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Abstract. Soft constraints are a generalization of classical constraints,
which allow for the description of preferences rather than strict require-
ments. In soft constraints, constraints and partial assignments are given
preference or importance levels, and constraints are combined according
to combinators which express the desired optimization criteria. On the
other hand, Constraint Handling Rules (CHR) constitute a high-level
natural formalism to specify constraint solvers and propagation algo-
rithms.

We present a framework to design and specify soft constraint solvers by
using CHR. In this way, we extend the range of applicability of CHR to
soft constraints rather than just classical ones, and we provide a straight-
forward implementation for soft constraint solvers.

1 Introduction

Many real-life problems are naturally described via constraints that state the
necessary requirements of the problems. However, usually such requirements are
not hard, and could be more faithfully represented as preferences, which should
preferably be followed but not necessarily. Moreover, real-life problems are often
over-constrained, since it is impossible to satisfy all their constraints. These
scenarios suggest the use of preferences or in general of soft constraints rather
than classical constraints.

Generally speaking, a soft constraint is just a classical constraint plus a way
to associate, either to the entire constraint or to each assignment of its variables,
a certain element, which is usually interpreted as a level of preference or impor-
tance. We will use with the same meaning the terms preference, preference value,
level of preference, weight, and semiring value. Moreover, when higher prefer-
ences are worse, we also call them costs. Such levels are usually ordered, and



the order reflects the idea that some levels are better than others. Moreover, one
has also to say, via a suitable combination operator, how to obtain the level of
preference of a global solution from the preferences in the constraints.

To identify a specific class of soft constraints, one has just to select a certain
combination operator and a certain ordered set of levels of preferences. For ex-
ample, one can choose the set of all reals between 0 and 1, and the min operator
(this would be the so-called fuzzy constraints); with this framework, one can
give a preference level between 0 and 1 to partial solutions, where a higher level
is considered better, and then compute the preference of a global solution as the
minimal preference on all constraints. Another example would be obtained by
choosing the set of all naturals as the preference values, ordered in a way that
higher values are worse, and sum as the combination operator; in this setting,
also called Weighted CSPs (Constraint Satisfaction Problems), we are looking
for the solutions which minimize the sum of all the preferences (also called costs
in this specific scenario). In this view, also classical constraints can be seen as
a specific class of soft constraints, where there are only two levels of preference
false and true.

Many formalisms have been developed to describe one or more classes of
soft constraints [7,8,3]. In this paper we refer to one which is general enough
to describe most of the desired classes. This framework is based on a semiring
structure, that is, a set plus two operators: the set contains all the preference
levels, one of the operators gives the order over such a set, while the other one
is the combination operator [2,1].

It has been shown that constraint propagation and search techniques, as usu-
ally developed for classical constraints, can be extended also to soft constraints,
if certain conditions are met [2]. However, while for classical constraints there
are formalisms and environments to describe search procedures and propaga-
tion schemes [19], as far as we know nothing of this sort is yet available for soft
constraints. Such tools would obviously be very useful, since they would pro-
vide a flexible environment where to specify and try the execution of different
propagation schemes.

We propose to use the Constraint Handling Rules (CHR) framework [9],
which is widely used to specify propagation algorithms for classical constraints,
and has shown great generality and flexibility in many application fields. CHR
describe propagation algorithms via two kinds of rules, which, given some con-
straints, either replace them (in a simplification rule) or add some new con-
straints (in a propagation rule). With a collection of such rules, one can easily
specify complex constraint reasoning algorithms.

We describe how to use CHR to specify propagation algorithms for soft con-
straints. The advantages of using a well-tested formalism, as CHR is, to specify
soft constraint propagation algorithms are many-fold. First, we get an easy im-
plementation of new solvers for soft constraints starting from existing solvers
for classical constraints. Moreover, we obtain an easy experimentation platform,
which is also flexible and adaptable. And finally, we develop a general imple-



mentation which can be used for many different classes of soft constraints, and
also to combine some of them.

The paper is organized as follows. In Section 2 we recall the basic notions of
the soft contraint framework based on semirings. In Section 3 we give a short
introduction to CHR. In Section 4 we describe the constraint solvers for soft
constraints that we implemented in CHR and in Section 5 we give some examples.
Finally, we conclude and give some perspectives for future work in Section 6.

2 Soft Constraints

In the literature there have been many formalizations of the concept of soft con-
straints 7,8, 3]. Here we refer to a specific one, which however can be shown
to generalize and express many of the others [2]. In short, a soft constraint is
a constraint where each instantiation of its variables has an associated value
from a partially ordered set. Combining constraints will then have to take into
account such additional values, and thus the formalism has also to provide suit-
able operations for combination (x) and projection (4) of tuples of values and
constraints. This is why this formalization is based on the concept of semiring,
which is a set plus two operations.

2.1 Semirings and SCSPs

A semiring is a tuple (A, +, x,0,1) such that: A is a set and 0,1 € A; + is
commutative, associative, and 0 is its unit element; X is associative, distributes
over +, 1 is its unit element, and 0 is its absorbing element.

In reality, we will need some additional properties, leading to the notion of c-
semiring (for “constraint-based”): a c-semiring is a semiring (A, 4, x,0,1) such
that + is idempotent, 1 is its absorbing element, and x is commutative.

Let us now consider the relation <g over A such that a <g b iff a +b =b.
Then it is possible to prove that: <g is a partial order; + and X are monotone
on <g; 0 is its minimum and 1 its maximum; (A4, <g) is a complete lattice and
+ obtains the least upper bound of its operands. Moreover, if x is idempotent,
then: + distributes over x; (A,<g) is a complete distributive lattice and x
obtaines the greatest lower bound of its operands. The <g relation is what we
will use to compare tuples and constraints: if a <g b it intuitively means that b
is better than a.

In this context, a soft constraint is then a pair (def, con) with con C V,
where V is the set of problem variables, and def : D"l — A, where D is the
domain of possible values of the variables. Therefore, a constraint specifies a
set of variables (the ones in con), and assigns to each tuple of values of these
variables an element of the semiring.

