
Proving Termination of Constraint SolverProgramsThom Fr�uhwirthLudwig-Maximilians-Universit�at M�unhenOettingenstrasse 67, D-80538 Munih, Germanyfruehwir�informatik.uni-muenhen.dewww.informatik.uni-muenhen.de/~fruehwir/Abstrat. We adapt and extend existing approahes to termination inrule-based languages (logi programming and rewriting systems) to provetermination of atually implemented CHR onstraint solvers.CHR (Constraint Handling Rules) are a delarative language espeiallydesigned for writing onstraint solvers. CHR are a onurrent onstraintlogi programming language onsisting of multi-headed guarded rulesthat rewrite onstraints into simpler ones until they are solved.The approah allows to prove termination of many onstraint solvers,from Boolean and arithmeti to terminologial and path-onsistent on-straints. Beause of multi-heads, our termination orders must onsideronjuntions, while atomi formulas suÆe in usual approahes.Our results indiate that in pratie, proving termination for onurrentonstraint logi programs may not be harder than for other lasses oflogi programming languages, ontrary to what has been feared in theliterature.1 IntrodutionWe adapt and extend existing approahes to termination in rule-based languages(logi programming and rewriting systems) to prove termination of atually im-plemented CHR onstraint solver programs.CHR (Constraint handling rules) [Fru98,AFM99℄ are a high-level languageespeially designed for writing onstraint solvers. CHR are a ommitted-hoieonurrent onstraint logi programming language onsisting of multi-headedguarded rules that rewrite onstraints into simpler ones until they are solved.CHR de�ne both simpli�ation of and propagation over user-de�ned onstraints.Simpli�ation replaes onstraints by simpler onstraints while preserving logi-al equivalene. Propagation adds new onstraints whih are logially redundantbut may ause further simpli�ation. CHR have been used in dozens of projetsworldwide to enode onstraint solvers, inluding new domains suh as termi-nologial, spatial and temporal reasoning [Fru98℄ and new appliations domainssuh as optimal plaement of sender stations [FrBr00℄.The study of termination of CHR programs is not only essential for reliableonstraint solvers, termination is a prerequisite for analyzing and deiding on-uene [Abd97,AFM99℄ and operational equivalene [AbFr99℄ of CHR programs.



Conuene guarantees that the result of a omputation will always be the same,no matter whih of the appliable rules are applied.In logi programming in general, a termination problem an only our ifreursion is involved. One reursion is present, the problem is almost at oneundeidable. There is a fair amount of work on suÆient onditions ensuringtermination of (pure) logi programs [dSD94℄, whih started about a deadeago. The basi idea is to prove that in eah rule, the head atom is stritly largerthan every atom ourring in the body of the rule.Typially, the neessary well-founded orders are adopted from term rewritingsystems (TRS). A ommonly used order is alled polynomial interpretation whihis known in TRS sine more than twenty years [Der87,BaNi98℄. The idea isto map terms and atoms to natural numbers. Instanes of this mapping arealso alled measure funtion, norm, ranking or level mapping. To ensure well-foundedness, programs and queries usually have to be well-moded (and well-typed) or queries suÆiently known.The main line of work in termination of logi programs is onsidered to befrom Apt, Bezem and Pedreshi [ApPe90,Bez93℄. Both programs and goals areharaterized in terms of level mappings, a funtion from ground atoms to naturalnumbers. A logi program is reurrent if for every ground instane of eah rule,the level of the head atom is higher than the level of eah body atom. A goal isbounded (rigid) if for every (ground) instane of eah atom in the goal there is amaximum level whih is not exeeded. Suessive work of the authors re�ned thisapproah: Loal variables and the spei� left-to-right SLD resolution of Prologare taken into aount. A program is aeptable if for every ground instane ofeah rule the level of the head atom is higher than the level of eah body atomwhenever it is not in the model of the program and all the body atoms on theright are in the model. The model of a program is haraterized by suitableinterargument relations that must hold on the atoms. The notion of boundedgoals is extended as well to take the model into aount.There are only a few reent papers on termination for onstraint logi pro-grams [CMM95,Mes96,Rug97℄, logi programs with oroutining [Nai92,MaTe95℄and onurrent logi programs [Plu92,KKS97℄. [Rug97,Mes96,MaTe95,Plu92℄embark on level mappings. The theoretial work [CMM95℄ provides neessaryand suÆient onditions for termination based on dataow graphs, the pratialwork [Nai92℄ disusses informally how terminating proedures an be ombinedensuring overall termination, and [KKS97℄ an use tehniques from TRS diretlysine they translate GHC programs into TRS.To the best of our knowledge, there is no work yet on proving termination ofonurrent onstraint logi programs and of onstraint solver implementations.In the literature it is generally agreed that the issue of termination for on-urrent onstraint languages is even harder than for other logi programs, sineprograms with onstraints do not go well with the idea of modes and well-modedness, and sine programs with oroutining or onurreny do not have astatially �xed searh and seletion rule.



