they are all-quantified over types. So it is sufficient to find a single counterexample of a term with a
particular type substitution.

In general, the type definitions supporting the body types R include intersections with type parameters
as introduced in the intersection algorithm, while the definition supporting the declared types T are of
the usual syntax.

In the following, let the definitions of F and G be of the form:

F ::= f1(F 1
1 , . . . , F

1
n1
); . . . ; fm(Fm

1 , . . . , Fm
nm

); r1(R1
1, . . . , R

1
l1
); . . . ; rk(Rk

1 , . . . , R
k
lk
).

G ::= g1(G1
1, . . . , G

1
j1
); . . . ; gi(Gi

1, . . . , G
i
ji
); r1(T 1

1 , . . . , T
1
l1
); . . . ; rk(T k

1 , . . . , T
k
lk
).

The algorithm succeeds if the inclusion holds. The algorithm is defined over a set of inclusion constraints
I as follows:
initialize q := 0 and I0 := {R ⊆ T }.
repeat

let I := Iq

for each element (τ1 . . . ∩ . . . τr ∩ T1 . . . ∩ . . . Tq ⊆ G′) ∈ Iq do

if G′ is a type variable τ then case 1

if τ is one of the τ1, . . . , τr then do nothing case 1.1

else fail case 1.2

else case 2

if q = 0 then fail case 2.1
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assume Fθ = T1 . . . ∩ . . . Tq and Gσ = G′

if m > 0 then fail case 2.2

else let I := I ∪ {R1
1θ ⊆ T 1

1 σ, . . . , R
1
l1
θ ⊆ T 1

l1
σ, . . . , Rk

1θ ⊆ T k
1 σ, . . . , R

k
lk
θ ⊆ T k

lk
σ} case 2.3

od

let Iq+1 := I and q := q + 1

until Iq + 1 = Iq (up to renaming of variables).
succeed.

Observations

1. The algorithm terminates because the number of different inclusions is bounded. The proof is
similar to the proof that the number of different types occurring in any derivation of a ground type
is bounded.

2. Case 1.1 is a tautology.

3. In case 1.2, usually, a ground type substitution for the inclusion that makes it a invalid can be
constructed. Let c be a new constant, define C := c and substitute τ by C. Now C does not
intersect with any term in the program. Hence each term derived from the l.h.s. is not covered by
the r.h.s., i.e. each term in the l.h.s. is a counterexample.

Note however, that τ can occur on the l.h.s. inside some fi or ri or as one of the τi in the inclusion
from which the current inclusion was derived. In the first case we might have to add some values to
the type C for τ , because the intersection with C would produce the empty type otherwise. Then
the l.h.s. might reduce to the empty set making the counterexample invalid. In the second case, we
essentially have to do the same to ensure that a term that contains the counterexample term as a
subterm can be constructed. Now if these values added to C cover all possible counterexamples of
terms, then the inclusion still holds.

We take the l.h.s of the inclusion and substitute τ to C and all other τ1, . . . , τr to a type All,
which includes all terms in the program vocabulary. Clearly, all counterexamples must be in the
denotation of the resulting l.h.s. Now, if we can find for each term t in the l.h.s. a type of the form
C ∩ F ′ in the l.h.s. of the inclusions, the current inclusion was derived from or which are derived
from the current inclusion, such that [[F ′]]P = t, then we have no valid counterexample, as we have
to add every counterexample to C to avoid empty types and the empty l.h.s.

But note that this invalidation of the counterexamples can only happen if the l.h.s. denotes a
finite (sufficiently small) set and if τ occurs in intersections with types that denote single values.
Overall, it is extremely unlikely in practice, that all counterexamples get invalidated. We only found
very contrived examples, which shouldn’t be in a good program anyway. Therefore the inclusion
algorithm does not verify that there is indeed a valid counterexample, although this would be
possible at additional cost.

Example. Let A ::= a, AB ::= a;b, C(τ) ::= f(AB,τ), D(τ)∩FA ::= f(τ∩A,A), and D(τ)∩FAB ::=
f(τ∩AB,A) be type definitions, and assume an inclusion D(τ)∩FA ⊆ C(τ). After one iteration we
get A ⊆ τ , but A is not a valid counterexample as τ ∩ A implies that for all type substitutions for
τ , that do not include A, the empty type results, which makes the l.h.s. empty. But note that in
D(τ)∩FAB ⊆ C(τ) we can construct a valid counterexample by substituting τ to B where B ::= b
with {f(b, a)} )⊆ {f(a, b), f(b, b)}.