A soft constraint satisfaction problem (SCSP) is a pair (C, con) where con C
V and C is a set of constraints: con is the set of variables of interest for the
constraint set C, which however may concern also variables not in con.



Combining and projecting soft constraints. Given two soft constraints
c1 = {(defy, cony) and co = (def,, cony), their combination ¢; ® cq is the con-
straint (def, con) defined by con = coni U cony and def(t) = def,(t |ion,
) % def(t 159" ), where t |5 denotes the tuple of values over the variables in

con

Y, obtained b;r projecting tuple ¢t from X to Y. In words, combining two soft
constraints means building a new soft constraint involving all the variables of
the original ones, and which associates to each tuple of domain values for such
variables a semiring element which is obtained by multiplying the elements as-
sociated by the original soft constraints to the appropriate subtuples.

Given a soft constraint ¢ = (def, con) and a subset I of V, the projection of
c over I, written c |1 is the soft constraint (def’, con’) where con’ = conN I and
def'(t') = Y, AT def (t). Informally, projecting means eliminating some
variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

Summarizing, combination is performed via the multiplicative operation of
the semiring, and projection via the additive operation.

2.2 Instances

Classical CSPs are SCSPs where the chosen c-semiring is Bool = ({false, true},
V, A, false, true). By using this semiring we mean to associate to each tuple a
boolean value, with the intention that true is better than false, and we combine
constraints via the logical and.

Fuzzy CSPs [7] instead can be modeled in the SCSP framework by choosing
the c-semiring Spcsp = ([0, 1], maxz, min,0,1). This means that each tuple of
values in a constraint has a preference between 0 and 1, where higher values
are better. Then, constraints are combined via the min operation and different
solutions are compared via the max operation. The ordering here reduces to the
usual ordering on reals.

Example 1 Figure 1 shows the graph representation of a fuzzy CSP. Variables
are X and Y, and constraints are represented respectively by nodes and by
undirected (unary for ¢; and ¢z and binary for ¢g) arcs, and semiring values are
written to the right of the corresponding tuples. The variables of interest (that
is the set con) are represented with a double circle. Here we assume that the
domain D of the variables contains only elements a, b and c.

If semiring values represent probability/fuzziness values then, for instance,
the tuple (a,¢) — 0.2 in constraint ¢z can be interpreted to mean that the
probability /fuzziness of X and Y having values a and ¢, respectively, is 0.2. A

Another interesting instance of the SCSP framework is based on set opera-
tions like union and intersection and uses the c-semiring Sets = {p(A),U,N, D, A),
where A is any set. This means that preferences are denoted by subsets of a given
set A, that constraint combination is performed via set intersection, and that
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Fig. 1. A fuzzy CSP.

the preference ordering is deduced from set union. Thus the order reduces to set
inclusion, and therefore it is a partial order.

It is also important to notice that the cartesian product of two semirings
is again a semiring. This allows to reason with multiple criteria (one for each
semiring) at the same time.

If we restrict SCSPs to have a total order on the preferences, then we are
equivalent to a different preference-based framework, called Valued CSPs [16],
which works with a valuation structure consisting of a set and an operation to
perform constraint combination.

2.3 Solutions

The solution of an SCSP problem P = (C,con) is the constraint Sol(P) =
(® C) Veon- In words, we combine all constraints and then we project the re-
sulting constraint onto the variables of interest.

Example 2 Consider again the solution of the fuzzy CSP of Figure 1. It asso-
ciates a semiring element to every domain value of variable X. Such an element
is obtained by first combining all the constraints together and then projecting
the obtained constraint over X.

For instance, for the tuple (a,a) (that is, X =Y = a), we have to compute
the minimum between 0.9 (which is the value assigned to X = a in constraint
1), 0.8 (which is the value assigned to (X = a,Y = a) in ¢3) and 0.9 (which is
the value for Y = a in ¢3). Hence, the resulting value for this tuple is 0.8. We
can do the same work for tuple (a,b) — 0.2, (a,c) — 0.2, (b,a) — 0, (b,b) — 0,
(b,¢) — 0.1, {¢,a) — 0.8, {¢,b) — 0.2 and (¢, c) — 0.2. The obtained tuples are
then projected over variable X, obtaining the solution (a) — 0.8, (b) — 0.1 and
(¢) — 0.8. A

Solving an SCSP is an NP-complete problem. Its complexity is in fact expo-
nential in time in the size of the given constraint problem.

2.4 Soft constraint propagation

SCSP problems can be solved by extending and adapting the techniques usually
used for classical CSPs. For example, to find the best solution we could employ



a branch & bound search algorithm (instead of the classical backtracking), and
also the successfully used propagation techniques, like arc consistency, can be
generalized to be used for SCSPs.

Instead of deleting tuples, in SCSPs obtaining some form of constraint prop-
agation means changing the semiring values associated to some tuples or domain
elements. In particular, the change always brings these values towards the worst
value of the semiring, that is, the 0.

The kind of soft constraint propagation we will consider in this paper amounts
to combining, at each step, a subset of the soft constraints and then projecting
over some of their variables. This is not the most general form of constraint
propagation, but it strictly generalizes the usual propagation algorithms like arc
and path-consistency, therefore it is reasonably general.

More precisely, each constraint propagation rule can be uniquely identified
by just specifying a subset C' of the constraint set, and one particular constraint
in C, say c. Then, applying such a rule consists of performing the following
operation: ¢ := (@ C) {yar(c)- That is, c is replaced by the projection, over its
variables, of the combination of all the constraints in C.

It is easy to see that arc consistency over classical constraints could be mod-
eled by choosing the boolean semiring and selecting C' as the set of constraints
(two unary and one binary) over any two variables, and ¢ as one of the unary
constraints in C.

A soft constraint propagation algorithm operates on a given set of soft con-
straints, by applying a certain set of constraint propagation rules until stability
is reached. It is possible to prove that any constraint propagation algorithm
defined in this way has the following properties [2]:

— it terminates;
— if x is idempotent, then:
e the final constraint set is equivalent to the initial one;
e the result does not depend on the order of application of the constraint
propagation rules.

Classical, fuzzy and set soft constraints have an idempotent x operator,
thus soft constraint propagation, when applied in these frameworks, has all the
properties listed above.

