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Abstract. We argue that adding Source-to-Source transformation (STS)
to Constraint Handling Rules (CHR) is easy, desirable and elegant. The
central ideas are to represent CHR, programs in relational form, and the
utilization of CHR. proper to perform the transformations, acting upon
this representation. We illustrate the power and practicality of STS for
CHR on three non-trivial examples. The first example shows the appli-
cation of STS in a bootstrapping compiler for CHR. Then we extend
the CHR language by probabilistic rule choice and Prolog-style clauses,
respectively.

1 Introduction

Source-to-Source transformations (STS) [8] are an attractive component in the
tool boxes that complement core implementations of computer languages. In
STS, users will write STS programs to manipulate other programs during their
compilation. As an example consider CPP, the pre-processor for C. Users happily
apply STS to their advantage because it makes their programs more concise and
reactive to conditionals during compilation.

STS is really attractive when the language used to encode the transformation
is expressive, and applicable mechanically. CPP is certainly a useful tool, but it
rather fails on the first count - expressiveness - if we compare it against macro
processing facilities for (declarative) languages like Lisp, Scheme, Prolog and
others, where the language for specifying the macro expansion is the same as
the target language. In these cases, the user has a turing complete language at
hand that he already knows.

The programming language Constraint Handling Rules (CHR) [2, 3] has ac-
cumulated credibility, yet it lacked STS. Which was unfortunate, considering the
expressiveness of CHR. CHR is essentially a concurrent committed-choice lan-
guage consisting of guarded rules that rewrite conjunctions of constraints into
simpler ones until they are solved. CHR, can define both simplification of and
propagation over user-defined constraints. Simplification replaces constraints by
simpler constraints. Propagation adds new constraints which may cause further



simplification. From a more general viewpoint, in the context of CHR, con-
junctions of constraints can be regarded as interacting collections of concurrent
agents or processes.

A preliminary short report on STS for CHR appeared in [7].

2 CHR by Example

In this section we introduce CHR by example. We define a user-defined constraint
for less-than-or-equal, =<, that can handle variable arguments. The implemen-
tation will rely on syntactical equality, =, which is assumed to be a predefined
(built-in) constraint.

reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ X=<Y,Y=<X <=> X=Y.
transitivity @ X=<Y,Y=<Z ==> X=<Z.

The CHR specify how =< simplifies and propagates as a constraint. They im-
plement reflexivity, antisymmetry and transitivity in a straightforward way. The
rule reflexivity states that X=<Y is logically true, provided it is the case that
X=Y. This test forms the (optional) guard of a rule, a precondition on the appli-
cability of the rule. Hence, whenever we see the constraint X=<X we can simplify
it to true. The rule antisymmetry means that if we find X=<Y as well as Y=<X
in the current constraint, we can replace it by the logically equivalent X=Y. Note
the different use of X=Y in the two rules: In the reflexivity rule the equality is
a precondition (test) on the rule, while in the antisymmetry rule it is enforced
when the rule fires.

The rules reflexivity and antisymmetry are simplification CHR. The rule
transitivity propagates constraints. It states that the conjunction X=<Y, Y=<Z
implies X=<Z. Operationally, we add logical consequences as a redundant con-
straint. This kind of CHR is called propagation CHR.

Redundancy from propagation CHR is useful, as the query A=<B, C=<A,
B=<C shows: The first two constraints cause CHR transitivity to fire and
add C=<B to the query. This new constraint together with B=<C matches the
head of CHR antisymmetry, X=<Y,¥Y=<X. So the two constraints are replaced
by B=C. In general, matching takes into account the syntactical equalities that
are implied by built-in constraints. The equality is applied to the rest of the
query, A=<B,C=<A, resulting in A=<B,B=<A where B=C. Therefore, since the built-
in constraint B=C was added, CHR antisymmetry applies to the constraints
A=<B,C=<A, resulting in A=B. The query contains no more inequalities, the sim-
plification stops. The constraint solver we built has solved A=<B,C=<A,B=<C and
produced the answer A=B,B=C.

3 Operational Semantics of CHR

For lack of space, we refer for detailed syntax and semantics to the paper [4].
Here we just discuss the core of the operational semantics of CHR programs,
which is given by a state transition system.



Let P be a CHR program for the CHR constraints and C'T" be a constraint
theory for the built-in constraints. We use abstract rule syntax in this section.
The transition relation — for CHR is as follows (where upper case letters stand
for conjunctions of constraints):

Simplify
HAND— (H=H)YANGABAD
if(H& G|B)in P and CT =VY(D — 37(H = H' AG))

Propagate
HANDw~— (H=H)ANGANBANH'AD
if(H=G|B)inP and CT =VY(D — 3z(H = H AQ))

When we use a rule from the program, we will rename its variables using new
symbols, and these variables form the sequence Z. A rule with lhs H and guard
G is applicable to CHR constraints H' in the context of constraints D, when the
condition holds that CT = D — 3z(H = H' A G). Any of the applicable rules
can be applied, but it is a committed choice, it cannot be undone.