The following example illustrates the behavior of ommitted-hoie languageswith respet to delaying and termination.Example 1. Consider a CHR onstraint haraterizing even numbers. We useProlog syntax, where Variables start with upper ase letters, and funtion andprediate symbols with lower ase letters. Assume that numbers are expressedin suessor notation and that = means syntatial equality. The onstraint maybe de�ned by the single rule:even(X) <=> X=s(Y) | Y=s(Z), even(Z).The rule says that if the argument X to even is the suessor of some numberY, then the predeessor of this number Z must be even in order to ensure thatthe initial number X is even. The query even(N) delays. The query even(f(N))delays as well. To the query even(s(N)) the rule is appliable, the answer isN=s(N1), even(N1).It was already disussed in detail in [Nai92℄ that the onjuntion of twoquery atoms, that both terminate on its own, need not terminate. Here, thequery even(N), even(s(N))will not terminate. It leads to even(N), N=s(N1),even(N1), whih is equivalent to even(s(N1)), even(N1), whih is just a vari-ant of the initial query.For CHR, we not only have onurreny and onstraints, but also propagationrules and multiple heads to onsider. Thus we annot hope to give a de�nitiveor �nal answer onerning termination at this point in time. In this paper werather onentrate on ensuring termination in pratie, in existing onstraintsolvers written in CHR.Overview of the Paper. We will �rst give syntax and semantis for CHR.In the next setion, we introdue useful termination orders for CHR. Then weprove termination of atually implemented CHR onstraint solvers ranging fromBoolean and arithmeti to terminologial and path-onsistent onstraints. Fi-nally, we summarize the ahievements of the urrent approah and disuss futurework.2 Syntax and SemantisIn this setion we give syntax and simple semantis for CHR, for more detailedsemantis see [Abd97,AFM99℄. We assume some familiarity with (onurrent)onstraint (logi) programming [vHSD92,JaMa94,FrAb97,MaSt98,CDJK99℄.A onstraint is a prediate (atomi formula) in �rst-order logi. We dis-tinguish between built-in (prede�ned) onstraints and CHR (user-de�ned) on-straints. Built-in onstraints are those handled by a prede�ned, given onstraintsolver. CHR onstraints are those de�ned by a CHR program.The syntax of CHR is de�ned by EBNF grammar rules and is reminisent ofProlog and GHC. Upper ase letters stand for onjuntions of onstraints.



De�nition 1. A CHR program is a �nite set of CHR. There are two kinds ofCHR. A simpli�ation CHR is of the form[N '�'℄ H '<=>' [G '|'℄ B.and a propaggation CHR is of the form[N '�'℄ H '==>' [G '|'℄ B.where the rule has an optional name N, the multi-head H is a onjuntion of CHRonstraints. The optional guard G is a onjuntion of built-in onstraints. Thebody B is a onjuntion of built-in and CHR onstraints. As in Prolog syntax, aonjuntion is a sequene of onjunts separated by ommas.The delarative semantis of a CHR program P is a onjuntion of univer-sally quanti�ed logial formulas (one for eah rule) and a onsistent built{inonstraint theory CT whih determines the meaning of the built{in onstraintsappearing in the program. The theory CT is expeted to inlude an syntati-al equality onstraint = and the basi trivial onstraints true and false. Thedelarative reading of a rule relates heads and body provided the guard is true.A simpli�ation rule means that the heads are true if and only if the body istrue. A propagation rule means that the body is true if the heads are true.The operational semantis of CHR programs is given by a state transitionsystem. With omputation steps (transitions, redutions) one an proeed fromone state to the next. A omputation is a sequene of omputation steps.De�nition 2. A state (or: goal) is a onjuntion of built-in and CHR on-straints. An initial state (or: query) is an arbitrary state. In a �nal state (or:answer) either the built-in onstraints are inonsistent or no omputation stepis possible anymore.De�nition 3. Let P be a CHR program for the CHR onstraints and CT bea onstraint theory for the built-in onstraints. The transition relation 7�! forCHR is as follows. All variables ourring in states stand for onjuntions ofonstraints. �x denotes the variables ourring in the rule hosen from P .SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H <=> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H ==> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)By equating two atomi onstraints, (t1; : : : ; tn) = (s1; : : : ; sn) syntatially,we mean (t1 = s1)^ : : :^(tn = sn). By (H1^ : : :^Hn) = (H 01^ : : :^H 0n) we mean(H1 = H 01) ^ : : : ^ (Hn = H 0n). Conjunts an be permuted sine onjuntion isassumed to be assoiative and ommutative.