If the x operator is not idempotent, like for example in the semiring (R U
{+00}, min, +, 0, 4+00) for constraint optimizations (where we have to minimize
the sum of the costs, and thus x is the sum), we cannot be sure that constraint
propagation has the above desirable properties. However, some recent work [17]
has shown that at least equivalence can be preserved by applying a notion similar
to classical propagation.

Even with very naive algorithms, it is possible to achieve classical constraint
propagation in O(n*), where n is the number of variables of the given problem
and k is the size of the sub-problem to be solved by each propagation rule (so, for
example, arc-consistency can be achieved in quadratic time). For soft constraint
propagation, the time complexity is similar, except that we must consider also



the number of different preference levels. So, if the size of the constraint subset
to be considerd by each soft constraint propagation rule is small with respect to
the size of the whole problem, the time complexity of performing soft constraint
propagation is polynomial.

3 Constraint Handling Rules

Constraint Handling Rules (CHR) [9] are a committed-choice concurrent con-
straint logic programming language consisting of multi-headed guarded rules
that rewrite constraints into simpler ones until they are solved. CHR define both
simplification of and propagation over user-defined constraints. Simplification re-
places constraints by simpler constraints while preserving logical equivalence.
Propagation adds new constraints which are logically redundant but may cause
further simplification. CHR have been used in dozens of projects worldwide to
implement various constraint solvers, including novel ones such as terminologi-
cal, spatial and temporal reasoning [9].

In this section we quickly give syntax and semantics for CHR, for details see
[9]. We assume some familiarity with (concurrent) constraint (logic) program-
ming [10,13,18].

A constraint is a predicate (atomic formula) in first-order logic. We dis-
tinguish between built-in (predefined) constraints and CHR (user-defined) con-
straints. Built-in constraints are those handled by a predefined, given constraint
solver. For simplicity, we will regard all (auxiliary) predicates as built-in con-
straints. CHR constraints are those defined by a CHR program.

3.1 Abstract syntax

In the following, upper case letters stand for conjunctions of constraints.
A CHR program is a finite set of CHR. There are two kinds of CHR. A
simplification CHR is of the form

NQ@H<=>G|B
and a propagation CHR is of the form

NQH==>G|B
where the rule has an optional name N followed by the symbol @. The multi-
head H is a conjunction of CHR constraints. The optional guard G followed by
the symbol | is a conjunction of built-in constraints. The body B is a conjunction
of built-in and CHR constraints.

A simpagation CHR is a combination of the above two kinds of rule, it is of
the form

N @H; \ Hy<=>G | B

where the symbol >\’ separates the head constraints into two nonempty conjunc-
tions HI and H2. A simpagation rule can be regarded as efficient abbreviation
of the corresponding simplification rule:

N @ Hl,HQ <=> (G | Hl,B



3.2 Operational semantics

The operational semantics of CHR programs is given by a state transition system.
With derivation steps (transitions, reductions) one can proceed from one state
to the next. A derivation is a sequence of derivation steps.

A state (or: goal) is a conjunction of built-in and CHR constraints. An initial
state (or: query) is an arbitrary state. In a final state (or: answer) either the
built-in constraints are inconsistent or no derivation step is possible anymore.

Let P be a CHR program for the CHR constraints and C'T" be a constraint
theory for the built-in constraints. The transition relation — for CHR is as
follows.

Simplify
HANDw+— (H=H)ANGABAD
if (H<=>G|B)inP and CT =D — 3z(H = H NG)

Propagate
HAND— (H=H)NGANBAH' AD
if(H==>G|B)inP and CT =D — 3z(H = H NG)

When we use a rule from the program, we will rename its variables using new
symbols, and these variables are denoted by the sequence Z. A rule with head H
and guard G is applicable to CHR constraints H' in the context of constraints
D, when the condition CT = D — 3z(H = H' A G) holds.

In the condition, the equation (H = H') is a notational shorthand for equat-
ing the arguments of the CHR constraints that occur in H and H'. More pre-
cisely, by (HiA...ANH,) = (H{A...ANH]) we mean (H; = H{)A...AN(H, = H)),
where conjuncts can be permuted. By equating two constraints, ¢(ty,...,t,) =
c(81,---,8n), we mean (t; = s1) A...A (t, = $p). The symbol = is to be under-
stood as built-in constraint for syntactic equality and is usually implemented by
a unification algorithm.

Operationally, this condition requires to check first whether H' matches H
according to the definition of the built-in constraints in CT, i.e. whether H' is
an instance of (more specific than) the pattern H. The seemingly symmetric
equation (H = H') in the condition gives rise to matching (one-way unification)
because in the context of the condition, the equation (H = H') must be a logical
consequence of guard D where the quantification 3% denotes only the variables
from the rule. When matching, we take the context D into account since its built-
in constraints may imply that variables in H' are equal to specific terms. This
means that there is no distinction between, say, ¢c(X)AX =1 and ¢(1) A X = 1.

If H' matches H, we equate H' and H. This corresponds to parameter passing
in conventional programming languages, since only variables from the rule head
H can be further constrained, and all those variables are new. Finally, using the
variable equalities from D and H' = H, we check the guard G.

Any of the applicable rules can be applied, but it is a committed choice, that
is, it cannot be undone.



If an applicable simplification rule (H <=> G | B) is applied to the CHR
constraints H’, the Simplify transition removes H' from the state and adds the
body B, the equation H = H’, and the guard G. If a propagation rule (H ==>
G | B) is applied to H’, the Propagate transition adds B, H = H', and G
but does not remove H'.

Trivial non-termination of a propagation rule is avoided by applying it at
most once to the same constraints.

Ezxample 1. We define a CHR constraint for a partial order relation <, where
syntactic equality = is assumed to be built-in:

rl @ X<X & true.
r2 @ X<y A Y<X & X=Y.
r3 @ X<Y A Y<Z = X<ZZ.

The CHR program implements reflexivity (r1), antisymmetry (r2) and tran-
sitivity (r3) in a straightforward way. The reflexivity rule r1 states that X<X is
logically true. The antisymmetry rule r2 means X<Y A Y<X is logically equiv-
alent to X=Y. The transitivity rule r3 states that the conjunction of X<Y and
Y<Z implies X<Z.