4. In case 2.1 we can give the type C as above to all the type variables to show invalidation of the
inclusion.

5. Clearly, the inclusion doesn’t hold for case 2.2.

6. It is easy to see that in case 2.3 the initial inclusion is a logical consequence of the new inclusions
produced. In other words, if the above initial inclusion does not hold, then there exists a type
substitution such that one of the derived inclusions does not hold.
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4.4 A Justification for Head-Only Type Completion

Using the standard way of transforming many-sorted and order-sorted logic to first-order logic [Llo87],
programs with typings can be transformed to untyped programs. This transformation has been used
in [YS87a, XW88, Nai87] and has been called relativization in [Coh89, Obe62]. We will refer to this
transformation as standard type completion as opposed to the head-only type completion we introduced in
subsection 3.2.

Definition. The standard type completion of a type declaration of the form

procedure p(τ1, . . . , τk)(T1,T2,. . .,Tn)

is a clause of the form

procedure(p(τ1, . . . , τk)(X1,. . .,Xn)) ← T1(X1),. . .,Tn(Xn).

where Xi are different data variables and procedure is a new predicate of arity 1.

Definition. The standard type completion of a typed program is a parametric program defined as follows:

• Each type definition is translated into type predicates as in the head-only type completion.

• Each type declaration is translated as defined above.

• Each program clause (H ← B) is transformed into a clause (H ← procedure(H),B).

In the program resulting from this transformation, it is verified by the added type condition procedure(H)
that each argument of the head is in the type declared for it. Recall that in subsection 4.1 we defined
well-typing of a typed program as a condition on some kind of type completion of the program. Practical
experience with the type system described in [YS87a] showed that requiring well-typing under the standard
type completion is too weak, as it well-types programs one would like to consider ill-typed.

Example. The program

Foo(τ) ::= [] ;[τ ].

procedure append(τ)(Foo(τ),Foo(τ),Foo(τ)).

append(τ)([],L,L).

append(τ)([X|L1],L2,[X|L3]) ← append(τ)(L1,L2,L3).

is well-typed under the standard type completion, but ill-typed under our head-only type comple-
tion. In the first case, the inferred type of the first clause is append(τ)([],[];[τ],[];[τ]),
and of the second clause it is append(τ)([τ],[];[τ],[τ]). The tuple distributive union gives
append(τ)([];[τ],[];[τ],[];[τ]) which is the declared type. In the second case, we get a bigger
inferred type for the second clause, append(τ)([τ |[];[τ]],[];[τ], [τ |[];[τ]]]), as only head-only
variables are restricted by the head-only type completion. This results in a type that is bigger than the
declared type, hence the program is ill-typed under head-only type completion.

Next we show that for a program that is well-typed under head-only type completion, these two kinds of
type completion are equivalent.

Claim. Given a typed logic program P . Let PH be its head-only type completion and PS be its standard
type completion. Then pro([[PH ]]) = pro([[PS ]]) provided PH is well-typed by S.

Proof. By definition of tuple distributive closure, pro(TPH (S)) ⊆ S as pro(Tα
PH

(S)) = S according to
lemma of subsection 4.1. Further we have that ∀I. TP (I) ∩ S = TPS (I) ⊆ TPH (I) ⊆ TP (I). This implies
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pro([[PS ]]) ⊆ pro([[PH ]]) ⊆ S. By induction we prove that pro(TPS ↑ n) ⊇ pro(TPH ↑ n), which proves the
claim.

For n = 0, the claim trivially holds.

Assume true for n and prove for n+ 1.

pro(TPS ↑ n + 1) = pro(TPS (TPS ↑ n)) = pro(TPS (pro(TPS ↑ n))) ⊇ pro(TPS (pro(TPH ↑ n))) =
pro(TPS (TPH ↑ n)) = pro(TP (TPH ↑ n) ∩ S) ⊇ pro(TPH (TPH ↑ n) ∩ S) = pro(TPH ↑ n + 1) ∩ S =
pro(TPH ↑ n+ 1).