When we use a rule from the program, we will rename its variables using newsymbols. A rule is appliable to CHR onstraints H 0 whenever these atomionstraints math (are an instane of) the head atoms H of the rule and theguard G is entailed (implied) by the built-in onstraint store. The mathing isthe e�et of the existential quanti�ation in 9�x(H = H 0) [Mah87℄. Mathingand entailment heks are performed by the onstraint solver for the built-inonstraints. Any of the appliable rules an be applied, but it is a ommittedhoie, it annot be undone.If an appliable simpli�ation rule (H <=> G | B) is applied to the CHRonstraints H 0, the Simplify transition removes H 0 from the state, adds B andalso adds the equation H = H 0 and the guard G to the state. If a propagationrule (H ==> G | B) is applied to H 0, the Propagate transition adds B andalso adds the equation H = H 0 and the guard G, but does not remove H 0.Trivial non-termination is avoided by applying a propagation rule at most oneto the same onstraints. A more omplex operational semantis that addressesthese issues an be found in [Abd97℄. Details on how to eÆiently implementthe operational semantis given here an be found in [HoFr00℄. The examples inSetion 4 will help to larify the operational semantis.3 CHR Termination OrdersTo prove termination of CHR omputations, we rely on polynomial interpreta-tions, where the rank of a term or atom is de�ned by a linear positive ombinationof the rankings of its arguments. In the following we de�ne a sheme for a lass ofrankings that we will use in the sequel to prove termination of onstraint solverswritten in CHR. The basi de�nitions follow [dSD94,BaNi98℄.De�nition 4. Let f be a funtion or prediate symbol of arity n (n � 0). ACHR ranking (funtion) de�nes the rank of a term or atom f(t1; : : : ; tn) as anatural number:rank(f(t1; : : : ; tn)) = af0 + af1 � rank(t1) + : : :+ afn � rank(tn)where the afi are natural numbers. For eah variable X we impose rank(X) � 0.This de�nition implies that rank(t) � 0 for all rankings in our sheme and forall terms and atoms t.Instanes of the ranking sheme rank speify the funtion and prediatesymbols and the values of the oeÆients afi .Example 2. The size of a term an be expressed in this sheme by:size(f(t1; : : : ; tn)) = 1 + size(t1) + : : :+ size(tn)For example, the size of the term f(a,g(b,)) is 5. The size of f(a,X) is 2 +size(X) with rank(X) � 0 when no additional onstraints are introdued forranks of variables. This allows us to onlude that the term f(g(X),X) is largerin size than f(a,X) (2 + 2 � size(X) � 2 + size(X)), no matter what term Xstands for.



An expression rank(s)� rank(t) is alled an order onstraint, where � 2 f<;�;=; 6=;�; >g. To avoid lutter, we also write s � t for rank(s) > rank(t). Thenotion of order onstraints will be used to formalize interargument relations, i.e.relations between the ranks of arguments of onstraints that are needed to provetermination.Two important properties of termination orders are well-foundedness andstability.De�nition 5. An order is well-founded if there are no in�nite dereasing hainsr1; : : : ; rn : : : suh that ri � ri+1 for all i � 1.De�nition 6. An order � has the stability property if it is losed under substi-tutions:s � t! �(s) � �(t) for all terms s and t and for all substitutions �,where t ontains only variables that also appear in s.Linear polynomial orders (de�nable by our ranking funtion sheme) areknown to be well-founded and losed under substitutions [BaNi98℄.Indued Orders on Sequenes and Multi-setsIf a ranking does not suÆe to prove termination, it an be used to indue anorder on sequenes of �nite length (tuples) and multi-sets [Der87℄. In this paper,for one onstraint solver we have to rely on multi-sets to prove its termination(see Setion 4.3).De�nition 7. The lexiographi order on sequenes is de�ned by:(s1; : : : ; sn) �l (t1; : : : ; tm)i� there exists i with (1 � i � n) suh that si � ti or i > m and for all j with(1 � j < i) it holds that sj = tj .If the sequenes have di�erent size, this only matters if the shorter sequene isa pre�x of the longer one. In that ase, the longer sequene is larger.De�nition 8. The multi-set order on multi-sets is de�ned by:fs1; : : : ; sng �m ft1; : : : ; tmgi� there exist i 2 f1; : : : ; ng and 1 � j1 < : : : < jk � m with 0 � k suh that si �tj1 ; : : : ; si � tjk and S �m T or S =m T where S = fs1; : : : ; si�1; si+1; : : : ; sngand T = ft1; : : : ; tmg � ftj1 ; : : : ; tjkg.In words: The smaller multi-set is obtained from the larger one by removing anonempty subset and adding only elements whih are smaller than some elementin the subset. Or: Every element in the smaller multi-set must be smaller or equalthan one in the larger multi-set, and there must be at least one element that isstritly smaller. Even though the de�nition is ontrived, there is a simple wayto ompare multi-sets for total orders: Sort the multi-sets into desending orderand ompare the resulting sequenes lexiographially.