A computation of the goal A<B A C<A AB<C proceeds as follows (where
CHR constraints that participate in a rule application have been underlined):

A<B A C<A A BZC S

A<B A C<A A B<C A C<B 72

A<B A C<A A B=C

Now the head of the antisymmetry rule can match A<BAC<A, because B = C.

A<B A C<A A B=C "2

A=B A B=C

No more rules are applicable. The result says that all three variables must
be the same.

4 Implementation

Typically, CHR are used in Java or within a CLP environment such as Eclipse,
Yap or Sicstus Prolog. This means that propagation algorithms are described
via CHR, while the underlying CLP language is used to define search proce-
dures and auxiliary predicates. This is the case in our implementation of soft
constraints, where the underlying language is Sicstus Prolog [4]. Notice that the
actual running code has been slightly edited to abstract away from technicalities
like cuts and term copying.

4.1 Choice of the Semiring

The implementation is parametric w.r.t. the semiring. To choose one particular
semiring S, the user states (that is, asserts) the fact semiring(S) using the pred-
icate use_semiring(S).The implementation currently supports the classical,



the fuzzy, the weighted, and the set semiring set(U) with universe U. For ex-
ample, to use the fuzzy semiring, we write use_semiring(fuzzy). The cartesian
product of semirings is supported, too. To use the cartesian product of the fuzzy
and the classical semiring, we write use_semiring((fuzzy, classical)).

Note that the cartesian product of two semirings is idempotent, if both semir-
ings are idempotent.

Recall that a semiring is characterized by a tuple (A, +, x,0,1). While the
definition of the set A is implicit through the operations, the operations and
remaining parameters are defined by CLP clauses. In particular, the operators
+ and X are defined by the predicates plus/3 and times/3. The partial semiring
order is defined by the predicate 1leqs/2 in terms of the additive operator, as in
the definition of the semiring structure:

legs(A, B) :- plus(A, B, B).

Finally, the top and the bottom element are defined by the predicates one/1 and
zero/1.
For example, for the classical semiring (i.e. for hard constraints) we have:

plus(classical, W1, W2, W3) :- or(Wi, W2, W3).
times(classical, W1, W2, W3) :- and(W1, W2, W3).
one(classical, t).
zero(classical, f).

The symbol t stands for true, £ stands for false.
For the cartesian product of two semirings, we define the operators in terms
of the operators of the constituent semirings:

plus((S1, S2), (A1, B1), (A2, B2), (A3, B3)) :-
plus(S1, A1, A2, A3),
plus(S82, B1, B2, B3).

times((S1, S2), (A1, B1), (A2, B2), (A3, B3)) :-
times(S1, A1, A2, A3),
times(S2, B1, B2, B3).

one((S1, S2), (Onel, One2)) :-
one(S1, Onel), one(S2, One2).

zero((S1, S2), (Zerol, Zero2)) :-
zero(S1, Zerol), zero(S2, Zero2).

4.2 Representation of Constraints

Each constraint definition (see Section 2) is represented as a list of pairs, where
each pair consists of a tuple of values and its associated preference value. It is
understood that those value tuples that do not occur in the list are associated
with the worst element of the underlying semiring.

Constraints are stated by means of the infix operator in. The left argument
of the in operator is a tuple of problem variables and the right argument is a suit-
able definition, e.g. [X] in [[a]l-2, [b]-3] and [X,Y] in [[a,b]l-3,[b,c]-4].



The predicate domain/2 can be used to post several constraints at a time
that do not differ in their definition. The predicate takes a list of variable tuples
and a constraint definition.

A constraint definition as in [X,Y] in [[a,b]l-3, [b,c]l-4] is called exten-
sional. Yet constraints can be defined intensionally, too, which comes handy
in the case of infinite relations. For example, [X,Y] in leq-3-1 associates the
preference value 3 to all tuples that satisfy the relation leq/2 and the value 1
to the others. Do not confuse leq, which holds between values, with the legs
for the semiring, which holds between preferences.

Notice that this is just one way to interpret intensionally defined constraints.
For leq, we have also experimented with fuzzy preferences where all pairs that
satisfy the relation have maximum preference 1, while for the other pairs the
preference could be computed as 1/(1+ d) where d is the difference between the
two values that do not satisfy the constraint. Another formula we have used was
inspired by work in neural networks: if the importance level of the constraint
is [, we give preference level (1 — l)e“d to all the tuples that do not satisfy the
constraint, where it is assumed that the preference levels range between 0 and 1
(so 1 —11is the dual of [), and where a is a parameter that controls the steepness
of the function.

4.3 Constraint combination

The predicate combination/3 takes two extensionally defined constraints (Con1
in Defl and Con2 in Def2) and returns their combination (Con3 in Def3):

combination(Conl in Defl, Con2 in Def2, Con3 in Def3) :-
isExtensional (Defl),
isExtensional (Def?2),
semiring(S),
zero(S, Z),
union(Conl, Con2, Con3),
findall (Con3-W3,

(  member(Conl-Wi1, Defl),
member (Con2-W2, Def2),
times(S, Wi, W2, W3),
W3 \==2),

Def3).

The combination is performed as follows: first, the union of Conl and Con2,
namely Con3, is computed. Then findall/3, member/2, and times/4 are used
to compute Def3 from Defl and Def2. More precisely, the call to findall/3
collects all value tuples along with their preference values.

The calls to member/2 select two tuples from Defl and Def2 that are con-
sistent with regard to the variables that are common to Coni and Con2!. In

! In practice, we do not use Conl, Con2, and Con3 but copies that have no constraints
attached to them. Thus we avoid that the calls to member/2 trigger any rule appli-
cations (via the introduction of new variable bindings in the course of unification).



the course of these calls, all variables in Con3 get bound and thus we obtain a
new tuple the preference value of which is computed by means of times/4. For
performance reasons, tuples with zero preference values are not collected (W3 =
Z).