5 Extensions of the Type Language

We discuss some extensions of the type system, namely basic types, the universal type and non-canonical
type definitions.

In a practical type systems, basic types like Integer and Constant5 are necessary to describe types of
built-in predicates correctly. Basic types partition the terms in the Herbrand universe into equivalence
classes. Hence the intersection of two different basic types is always empty. We assume that membership
in a basic type is determined by the outermost function symbol. Under these assumptions, the algorithms
for intersection, tuple-distributive union and equivalence can be easily extended to handle basic types.

With the help of the universal type named All, we can well-type predicates with their most general types6.
Any term in the Herbrand Universe of the language is of type All. If a term is of type All, then the induced
types for all occurrences of variables in the term is All as well. For practical reasons, the union of all
basic types should be equivalent to All.

For example, we can well-type a type argument free append by:

procedure append(List(All),All,All).

But note that the following type declaration is ill-typed

procedure append(All,All,All).

as the first argument of append cannot take all terms, but only terms with the function symbols [] and
[ | ].

Another extension is to allow non-canonical type definitions and type declarations to gain flexibility.
Subtypes can be utilized for more natural type definitions:

Parent ::= Father ; Mother.

Moreover, this extension allows for more general recursive types without introducing decidability problems:

Evenlist(τ1, τ2) ::= [] ; [τ1, τ2 |Evenlist(τ1, τ2)].

Non-canonical type definitions can be transformed to canonical ones by introducing auxiliary types and
unfolding subtypes. In particular, non-canonical recursive types can be transformed to mutual recursive
types:

Evenlist(τ1, τ2) ::= [] ; [τ1 |Oddlist(τ1, τ2)].

Oddlist(τ1, τ2) ::= [τ2 |Evenlist(τ1, τ2)].

5Excluding numbers
6These are the structural types which are inferred in [PR89]
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6 Conclusion

We suggested an integration of polymorphic type systems and logic programming languages into poly-
morphically typed logic programming. The typed logic programming language extends Horn clauses to
parametric Horn clauses by parameterizing predicates with types. The resulting language is seen as a
simple instance of HiLog. The denotation of a typed logic program is given by its head-only type com-
pletion, in which head-only variables are restricted to their declared types. We extended the notion of
well-typedness of [YS89] to type parametric logic programs. We proposed algorithms for type checking
type ground and parametric predicates.

Future work will tackle type inference within this framework and investigate a richer type language. In
addition, global analysis to eliminate redundant type conditions is required to increase the practicality of
the approach.
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Appendix

Here we present the proofs for theorem 1 and theorem 2 of the paper.

Theorem 1

For theorem 1, we have to prove the following lemma.

Lemma. Given a program P and a ground type T , then the set of types occurring in any derivation of
T is finite.

Proof. The idea is to construct a finite set of types ST , that includes T , such that every derivation step
applied to any element in the set yields only elements in the set, i.e. the set is closed under derivation.

In the following we will ignore the arguments in the derivations of type atoms, i.e. we will only look at
the predicates.

There exists a minimal ranking function r, s.t. for every type constructor c in the program, whose
definition contains a type constructor ci on the r.h.s., the following holds:

1. r(c) ≥ r(ci), if ci is applied to type variables only,

2. r(c) > r(ci), otherwise;

3. max(range(r)) is minimal.

Note that all type constructors on the r.h.s. except those applied directly to type variables have a rank
strictly less than the rank of the constructor defined. Because of the minimality condition, the range of
r includes all numbers from 1 to max(range(r)).

Definition. The depth of a type T is defined as follows:

• depth(T ) = 0, if T is a type variable,

• depth(T ) = 1, if T is a type constant,
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• depth(c(T1,...Tn)) = max(depth(Ti)) + 1.

Let d = max(depth(Ti)), where Ti are the types occurring on the r.h.s. of the type definitions in P . Let
k = depth(T ) and R = max(range(r)). Let ST be the set of all ground types up to depth R ∗ d+ k built
from the type constructors in P , such that all type constructors appearing between depth (g−1)∗d+k+1
and depth g ∗ d+ k are at most of rank (R− g), where 1 ≤ g ≤ R. Note that if some type belongs to ST ,
then also all its subterms belong to ST .