Sequenes and multi-set orders indued by linear polynomial orders are alsowell-founded and losed under substitutions [BaNi98℄. When suh indued or-ders are used, the ranking funtion has to be lifted aordingly by introduingauxiliary funtions that yield sequenes and multi-sets respetively from ranks(see Setion 4.3 for an example).4 Proving Termination of Constraint SolversWe are interested in termination of atually implemented CHR onstraint solverprograms. We want to prove termination under any sheduling of rule applia-tions (independent from the searh and seletion rule). We also want to makesure that a onjuntion of terminating queries is itself a terminating query. Thismeans that we embark on a rather strit notion of termination.De�nition 9. A CHR program P is alled terminating for a lass of queries, ifthere are no in�nite sequenes of omputation steps using rules from P startingfrom a query in the lass.Roughly, a CHR program an be proved to terminate if we an prove that ineah rule, the rank of the head is stritly larger than the rank of the body.A ranking for a CHR program will have to de�ne the ranks of CHR andbuilt-in onstraints. In extension of usual approahes, we also have to de�ne therank of a onjuntion of onstraints, sine CHR are multi-headed. We will de�nethe rank of any built-in onstraint to be the smallest element in the order (i.e. 0or fg for multi-sets), sine we assume that they always terminate. The rank of aonjuntion should reet that onjuntions of CHR onstraints are assoiativeand ommutative, but not idempotent. Thus obvious hoies are +, and [ formulti-sets, repetively.A built-in onstraint may imply order onstraints between the ranks of itsarguments (interargument relations), e.g. s=t ! rank(s) = rank(t). We assumethese order onstraints are given and known to be orret.In this paper, we formalize a termination ondition for simpli�ation rules.We urrently annot deal with propagation rules in their generality, rather wewill deal with them in a solver-dependent way.De�nition 10. The ranking ondition of a simpli�ation rule H <=> G | B isthe formula8 (RC(G;B)! H � B),where RC(G;B) is a onjuntion of order onstraints implied by the built-inonstraints in the guard and body of the rule.Sine rankings are based on linear polynomial orders, H � B does not univer-sally hold if B ontains loal variables not ourring in H , exept if the orderonstraints RC(G;B) imply an appropriate relationship between the variables.The intuition behind the de�nition of a ranking ondition is that the built-inonstraints in the rule will imply order onstraints RC(G;B) that an help us



to establish that H � B. There is no need in RC(G;B) to distinguish betweenbuilt-in onstraints from the guard and from the body, even though they avoidnon-termination for di�erent reasons: If the onstraints in the guard do nothold, the rule is not appliable, and neither is any instane of it. If the built-in onstraints in the body do not hold, the appliation of the rule leads to aninonsistent, thus �nal state.To prove termination, goals have to be suÆiently known.De�nition 11. A goal A is bounded if the rank of any instane of A is boundedfrom above by a onstant k.Obviously, the rank of a ground (variable-free) term is always bounded. Intu-itively, in bounded goals, variables only appear in positions whih are ignoredby the ranking. The use of well-modedness instead of boundedness is not help-ful in programs that de�ne onstraints, whih should allow for arbitrary modesby de�nition, see Example 1. Obviously, boundedness generalizes the notion ofmodes.The following two analogous theorems tell us how to prove CHR termination.Theorem 1. Given a CHR program P without propagation rules and a rankingwhererank((A ^ B)) = rank(A) + rank(B)for any two goals A and B. If the ranking ondition holds for eah rule in P ,then P is terminating for all bounded goals.Proof. Consider a state H 0 ^D. Applying the rule (H <=> G j B) will leadto the state (H = H 0) ^G ^ B ^D.We have to show that rank(H 0 ^D) > rank((H = H 0)^G^B ^D) and thatthe ranks of all states in a omputation are bounded.We know that rank(G) = 0, rank(H = H 0) = 0, sine 0 is the smallestelement in our polynomial order, and that (H = H 0)! rank(H) = rank(H 0).Sine RC(G;B)! rank(H) > rank(B), we have thatrank(H 0 ^D) = rank(H 0) + rank(D) = rank(H) + rank(D) >0 + 0 + rank(B) + rank(D) = rank(((H = H 0) ^G ^ B ^D)).To show that the ranks of all states are bounded, note the following: Any rankingis well-founded and has the stability property. Sine goals are bounded, the rankof a state is bounded. Due to the ranking ondition, the boundedness of thesoure state is propagated to target state, i.e. given a bounded state H 0^D, theappliation of any simpli�ation rule will lead to a state that is bounded again.Thus no in�nite omputations are possible, hene P is terminating.The seond Theorem is analogous to the �rst one, exept that we onsidermulti-set orders.Theorem 2. Given a CHR program P without propagation rules and a multi-set order de�ned by a funtion mrank whih is indued by a polynomial rankingrank, and suh that



mrank((A ^ B)) = mrank(A) [mrank(B),where A and B are goals and [ denotes multi-set union. If the ranking onditionholds for eah rule in P , then P is terminating for all bounded goals.Proof. Consider a state H 0 ^D. Applying the rule (H <=> G j B) will leadto the state (H = H 0) ^G ^ B ^D.We have to show that mrank(H 0 ^D) � mrank((H = H 0)^G^B ^D) andthat the ranks of all states in a omputation are bounded.We know that mrank(G) = fg, mrank(H = H 0) = fg, sine fg is the smallestelement in the multi-set order, and that (H = H 0)! mrank(H) = mrank(H 0).Sine RC(G;B)! mrank(H) � mrank(B), we have thatmrank(H 0 ^D) = mrank(H 0) [mrank(D) = mrank(H) [mrank(D) �fg [ fg [mrank(B) [mrank(D) = mrank(((H = H 0) ^G ^ B ^D)).To show that the ranks of all states are bounded, note the following: Any multi-set order indued by a polynomial ranking is well-founded and has the stabilityproperty. Sine goals are bounded, the rank of a goal is bounded. Sine there isonly a �nite number of goals in a state, the multi-set of its ranks is �nite. Dueto the ranking ondition, the boundedness of the soure state is propagated totarget state. Thus no in�nite omputations are possible, hene P is terminating.We are now ready to prove termination of atually implemented CHR on-straint solvers ranging from Boolean and arithmeti to terminologial and path-onsistent onstraints. For details on the onstraint solvers analyzed here see[Fru98℄ and the CHR web pages:www.pst.informatik.uni-muenhen.de/�fruehwir/hr-intro.html4.1 Boolean Algebra, Propositional LogiThe domain of Boolean onstraints inludes the onstants 0 for falsity, 1 fortruth and the usual logial onnetives of propositional logi, e.g. and, or,neg, imp, exor, modeled here as relations. Syntatial equality = is a built-inonstraint. As a �rst, simple, but nevertheless useful example for a onstraintsolver, we an de�ne an and onstraint using value propagation, a speial aseof ar onsisteny:and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the onstraint and(X,Y,Z), when it is knownthat the �rst input argument X is 0, an be redued to asserting that the outputZ must be 0. Hene the query and(X,Y,Z),X=0 will result in X=0, Z=0.