For intensionally defined constraints, a variation of combination/3 is defined,
called longCombination/4. It takes an intensionally defined constraint (Conl
in Defl) and two extensionally defined constraints (Con2 in Def2 and Con3
in Def3), and computes a new extensionally defined constraint that represents
the combination of the three original constraints (Con4 in Def4). Notice that
the two extensional constraints define the tuples, so we can check them using
the third constraint (like during AC).

longCombination(Conl in Defl, Con2 in Def2, Con3 in Def3,
Con4 in Def4) :-
isIntensional (Defl),
isExtensional (Def2),
isExtensional (Def3),
semiring(S),
zero(S, Z),
union(Conl, Con2, Conil2),
union(Con12, Con3, Con4),
findall (Con4-W4,
(  member(Con2-W2, Def2),
member (Con3-W3, Def3),
checkConstraint(Defl, Conl, W1),
times(S, Wi, W2, Wi2),
times(S, W12, W3, W4),
Wae \== 2),
Def4) .

To compute the level of preference that the intensional constraint gives to each
tuple, we use the predicate checkConstraint/3 that takes the constraint defi-
nition (Defl) and the tuple (Conl), and returns the level of preference for the
tuple (W1). For example:

checkConstraint (leq-WS-WV, [X,Y], W) :-

( X=<Y
-> W ="Ws
; W=Wwv.

checkConstraint (slq-WS-wv, [X,Y], W) :-
( X=<Y
-> W =WS
; one(ONE), W is max(WV, ONE / (X - Y + 1) * WS)).

The first clause assigns the weight WS to each tuple that satisfies the relation X
=< Y, and WV to the other tuples. The second clause defines a variant of leq,



called slq, that assigns to each tuple that violates X =< Y a weight that depends
on the distance between X and Y.

4.4 Constraint projection

Predicate projection/3 implements the projection operator. It takes an exten-
sionally defined constraint (Conl in Defl) and a list of variables (Con2), and
returns the result of projecting the constraint over the list of variables (Con2 in
Def2):

projection(Conl in Defl, Con2, Con2 in Def2) :-
isExtensional (Defl),
findall (Con2-W1, member (Conl-W1, Defl), Def3),
keysort(Def3, Def4d),
semiring(S),
allplus(Def4, Def2, S).

findall/3 and member/2 are used to remove those values from the tuples in
Defl that do not correspond to any variable of interest (those in Con2). The
resulting tuples are sorted so that equal tuples are adjacent. Then the predicate
allplus/3 is used to sum up the preference values of equal tuples.

allplus([1, [1, ).

allplus([A-W1, A-W2|DefO], Def, S) :-
!,
plus(S, W1, W2, W3),
allplus([A-W3|DefO], Def, S).

allplus([A-W1|DefO], Def, S) :-

zero(S, W1),

!,

allplus(Def0O, Def, S).
allplus([A-W1|DefO], [A-W1|Def], S) :-

allplus(DefO, Def, S).

For performance reasons, tuples with zero preference values are removed.

4.5 Node and Arc Consistency

The following rule establishes node consistency by intersecting the domains as-
sociated with a variable using predicate combination/3:

node_consistency @ Con in Defl, Con in Def2 <=>
isExtensional (Defl), isExtensional(Def2) |
combination(Con in Defl, Con in Def2, Con in Def3),
Con in Def3.



The following simpagation rule implements arc consistency by combining
binary and unary constraints involving two variables X and Y and then projecting
onto each of the two variables. In effect, the two unary constraints on X and Y
are tightened taking into account the binary constraint.

arc_consistency @ [X,Y] in DefO \ [X] in DXO, [Y] in DYO <=>
var(X), var(Y), isExtensional(DefO) |
combination([X,Y] in DefO, [X] in DXO, [X,Y] in Defl),
combination([X,Y] in Defl, [Y] in DYO, [X,Y] in Def2),
projectionl1([X,Y] in Def2, [X] in DXO, [X] in DX1),
projection1([X,Y] in Def2, [Y] in DYO, [Y] in DY1),
[X] in DX1,
[Y] in DY1.

We recall here that soft arc consistency can be applied only when the multi-
plicative operation of the semiring (that is, x) is idempotent. Otherwise, in our
implementation, we apply a variation of projection to prune the domains of X
and Y. It is important to highlight that classical CSP operation like arc consis-
tency (but also like forward checking that is discussed in the next section) can
be naturally extended only to soft CSPs with idempotent x operators. If soft
CSPs with non idempotent operator need to be considered, some special version
of the classical propagators have to be defined. One example is the notion of soft
arc-consistency defined by Schiex in [17].
These two cases are handled by the following predicate projectionl.

projectionl1(Con in Def, V in DXO, V in DX1):-
projection(Con in Def, V, V in DX2),
(  semiring(S), idempotent(S)
-> DX1=DX2
;  findall(T-W, (member(T-W, DX0), member(T-_, DX2)), DX1).
).

The use of the predicate findall prunes those domain elements that have no
support, and leaves all other domain elements unchanged.

Another version of the arc consistency rule has been implemented that deals
with intensionally defined constraints. It basically differs from the rule above
only in that it uses the goal longCombination([X,Y] in DefO, [X] in DXO,
[Y] in DYO, [X,Y] in Def2) instead of the goals involving combination/3.

4.6 Forward Checking

The forward-checking rules come into play when there is a constraint Con in
Def and another constraint [X] in [[A]-W] such that X occurs in Con. In this
case, we can delete all those tuples from Con that assign to X a value other than
A. If this step is performed by means of combination, X can be eliminated from
Con by means of projection.

To deal with non-idempotent semirings as well, the implementation consists
of two rules. The first rule applies only if the weight W equals the unit element One



of the current semiring, the second rule applies in all other cases. The first rule
replaces Con in Def with the result of combination and projection. In addition,
the second rule replaces [X] in [[A]-W] with [X] in [[A]-One].

In effect, this solution makes sure that the weight W of the value A is not
considered more than once in the elimination of X from non-unary constraints
if the semiring is not idempotent. (In case the times operator is idempotent, we
are free to consider W in each rule application but it is sufficient to consider W
once which actually happens when the second rule is applied.)

fc_1 @ [X] in [[A]-W] \ Con in Def <=>
isExtensional (Def),
one (W),
delete(X, Con, ConX) |
combination([X] in [[A]-W], Con in Def, D),
projection(D, ConX, E),
E.

fc_2 @ [X] in [[A]I-W], Con in Def <=>
isExtensional (Def),
not one(W),
delete(X, Con, ConX) |
one(One),
[X] in [[A]-Onel,
combination([X] in [[A]-W], Con in Def, D),
projection(D, ConX, E),
E.