Take an element of ST of the form c(T1,...Tn). Let g be the number such that (g − 1) ∗ d + k + 1 ≤
depth(c(T1,...Tn)) ≤ g ∗ d + k. Do one derivation step for c(T1,...Tn) using a type of depth m from the
r.h.s of the type definition for c resulting in a type which has a depth of at mostm+depth(c(T1,...Tn))−1.
By definition of d, 0 ≤ m ≤ d. The resulting type is built of type constructors from the definition of c
and of the Ti’s. This implies that all the constructors at depth greater than g ∗ d+ k are of rank less than
the rank of c, i.e. (R − g), and that all other constructors of depth less or equal to g ∗ d + k are either
of rank less or equal (R − g) or belong to one of the Ti’s. Also note that in the new type, the Ti’s (and
their constructors) will occur at the same depth as in c(T1,...Tn).

Theorem 2

Theorem 2. A parametric predicate p(τ1, . . . , τk) in a typed program P is well-typed iff

1. p(T1, . . . , Tk) is well-typed in the program P ∪ {def (T1), . . . , def (Tk)}, where T1 ::= c1,. . ., Tk ::=
ck, and c1, . . . ,ck are different constants not in the program’s vocabulary.

2. For every clause C in the head-only type completion of the procedure of p(τ1, . . . , τk), we have that
Tα
{C}(SP∪{def (U1),...,def (Uk)})/p(U1,...,Uk) ⊆ SP∪{def (U1),...,def (Uk)}/p(U1,...,Uk) for any set of ground

types {U1, . . . , Uk}.

Proof

(=⇒) Trivial from the definition of well-typing.

(⇐=) We prove that condition 1 implies that
SP∪{def (U1),...,def (Uk)}/p(U1,...,Uk) ⊆ Tα

P (SP∪{def (U1),...,def (Uk)})/p(U1,...,Uk) for any set of ground types
{U1, . . . , Uk}. Together with condition 2 the theorem follows.

W.O.L.G. c1 . . . , ck do not appear in {def (U1), . . . , def (Uk)}

Let PU = P ∪ {def (U1), . . . , def (Uk)} and PT = P ∪ {def (T1), . . . , def (Tk)}.

Lemma 2. Let R be a type whose type variables are in the set {τ1, . . . , τk}. Then

α
(

⋃

{[[Rη]]PT
ρ | uj ∈ [[Uj ]]PU

, 1 ≤ j ≤ k}
)

= [[Rζ]]PU
.

where ρ, η and ζ are shorthand for the substitutions [c1 +→ u1, . . . , ck +→ uk], [τ1 +→ T1, . . . , τk +→ Tk] and
[τ1 +→ U1, . . . , τk +→ Uk] respectively.

Proof. For a set of terms S, denote by Sd the set of all terms in S up to depth d. We prove the following
claim (which entails lemma 2) by induction on d:

Claim. For any depth d and for any type R whose variables are in {τ1, . . . , τk},

(

α
(

⋃

{[[Rη]]PT
ρ | uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k}
))d

= [[Rζ]]dPU
.

Proof. If R = τi 1 ≤ i ≤ k then

α
(

⋃

{[[Rη]]PT
ρ | uj ∈ [[Uj ]]PU

, 1 ≤ j ≤ k}
)

=

18



α
(

⋃

{[[Ti]]PT
ρ | uj ∈ [[Uj ]]PU

, 1 ≤ j ≤ k}
)

=

α
(

⋃

{{ci}ρ | uj ∈ [[Uj]]PU
, 1 ≤ j ≤ k}

)

=

α
(

⋃

{{ui} | uj ∈ [[Uj ]]PU
, 1 ≤ j ≤ k}

)

=

α([[Ui]]PU
) =

[[Ui]]PU
=

[[Rζ]]PU
.

Assume that R = c(R1,. . . ,Rn), n ≥ 0 and that the type definition for c is of the form:

c(τ1, . . . , τn) ::= f1(R1
1, . . . , R

1
n1
) ; . . . ; fl(Rl

1, . . . , R
l
nl
) ; a1 ; . . . ; am.

where ni ≥ 1, 1 ≤ i ≤ l and a1, . . . ,am are constants.