The above rules terminate, sine the CHR onstraints and is not reursive.Any ranking that maps and to a positive number suÆes to show this. The sameholds for the other onnetives.In general, in termination proofs we an ignore rules whose body ontainsonly built-in onstraints.A onstraint solver is omplete if an always redue inonsistent CHR on-straints to false. To ahieve ompleteness for Boolean onstraints as de�nedhere, searh must be employed by trying out values for the variables. In gen-eral, one is happy with inomplete solvers, beause they have polynomial time-omplexity as opposed to the exponential omplexity of omplete algorithms.Completeness has nothing to do with termination, but is mentioned in this pa-per to haraterize the onstraint solvers.Boolean CardinalityThe ardinality onstraint ombinator was introdued in the CLP language(FD) [vHSD92℄ for �nite domains. We adapted it for Boolean variables. TheBoolean ardinality onstraint #(L,U,BL,N) holds if between L and U Booleanvariables in the list BL are equal to 1. N is the length of the list BL. Boolean ardi-nality an express e.g. negation #(0,0,[C℄,1), exlusive or #(1,1,[C1,C2℄,2),onjuntion #(N,N,[C1,...,Cn℄,N), and disjuntion #(1,N,[C1,...,Cn℄,N).In the following ode, all onstraints exept ardinality # are built-in.% trivial, positive and negative satisfationtriv_sat� #(L,U,BL,N) <=> L=<0,N=<U | true.pos_sat � #(L,U,BL,N) <=> L=N | all(1,BL).neg_sat � #(L,U,BL,N) <=> U=0 | all(0,BL).% positive and negative redutionpos_red � #(L,U,BL,N) <=> delete(1,BL,BL1)| 0<U,#(L-1,U-1,BL1,N-1).neg_red � #(L,U,BL,N) <=> delete(0,BL,BL1)| L<N,#(L,U,BL1,N-1).all(T,L) binds all elements of the list L to T. delete(X,L,L1) deletes theelement X from the list L resulting in the list L1. When delete/3 is used in theguard, it will only sueed if the element to be removed atually ours in thelist. E.g. delete(1,BL,BL1) will delay if it tries to bind a variable in BL to 1. Itwill only sueed if there atually is a 1 in the list. It will fail, if all elements ofthe list are zeros.Termination. The rules are still simple (single-headed simpli�ation rules),but some are reursive. Sine the ardinality onstraint is either simpli�ed into abuilt-in onstraint (satisfation rules) or redued to a ardinality with a shorterlist (redution rules), this implementation terminates.More formally, our termination proof is based on the length of the list:rank(#(L;U;BL;N)) = length(BL)



The length of a list an be expressed in our ranking sheme by:length([℄) = 0length([X jL℄) = 1 + length(L)For example, the length of [a,b,,d℄ is 4, the length of [a|L℄ is 1 + length(L)with length(L) � 0.Remember that the rank of built-in onstraints is always 0, but that theymay imply order onstraints. This is the ase for delete/3:delete(X;L;L1)! length(L) = length(L1) + 1Finally, the rank of a onjuntion is the sum of the ranks of its onjunts:rank((A ^ B)) = rank(A) + rank(B)The interesting ase for termination are the two redution rules, beause theyare reursive. From the rulepos_red � #(L,U,BL,N) <=> delete(1,BL,BL1)| 0<U,#(L-1,U-1,BL1,N-1).we get to provelength(BL) = length(BL1) + 1 ! length(BL) > length(BL1).The ranking ondition holds, and in the same way we prove termination for theneg red rule.Due to the ranking, a goal onsisting of built-in and ardinality onstraintsis bounded if the lengths of the lists in the ardinality onstraints are known, i.e.if the lists are losed. If a list was open(-ended), there ould be produers of anin�nite list, and then the assoiated ardinality onstraint would not neessarilyterminate.4.2 Terminologial ReasoningTerminologial formalisms (aka desription logis) [BaHa91℄ are used to repre-sent the terminologial knowledge of a partiular problem domain on an abstratlogial level. To desribe this kind of knowledge, one starts with atomi oneptsand roles, and then de�nes new onepts and their relationship in terms of ex-isting onepts and roles. Conepts an be onsidered as unary relations similarto types. Roles orrespond to binary relations over objets. Although there isan established notation for terminologies, we use a more verbose syntax to helpreaders not familiar with the formalism.De�nition 12. Conept terms are de�ned indutively: Every onept (name) is a onept term. If s and t are onept terms and r is a role (name), then thefollowing expressions are also onept terms:s and t (onjuntion), s or t (disjuntion), nota s (omplement),every r is s (value restrition), some r is s (exists-in restrition).