4.7 Complete Solvers

In this section we will show how to define several complete soft constraint solvers
with CHR. A complete solver can always detect unsatisfiability of constraints,
while an incomplete solver will have to be extended with some search steps to
achieve completeness.

Naive solver. The predicate solve/2 implements the notion of solution. It
combines all the constraints in the constraint store and then projects over the
variables of interest (those in Con):

solve(Con, Solution) :-
findall_constraints(_ in _, Cs),
globalCombination(Cs, C),
projection(C, Con, Solution).

The predicate findall_constraints/2 is a built-in primitive that facilitates the
inspection of the constraint store; it retrieves all the constraints that match the
given template. The predicate globalCombination/2 folds combination/3 over
a list of constraints.



Solver based on dynamic programming. This solver incrementally elimi-
nates a set of variables from the constraint store. It is started by posting the
constraint dp(Con) where Con is the list of variables that should be retained.
The solver will maintain the invariant that other variables than those in Con do
not occur in the constraint store.

The solver consists of three rules. The first posts the constraint dpEliminate (X)
for each variable X that must be but has not yet been eliminated. The second
rule replaces two constraints by their combination if both contain a variable that
has to be eliminated. The third rule performs the final elimination by means of
projection.

dp(Con), [X] in _ ==> not member(X, Con) | dpEliminate(X).

dpEliminate(X) \ Conl in Defl, Con2 in Def2 <=>
member (X, Conl), member (X, Con2) |
combination(Conl in Defl, Con2 in Def2, Con3 in Def3),
Con3 in Def3.

dpEliminate(X) \ Conl in Defl <=>
delete(X, Conl, ConX) |
projection(Conl in Defl, ConX, Con2 in Def2),
Con2 in Def2.

Solver based on dynamic combination of search and variable elimina-
tion. We describe our implementation of the general solving scheme, VarElim-
Search, proposed by Larrosa in [12]. The implementation is also related to the
bucket elimination work of Dechter [6].

This scheme combines search and variable elimination in an attempt to ex-
ploit the best of each. The meta-algorithm selects a variable and attempts its
elimination, but this is only done when the elimination generates a constraint of
small arity. Otherwise, it switches to search. Namely, it branches on the variable
and transforms the problem into a set of smaller subproblems where the process
is recursively repeated.

The original VarElimSearch has two parameters, S and k, where S names a
specific search algorithm and k controls the trade-off between variable elimina-
tion and search. In our implementation we only specify the arity k. We left it to
the underlying run-time system to select the variable to eliminate, by using the
built-in predicate find_constraint/2.

If a variable X has been selected, its degree (the number of its neighbours
in the constraint network) is computed by means of the predicate degree/2. If
the degree is smaller than k, X is eliminated like in dynamic programming by
posting the constraint dpEliminate(X). Otherwise, a value-weight pair A-W is
chosen non-deterministically from the domain of X and the constraint [X] in
[[A]-W] is posted. Then the forward-checking rules come into play and eliminate
X. The recursion deals with the remaining variables that are not listed in Con.
Finally, solve is called for Con.



ves (K, Con, Solution) :-
find_constraint ([X] in DX, _),
not member (X, Con),

( degree(X, Degree), Degree<K
-> dpEliminate(X)
; member ([A]-W, DX),
[X] in [[A]-W]
),
ves (K, Con, Solution).
ves(_, Con, Solution) :-
solve(Con, Solution).

Solver based on branch & bound with variable labeling. This solver,
called VARBB, performs branch & bound with variable labeling in the search
for a solution with maximum weight. Given a list of variables Xs0, the solution
is found in the following way: first a variable X is selected deterministically
from XsO according to some strategy. Second, a value-weight pair A-AW is chosen
non-deterministically from the domain of X according to some strategy. Then
the resulting unary constraint [X] in [A-AW] is imposed and, automatically
the rules for node and arc consistency are applied until the constraint store is
stable.

Then it is made sure that with this decision a better solution is possible:
If there is already a lower bound on solution quality, the resulting constraints
over Con are solved using solve and it is made sure that the solution contains a
tuple the preference value of which is higher than the lower bound. This check
prunes the search space and makes sure that a follow-up solution surpasses its
predecessor with regard to solution quality. Finally, the recursive call continues
with the remainder of the variables Xs1.

If the list of variables is empty, the second clause for varbb computes a
solution and updates the bound to be the weight of the solution tuple.

varbb(Xs0, Con, Solution) :-
selectVariable(Xs0, X, Xs),
selectValue (X, A-AW),
[X] in [A-AW],
( bound(LB)
-> solve(Con, _ in Def),
member (_-W, Def),
W \== LB, leqs(LB, W)
;  true
),
varbb(Xs, Con, Solution).
varbb([], Con, Solution) :-
solve(Con, Solution),
Solution = (_ in [_-Bl),



update (bound(B)) .

Solver based on branch & bound with constraint labeling. This solver,
called CONBB, is a generalization of the previous one, VARBB, where con-
straints are assinged tuples of values, rather than variables being assigned values
from their domains.

It solves a problem as follows: First, a constraint (Conl in Defl) is deter-
ministically chosen from the constraint store according to some strategy CSS.
Second, a tuple is chosen from the definition of the chosen constraint according
to some strategy TSS, and it is made sure that such a tuple does not violate the
bound of the constraint, if already available. Third, the search commits to the
choice and recursively continues to look for a (better) solution.