Assume d = 1
(

α
(

⋃

{[[Rη]]PT
ρ | uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k}
))1

=

{a1, . . . , am} =

[[Rζ]]1PU
.

Assume the claim holds for d and prove for d+ 1.

(

α
(

⋃

{[[Rη]]PT
ρ | uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k}
))d+1

=



α





⋃

1≤i≤l

{

fi(t
i
1, . . . , t

i
ni
)ρ

∣

∣

∣

∣

tio ∈ [[Ri
oη]]PT

, 1 ≤ o ≤ ni,
uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k

}









d+1

∪ {a1, . . . , am} =



α





⋃

1≤i≤l

{

fi(t
i
1, . . . , t

i
ni
)

∣

∣

∣

∣

tio ∈ [[Ri
oη]]PT

ρ, 1 ≤ o ≤ ni,
uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k

}









d+1

∪ {a1, . . . , am} =

(

⋃

1≤i≤l

{

fi(t
i
1, . . . , t

i
ni
)

∣

∣

∣

∣

tio ∈ α

(

∪

{

[[Ri
oη]]PT

ρ

∣

∣

∣

∣

uj ∈ [[Uj ]]PU
,

1 ≤ j ≤ k

})

, 1 ≤ o ≤ ni,

}

)d+1

∪ {a1, . . . , am} =

⋃

1≤i≤l

{

fi(t
i
1, . . . , t

i
ni
)

∣

∣

∣

∣

∣

tio ∈
(

α
(

[[Ri
oη]]PT

ρ
))d

, 1 ≤ o ≤ ni,
uj ∈ [[Uj]]PU

, 1 ≤ j ≤ k

}

∪ {a1, . . . , am} =

⋃

1≤i≤l

{fi(t
i
1, . . . , t

i
ni
) | tio ∈ [[Ri

oζ]]
d
PU

, 1 ≤ o ≤ ni} ∪ {a1, . . . , am} =

[[Rζ]]d+1
PU

Back to the theorem:
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Let ρ be a shorthand for [c1 +→ u1, . . . , ck +→ uk] and C a shorthand for H ← B. The letter σ denotes
the substitution that replaces the type Ti by Ui, 1 ≤ i ≤ k. The symbol B stands for a set of body
atoms. In the following formulas, φ and θ are ordinary ground substitutions, i.e. their domains contain
only variables.

1. SPU /p(U1,...,Uk) =

2. α













⋃

uj∈[[Uj]]PU
1≤j≤k

(

SPT /p(T1,...,Tk)

)

σρ













=

3. α













⋃

uj∈[[Uj]]PU
1≤j≤k

(

Tα
PT

(SPT )/p(T1,...,Tk)

)

σρ













=

4. α













⋃

uj∈[[Uj]]PU
1≤j≤k

α

(

⋃

C∈P

(

T{C}(SPT )/p(T1,...,Tk)

)

)

σρ













=

5. α













⋃

C∈P

⋃

uj∈[[Uj]]PU
1≤j≤k

(

T{C}(SPT )/p(T1,...,Tk)

)

σρ













=

6. α













⋃

C∈P

⋃

uj∈[[Uj]]PU
1≤j≤k

(

{Hθ |Bθ ⊆ SPT } /p(T1,...,Tk)

)

σρ













⊆

7. α













⋃

C∈P

⋃

uj∈[[Uj]]PU
1≤j≤k

{Hθσρ |Bθ ⊆ SPT } /p(U1,...,Uk)













⊆

8. α













⋃

C∈P

⋃

uj∈[[Uj]]PU
1≤j≤k

{Hθσρ |Bθσρ ⊆ SPT σρ} /p(U1,...,Uk)













⊆

9. α













⋃

C∈P

⋃

uj∈[[Uj]]PU
1≤j≤k

{Hθσρ |Bθσρ ⊆ SPU } /p(U1,...,Uk)













⊆

10. α

(

⋃

C∈P

{Hφ |Bφ ⊆ SPU } /p(U1,...,Uk)

)

=

11. Tα
P (SPU )/p(U1,...,Uk).
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