Objets are onstants or variables. Let a, b be objets. Then a : s is a membershipassertion and (a; b) : r is a role-�ller assertion. An A-box is a onjuntion ofmembership and role-�ller assertions.De�nition 13. A terminology (T-box) onsists of a �nite set of onept de�ni-tions isa s,where  is a newly introdued onept name and s is a onept term.Sine the onept  is new, it annot be de�ned in terms of itself, i.e. oneptde�nitions are ayli (non-reursive). This also implies that there are oneptswithout de�nition, they are alled primitive.The CHR onstraint solver for terminologies enodes the T-box by rules andthe A-box as CHR onstraints, sine we want to solve problems over a giventerminology (T-box). A similar solver is desribed in [FrHa95℄.The onsisteny test of A-boxes simpli�es and propagates the assertions inthe A-box to make the knowledge more expliit and looks for obvious ontradi-tions (\lashes") suh as X : devie, X : nota devie. This is expressed bythe rule:I : nota S, I : S <=> false:The following simpli�ation CHR show how the omplement operator nota anbe pushed towards to the leaves of a onept term:I : nota nota S <=> I : S.I : nota (S or T) <=> I : nota S and nota T.I : nota (S and T) <=> I : (nota S or nota T).I : nota (every R is S) <=> I : some R is nota S.I : nota some R is S <=> I : every R is nota S.An exists-in restrition generates a new variable that serves as a \witness" forthe restrition:I : some R is S <=> (I,J) : R, J : S.A value restrition has to be propagated to all role �llers:I : every R is S, (I,J) : R ==> J : S.The unfolding rules replae onept names by their de�nitions. For eah oneptde�nition C isa S two rules are introdued:I : C <=> I : S.I : nota C <=> I : nota S.The onjuntion rule generates two new, smaller assertions:I : S and T <=> I : S, I : T.



The rules simplify terminologial onstraints until a normal form is reahed.The normal form is either false (inonsistent) or ontains onstraints of the formI : C, I : nota C, I : S or T, I : every R is S and (I,J) : R, whereC is a primitive onept name. There are no lashes and the value restritionhas been propagated to every objet. To ahieve ompleteness, searh must beemployed. This is done by splitting I : S or T into two ases, I : S and I: T.Termination. The only CHR onstraints that are rewritten by the rules aremembership assertions. Sine there are no guards, to show termination it there-fore suÆes to show that in eah rule, the membership assertions in the bodyare stritly smaller than the ones in the head.To prove termination we order onept terms by the following ranking:rank((A ^ B)) = rank(A) + rank(B)rank((I; J) : r) = 0rank(I : s) = rank(s)rank(nota s) = 2 � rank(s)rank() = 1 + rank(s) if ( isa s) existsrank(f(t1; : : : ; tn)) = 1 + rank(t1) + : : :+ rank(tn) otherwiseThe ranking above is well-founded, sine onept de�nitions  isa s are ayliand �nite by de�nition. From the ranking we an see that goals are boundedif the ranks of all onept terms (like s and ) are known. Sine onept termsare ground (variable-free) and �nite by de�nition, their ranks an always beomputed.The propagation rule for value restritions needs loser onsideration. Notethree things: First, the rank of its body is stritly smaller than the rank of itshead. Seond, sine a propagation rule is appliable only at most one to the sameonstraints, it an only be applied a �nite number of times to a �nite onjuntionof onstraints. Third, the ranking is well-founded and goals are bounded. Forthese reasons, the propagation rule an only generate a �nite number of smallerand smaller membership assertions.4.3 Linear Polynomial EquationsFor solving linear polynomial equations, a minimalisti but powerful variant ofvariable elimination [Imb95℄ is employed in the available CHR onstraint solvers.De�nition 14. A linear polynomial equation is of the form p+ b = 0 where b isa onstant and the polynomial p is the sum of monomials of the form ai �xi withoeÆient ai 6= 0 and xi is a variable. Constants and oeÆients are numbers.Variables are totally ordered by �. In an equation a1 �x1+ : : :+an �xn+ b = 0,variables appear in stritly desending order.In onstraint logi programming, onstraints are added inrementally. There-fore we annot eliminate a variable in all other equations at one, but rather