The solver starts with the trivial, initial solution [J in [[]-One] for SolutionO.

conbb(Con, CSS, TSS, SolutionO, Solution) :-
Solution0 = (Con0O in Def0),
DefO = [TO-WO],
Defi = [_, _I_],

selectConstraint(CSS, Conl in Defl),
|

union(Con0O, Conl, Con2),

selectTuple(TSS, Defl, Conl-W1),

times (WO, W1, W2),

(  bound(LB)

-> W2 \== LB, leqs(LB, W2)

;  true

),

Conl in [Conl-W1],

conbb(Con, CSS, TSS, Con2 in [Con2-W2], Solution).
conbb(Con, _, _, _, Solution) :-

solve(Con, Solution),

Solution = (_ in [_-Bl),

update (bound(B)) .

The predicate selectConstraint/2 deterministically selects a constraint
from the store that matches the given pattern. The first argument CSS is the
strategy parameter. Strategy none does not order alternatives. Strategy dom se-
lects one of the alternatives with the lowest number of tuples.

The predicate selectTuple/3 non-deterministically selects a tuple-value pair
from the given constraint definition according to the given strategy. The second
argument TSS is the strategy parameter. Strategy enum (enumeration) does not
order alternatives. Strategy bbf (best bound first) prefers tuples with highest
values.



5 Examples

In this section we give some examples where we use most of the concepts defined
in our implementation.

5.1 Different solvers

We show here the input-output behaviour of the soft CHR system for one particu-
lar soft constraint problem, on which we use different solvers: just soft constraint
propagation using node and arc consistency, branch & bound with constraint la-
beling, branch & bound with variable labeling, and dynamic programming;:

— Soft constraint propagation:

| 7- use_semiring(fuzzy),
domain([[X], [Y1l,[[1]1-0.1, [2]-0.2, [3]-0.3, [4]-0.1]1),
[X,Y] in [[1,1]1-0.1, [2,1]1-0.2, [3,2]-0.3, [4,4]1-0.1].

[X,Y] in [[1,1]-0.1,[2,1]-0.2,[3,2]-0.3,[4,4]-0.1],
[X] in [[1]-0.1,[2]-0.1,[3]-0.2,[4]-0.1],
[Y] in [[1]-0.1,[2]-0.2,[4]1-0.11 7 ;

no

Notice how the answer of the system shows new preference values for some
domain elements, due to the application of soft arc consistency. For example,
X=2 has passed from preference 0.2 to preference 0.1, X=3 has passed from
preference 0.3 to preference 0.2, and Y=3 has passed from preference 0.3 to
preference 0 (and it is not shown in the final domain of Y). Notice also that
soft constraint propagation in this example is not powerful enough to solve
the problem, so we are left with smaller domains but no solution is given.
— Branch & bound with constraint labeling (same Def as above):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]1-0.1, [2]-0.2, [3]-0.3, [4]-0.11),
X,Y] in [[1,1]-0.1, [2,1]1-0.2, [3,2]-0.3, [4,4]-0.1],
conbb([X,Y], dom, bbf, S).

S = [X,Y] in [[3,2]-0.2],
(X] in [[3]-0.2],
(Y] in [[2]-0.2],
[X,Y] in [[3,2]-0.3] 7 ;

no



In this case, the branch & bound solver, which is a complete solver, finds an
optimal solution, given by X=3 and Y=2, with global preference value 0.2.
The answer also shows the preference level of each constraint of the problem
corresponding to the solution: 0.2 in the domain of X, 0.2 in the domain of
Y, and 0.3 in the binary constraint. The fuzzy semiring takes the minimum
of the preference levels, so the global preference is 0.2.

Branch & bound with variable labeling (same Def and same binary con-
straint):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]1-0.1, [2]-0.2, [3]-0.3, [4]-0.11),
[X,Y] in [[1,1]1-0.1, [2,1]1-0.2, [3,2]-0.3, [4,4]1-0.11,
varbb([X,Y], [X,Y], S).

S = [X,Y] in [[1,1]-0.1],

[X,Y] in [[1,1]1-0.1,[2,1]1-0.2,[3,2]-0.3,[4,4]1-0.1],
[X] in [[1]1-0.1],

[Y] in [[1]-0.1] 7 ;

S = [X,Y] in [[3,2]-0.2],

[X,Y] in [[1,1]-0.1,[2,1]-0.2,[3,2]-0.3,[4,4]1-0.1],
[X] in [[3]-0.2],

[Y] in [[2]-0.2] 7 ;

no

This solver finds the same solution as above (X=3, Y=2, and preference 0.2),
but before finding this optimal solution it also finds a sub-optimal solution:
X=1, Y=1, with preference 0.1. This is due to the different labeling strategy
used by the two solvers.

Dynamic programming (same Def and same binary constraint):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]1-0.1, [2]-0.2, [3]-0.3, [4]-0.11),
(x,Y] in [[1,1]-0.1, [2,1]1-0.2, [3,2]-0.3, [4,4]-0.1],
dp([X1).

dp([X1),
dpEliminate(Y),
[X] in [[1]-0.1,[2]-0.1,[3]1-0.2,[4]-0.1] 7 ;

no

This solver combines the constraints and projects them over variable X. Since
there are only two variables, the combination performs the same work as soft
arc consistency (see first example of this list). Then, the projection over X
is, for this example, just the deletion of the information concerning Y, since



each domain value of X is consistent with just one domain value of Y. Thus
the returned final domain of X is the same as in the first example of this list:
X=1 with preference 0.1, X=2 with preference 0.1, X=3 with preference 0.2,
and X=4 with preference 0.1.

— Solver based on dynamic combination of search and variable elimination
(same Def and same binary constraint):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.11),
[X,Y] in [[1,1]1-0.1, [2,1]-0.2, [3,2]1-0.3, [4,4]-0.1],
ves(1l, [X], S).

S = [X] in [[1]1-0.1,[2]-0.1],
[X] in [[1]1-0.1,[2]-0.1] 7 ;

S = [X] in [[3]-0.2],
(X] in [[3]-11 7 ;

S = [X] in [[4]-0.1],
[X] in [[4]-1] 7 ;

no

The solution is returned step by step because the choice of k (k = 1) does
not allow for variable elimination in a dynamic-programming fashion. Instead
the solver branches on Y and returns a partial solution for Y=1, Y=2, and
Y=4, respectively. (There is no solution for Y=3 because there is no tuple
with Y=3 in the binary constraint.)