onsider the other equations one by one. A simple normal form an exhibitinonsisteny: It suÆes if the left-most variable of eah equation is the onlyleft-most ourrene of this variable. Therefore the two rules below implement aomplete and rather eÆient solver for linear equations over both oating pointnumbers (to approximate real numbers) and rational numbers. In the implemen-tation, we write eq for equality on polynomials.empty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>ompute(P2-P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.The empty rule says that if the polynomial ontains no more variables, the on-stant B must be (approximate to) zero. The eliminate rule performs variableelimination. It takes two equations that start with the same variable. The �rstequation is left unhanged, it is used to eliminate the ourrene of the ommonvariable in the seond equation. The auxiliary built-in onstraint ompute sim-pli�es a polynomial arithmeti expression into a new polynomial. No variable ismade expliit, i.e. no pivoting is performed. Any two equations with the same�rst variable an reat with eah other. Therefore, the solver is highly onurrentand distributed.The solver an be extended by a few rules to reate expliit variable bindings,to make impliit equalities between variables expliit, to deal with inequationsusing slak variables or Fourier's algorithm.Termination. Sine in termination proofs we an ignore rules whose bodyontains only built-in onstraints, we are only onerned with the eliminate rulehere. To prove its termination we order the equations by the following rankingmrank that uses a multi-set order �m on the variables ourring in goals. Theorder is indued by the order on ranked variables �, the ranking funtion rankitself is not de�ned for any prediate or funtion symbols.mrank((A ^ B)) = mrank(A) [mrank(B)mrank(P eq 0) = mrank(P )mrank(A) = fg if A is a built-in onstraintmrank(T ) = frank(V ) j V is a variable in Tg if T is a terma1 �X1 + : : :+ an �Xn + b eq 0! Xi � Xj for all n � i > j � 1 (1)ompute(E;P )! mrank(E) � mrank(P ) (2)The order onstraint (1) says that the monomials in the equations are orderedby their variables. The order onstraints (2) says that the built-in onstraintompute does not introdue new variables, but may eliminate ourrenes ofsome.



For better readability, we will now just write the polynomial P instead ofmrank(P ) and the variable V instead of rank(V ). From the eliminate rule weget that the head rank, the multi-set (fXg [ P1 [ fXg [ P2), must be stritlylarger than the body rank (fXg[P1[P3). From the order onstraint (2) we anderive that P2[P1 � P3. Hene the body rank multi-set ontains only variablesfrom the head rank multi-set. Due to (1) we know that the variable X does notour in P1; P2 and P3, and that it omes before all other variables in P1; P2and P3 in the variable order. Therefore the head rank multi-set is stritly largerin the multi-set order than the body rank multi-set, beause in the former Xours twie and in the latter X ours only one.The order of the monomials by variables in the polynomial equations orre-sponds to an implementation of the multi-set order by a lexiographi order asmentioned at the end of setion 3.4.4 Path ConsistenyIn this setion we analyze termination of onstraint solvers that implement in-stanes of the lassial arti�ial intelligene algorithm of path onsisteny tosimplify onstraint satisfation problems [MaFr85℄.De�nition 15. A binary onstraint network onsists of a set of variables anda set of (disjuntive) binary onstraints between them. The network an berepresented by a direted onstraint graph, where the nodes denote variables andthe ars are labeled by binary onstraints. Logially, a network is a onjuntionof binary onstraints.De�nition 16. A disjuntive binary onstraint XY between two variables Xand Y , also written X fr1; : : : ; rng Y , is a �nite disjuntion (X r1 Y ) _ : : : _(X rn Y ), where eah ri is a relation that is appliable to X and Y . The ri arealled primitive onstraints. The onverse of a primitive onstraint r between Xand Y is the primitive onstraint s that holds between Y andX as a onsequene.For example, A f<g B;A f<;>g B;A f<;=; >g B are disjuntive binary on-straints AB between A and B. A f<g B is the same as A < B, A f<;>g B is thesame as A 6= B. Finally, A f<;=; >g B does not impose any restritions on Aand B, the onstraint is redundant. Usually, the number of primitive onstraintsis �nite and they are pairwise disjoint. We will assume this in the following.De�nition 17. A network is path onsistent if for pairs of nodes (i; j) and allpaths i� i1 � i2 : : : in � j between them, the diret onstraint ij is at least astight as the indiret onstraint along the path, i.e. the omposition of onstraintsalong the path denoted by ii1 
 : : : 
 inj . A onstraint ij is tighter than aonstraint dij i� ij implies dij .It follows from the de�nition of path onsisteny that we an interset thediret and indiret onstraint to arrive at a tighter diret onstraint. Let interse-tion be denoted by the operator �. A graph is omplete if there is a pair of ars,



one in eah diretion, between every pair of nodes. If the graph underlying thenetwork is omplete it suÆes to repeatedly onsider paths of length 2 at most:For eah triple of nodes (i; k; j) we repeatedly ompute ij := ij � (ik 
 kj)until a �xpoint is reahed. This is the basi path onsisteny algorithm.Example 3. Given I � K ^ K � J ^ I � J and taking the triple (i; k; j),ik
 kj results in I � J and the result of interseting it with ij is I = J . From(j; i; k) we get J = K (we an ompute ji as the onverse of ij). From (k; j; i)we get K = I . Another round of omputation auses no more hange, so the�xpoint is reahed with J = K ^ K = I .Let the onstraint ij be represented by the CHR onstraint (I,J,C) whereI and J are the variables and C is a set of primitive onstraints representingij . The basi operation of path onsisteny, ij := ij � (ik 
 kj), an beimplemented diretly by the rule:path_onsisteny �(I,K,C1), (K,J,C2), (I,J,C3) <=>omposition(C1,C2,C12),intersetion(C12,C3,C123),C123=\=C3 |(I,K,C1), (K,J,C2), (I,J,C123).The operations 
 and � are implemented by built-in onstraints, ompositionand intersetion. Composition of disjuntive onstraints an be omputedby pairwise omposition of its primitive onstraints. Intersetion for disjuntiveonstraints an be implemented by set intersetion. To ahieve ompleteness,searh must be employed. This is done by imposing primitive onstraints hosenfrom the disjuntive onstraints.Termination. To prove termination we rely on the ardinality of the sets rep-resenting the disjuntive onstraints and the properties of set intersetion:rank((A ^ B)) = rank(A) + rank(B)rank((I;K;C)) = ardinality(C)rank(A) = 0 otherwiseintersetion(C1; C2; C3)! rank(C3) � rank(C1)^rank (C3) � rank(C2)intersetion(C1; C2; C3) ^ C3 6= C2! rank(C3) 6= rank(C2)Sine in the guard of the rule, C123=n=C3 is heked to make sure the newonstraint C123 is di�erent from the old one C3, the ardinality of C123 must bestritly less than that of C3. Hene the body is ranked stritly smaller than thehead of the rule. Goals are bounded, when C is a known, �nite set of primitiveonstraints. Any solver derived from this generi path onsisteny solver willterminate, too.



4.5 Interval Constraints, Ar ConsistenyThe following rules implement an ar onsisteny algorithm for interval on-straints [BeOl92℄. Ar onsisteny an be seen as speial ase of path onsisteny,where all but one onstraint is unary instead of binary. The interval onstraintX in A:B means that X is an integer between the given bounds A and B.% Intervalsinonsistent � X in A:B <=> A>B | false.intersetion � X in A:B, X in C:D <=> A=<B| X in max(A,C):min(B,D).% (In)equalitiesle � X le Y, X in A:B, Y in C:D <=> A=<B,B>D |X le Y, X in A:D, Y in C:D.le � X le Y, X in A:B, Y in C:D <=> C=<D,C<A |X le Y, X in A:B, Y in A:D.eq � X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.eq � X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,B=\=D |X eq Y, X in A:min(B,D), Y in C:min(D,B).% Addition X+Y=Zadd � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>A=<B,C=<D, not((A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)) |add(X,Y,Z),X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).To ahieve ompleteness, searh must be employed. This is done by splittingintervals in two halves or by trying the boundary values of an interval.Termination. We order onstraints by the size of their intervals:rank((C ^D)) = rank(C) + rank(D)rank(X in A : B) = B �A+ 1 if B � Arank(C) = 0 otherwiseWe will use the inequalities in the guards of the rules diretly as order onstraints.With their help we an prove that in eah rule, at least one interval in the bodyis stritly smaller than the orresponding interval in the head, while the otherintervals remain unhanged or will be removed.The onstraints A=<B and C=<D in the guard of a rule ensure that the rank ofthe head of the rule annot be 0. (In implementations that apply rules in textualorder, these guard onstraints an be dropped.) The ranking ondition for the�rst rule inonsistent also holds, even though its head rank is 0, sine its orderonstraint is inonsistent: (A > B ^ false)! 0 > 0.



Sine the interval bounds are initially known, goals are bounded. Note thatthe intervals of integers are losed under the interval omputations used, sinethey involve only the arithmeti operations max, min and +, -. Terminationfor intervals of rational numbers an be shown by observing that any problemon rational numbers an be transformed into an equivalent one on integers bymultiplying all numbers the problem with their greatest ommon divisor. Foroating point numbers, rounding errors get in the way.5 ConlusionsWe have shown in this paper that for many known onstraint solvers imple-mented in CHR it is possible to prove termination by adapting well-foundedorders (linear polynomial interpretations) and interargument relations (orderonstraints) as known from related work in term rewriting systems and logiprogramming. One adaption was to extend termination order from atomi for-mulas to onjuntions of onstraints.To the best of our knowledge, this is the �rst report on proving terminationof onurrent onstraint logi programs and of onstraint solver implementa-tions. Our results indiate that in pratie, proving termination for onurrentonstraint logi programs may not be harder than for other lasses of logi pro-gramming languages, ontrary to what has been feared in the literature.Our results so far are somewhat unsatisfatory, beause we give two analogousTheorems whih should be abstrated into single Theorem aomodating bothkind of termination orders that we onsidered (polynomial interpreations andmulti-sets).The solvers we have onsidered are haraterized by the fat that reursion isdiret and typially modi�es one argument position of a onstraint, and the termin that position is suÆiently known in reasonable queries, i.e. those queries arebounded.Although we have dealt with termination in the presene of propagation rulesin the solver for terminologial reasoning, we still have to formalize terminationinvolving propagation rules. In partiular, there is a lass of solvers that weurrently annot prove to terminate with the approah presented in this pa-per. These solvers are implementations of path and ar onsisteny algorithmson inomplete onstraint networks. They basially onsist of the two followingprototypial rules:(I,K,C1), (K,J,C2) ==> omposition(C1,C2,C3), (I,J,C3).(I,J,C1), (I,J,C2) <=> intersetion(C1,C2,C3), (I,J,C3).These solvers have reursion on the same onstraint through both simpli�ationand propagation rules. This means that a onstraint an be �rst added and thenbe removed during the omputation. To prove termination, one will have to takeinto aount that simpli�ation is applied suÆiently often before propagationand the fat that propagation rules are never applied a seond time to the sameonstraints.
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