5.2 Robot dressing

We now pass to a more realistic example, where we describe a problem via soft
constraints and we ask the soft CHR system to solve it via one of its solvers.

The problem we consider here concerns a robot that has to choose its clothes:
it can choose one shirt, one pair of trousers, and one pair of shoes. The original
version of the problem has been developed by Freuder and Wallace [8] and used
by Z. Ruttkay for her fuzzy solver [14]. Then it has been adapted by Y. Georget
for his soft CLP language clp(fd,S) over the fuzzy semiring [11].

The assertion fuzzy(10) refers to a fuzzy semiring with integer values from
0 to 10.

robot ([Footwear,Trousers,Shirt]) :-
use_semiring (fuzzy(10)),
[Footwear] in [[sneakers]-10, [cordovans]-10],
[Shirt] in [[white]-10, [lightgrey]l-10],
[Trousers] in [[denim]-10, [blue]-10, [grey]-10],
[Footwear,Trousers] in



[[sneakers,denim]-10, [sneakers,blue] -4, [sneakers,grey] -2,
[cordovans,grey] -8, [cordovans,blue]-5],

[Footwear,Shirt] in

[[sneakers,lightgrey]-10, [sneakers,white]-7,
[cordovans,white]-10, [cordovans,lightgrey]-1],
[Trousers,Shirt] in

[[denim,white]-10, [denim,lightgrey]-7, [blue,white]-10,
[blue,lightgrey]l-4, [grey,lightgrey]l-10, [grey,white]-6].

The constraints are all defined extensionally: each pair of values of the vari-
ables is associated to a preference value. Preference values are between 1 and 10,
internally normalized between 0 and 1 to use the fuzzy semiring.

A possible solution, computed using the CONBB solver follows. This is best
solution according to Ruttkay’s fuzzy solver [14].

| ?- robot([Footwear,Trousers,Shirt]),
conbb([Footwear,Trousers,Shirt], SOLUTION).

SOLUTION = [Footwear,Trousers,Shirt]in[[sneakers,denim,lightgrey]-7],
[Shirt]in[[lightgrey]-10],

[Footwear]in[[sneakers]-10],

[Trousers]in[[denim]-7] ? ;

no

5.3 Dinner menu

This example concerns the choice of a complete menu in a restaurant. One
can choose a main dish (Dish) among three possible dishes (fish, wildboar,
sauerkraut), a drink (Drink) among four drinks (whitewine, redwine, beer,
water), an appetizer (Entree) among five (salmon, caviar, foiegras, oysters,
no_starter), and a dessert (Dessert) among four (applepie, ice, fruit,
no_dessert).

The original problem has been formulated by T. Schiex for his fuzzy con-
straint solver [15], then it has been adapted by Y. Georget for clp(fd,S) over the
fuzzy semiring [11].

menu([Starter,Entree,Dessert,Drink]) :-
use_semiring(fuzzy),
[Starter] in [[salmon]-10, [caviar]-10, [foiegras]-10, [oysters]-4,
[no_starter]-6],
[Entree] in [[fish]-8, [wildboar]-8, [sauerkraut]-10],
[Drink] in [[whitewine]-10, [redwine]-10, [beer]-10, [water]-5],
[Dessert] in [[applepiel-10, [ice]l-10, [fruit]-10, [no_dessert]-6],
c1(Entree,Drink),
c2(Starter,Entree),



c3(Starter,Entree,Drink),
c4 (Entree,Dessert),
c5(Starter,Dessert) .

c1(Entree,Drink) :-
[Entree,Drink] in
[[fish,whitewine]-10, [fish,redwine]-10,
[fish,beer]-10, [fish,water]-10,
[wildboar,whitewine]l-1, [wildboar,redwine]-10,
[wildboar,beer]-1, [wildboar,water]-1,
[sauerkraut,whitewine]-2, [sauerkraut,redwine]-2,
[sauerkraut ,beer]-7, [sauerkraut,water]-2

1.

For sake of brevity, the other constraints c2, c3, c4, and c5 have been omitted.
Two possible solutions, computed using the CONBB solver, follow. The sec-
ond one is the best one according to Schiex [15].

| ?- menu([Entrance,Dish,Dessert,Drink]),
conbb([Entrance,Dish,Dessert,Drink] ,SOLUTION) .

SOLUTION = [Entrance,Dish,Dessert,Drink] in
[[caviar,fish,applepie,beer]-1],
[Dessert]in[[applepie]l-10],
[Dish]lin[[fish]-10],

[Drink]in[[beer]l-1],
[Entrancelin[[caviar]-1] 7 ;

SOLUTION = [Entrance,Dish,Dessert,Drink] in
[[foiegras,fish,applepie,whitewine]-8],
[Dishlin[[fish]-8],
[Dessert]in[[applepie]-10],
[Entrancelin[[foiegras]-8],
[Drink]in[[whitewine]-10] 7 ;

no

6 Conclusions

We have implemented a generic soft constraint environment where it is pos-
sible to work with any class of soft constraints, if they can be cast within the
semiring-based framework. Once the semiring features have been stated via suit-
able clauses, the various solvers we have developed in CHR and Sicstus Prolog
will take care of solving such soft constraints.

We have implemented semi-rings for classical, fuzzy, set, and Cartesian-
product soft constraints. Our solvers include propagation-based node and arc



consistency solvers as well as the several complete solvers using branch & bound
with variable or constraint labeling or dynamic programming.

The solvers are available online at
http://www.pms.informatik.uni-muenchen.de/ webchr/, follow the link to
Soft Constraints. The code should also run in Yap Prolog.

We plan to predefine more classes of soft constraints and to develop other
soft propagation algorithms and solvers for soft constraints.

We also plan to compare our approach to the one followed by the soft con-
straint programming language clp(fd,S) [11]. Of course we do not expect to show
the same efficiency as clp(fd,S), but we claim the same generality, and a very
natural environment to develop new propagation algorithms and solvers for soft
constraints. Moreover, we did not need to add anything, except the rules and
clauses shown in this paper, w.r.t. the existing CHR environment and CLP lan-
guage of choice. On the other hand, clp(fd,S) needed a new implementation and
abstract machine w.r.t. clp(fd) [5], from which it originated.
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