If a simplification rule (H < G | B) is applied to the CHR constraints
H’, the Simplify transition removes H' from the state, adds the rhs B to the
state and also adds the equation H = H' and the guard G. If a propagation rule
(H = G | B) is applied to H', the Propagate transition adds B, H = H'
and G, but does not remove H'. Trivial non-termination is avoided by applying
a propagation rule at most once to the same constraints [?].

We now discuss in more detail the rule applicability condition CT E D —
3z(H = H' AG). The equation (H = H') is a notational shorthand for equating
the arguments of the CHR. constraints that occur in H and H'. Operationally,
the rule applicability condition can be checked as follows: Given the built-in
constraints of D, try to solve the built-in constraints (H = H' A G) without
further constraining (touching) any variable in H' and D. This means that we
first check that H' matches H and then check the guard G under this matching.

4 STS transformation for CHR

The key idea of STS for CHR is that CHR. rules will be translated into rela-
tional normal form by introducing special CHR. constraints for the components
of a rule, which are head (lhs), guard (precondition), body (rhs) and compiler
pragmas (directives). The STS component of CHR guarantees that all syntacti-
cal constituents of CHR programs can be mapped in both directions (from and
to this relational form). The STS transformer is a constraint solver (handler)
that acts on this representation. When a fixpoint is reached, the relational form
is translated back into CHR rules and normal compilation continues.

The result of this approach is that STS programs are concise, compact and
thus easy to inspect and analyze. Indeed, the complete STS program to imple-
ment the language extension of probabilistic CHR consists of a few rules that
easily fit one page.



There is one problem to be solved: we need a means to keep the name spaces
of object and transformation rules apart. Collections of CHR rules are currently
already aggregated into so called (constraint) handlers. For STS, the CHR run-
time system features a new builtin predicate to register handlers as transformers,
their intended order of application, and options that give some additional control
over the expansion, i.e. printing of intermediate results.

The constraints acted upon by transformation handlers encode CHR. and
associated meta information in relational form where rule identifiers connect
the components of the rule that are head/4, guard/2, body/2, pragma/2,
constraint/1 (the notation specifies the name and number of arguments of
each relation). For each CHR constraint symbol in the object program, there is
a corresponding STS constraint constraint. Each of the remaining STS con-
straints head, guard, body and pragma starts with an identifier for the rule
they come from. The second argument is the respective component of the rule.
For the constraint head, the third argument is an identifier for the constraint
matching the rule head, and the last argument indicates if the constraint is to be
kept or removed. This information is necessary, because any type of CHR rule
is represented in the same normalized, relational way.

5 Example: Bootstrapping the CHR compiler via STS

One major application domain of STS is the CHR compiler itself. The rela-
tional representation of CHR object programs combines very well with typical
computational requirements during compilation since

1. compilation relies heavily on mappings (dictionaries)
2. CHR provide efficient mappings, including indexed lookup and iteration
3. operations on mappings are brief and to the point in CHR

Note that CHR compilation is non-local in the sense that we need to know in
which rules the constraints occur, and what constraints appear together forming
the left hand sides of the rules [6]. The task of computing these occurrences is
expressed precisely by the three rules taken from the bootstrapped compiler:

crossref_each_head @
head(R,Head1,Id1,T1) ==
functor (Headl,F1,A1),
occ(F1/A1,head(R,Head1,Id1,T1),[]1).

crossref_multi_headed_rule @
head (R,Head1,Id1,T1),
head(R,Head2,I1d2,T2) ==>
functor (Head1l,F1,A1),
occ(F1/A1,head(R,Head1,Id1,T1), [(Head2,Id2,T2)]1).

crossref_combine @



occ(FA,Head,Ps1),
occ(FA,Head,Ps2) <=>
merge (Ps1,Ps2,Ps3),
occ(FA,Head,Ps3).

Due to the STS rule crossref_each_head, every source code rule head gives
rise to an occurrence constraint occ/3, that acts like an entry in the cross ref-
erence. Such an entry is identified by: functor name and arity of the head F/A,
the head constraint itself and a list of partner constraints in a given source code
rule R.

The second STS rule crossref multi headed rule only applies to source
code rules with more than one head constraint. It takes a pair of head constraints
from the same rule and generates a occurrence constraint for one of them. The
rule will also apply to the same pair of constraints in reversed order, so that the
occurrence constraint will also be generated for the other head constraint.

With the third STS rule, the lists of partner constraints of two occurrences
occ/3 are merged if they occurrences refer to the same head constraint Head.

Note that all dictionary lookups in the computation of this cross-reference are
implicit, as are the nested iterations over these dictionaries required to compute
the crossproducts. One can think of the above program fragment as reactive
system, concurrently and incrementally computing parts of the cross-reference
crossproduct as head/5 constraints arrive in the constraint store.

6 Example: Probabilistic CHR

In this section we extend the CHR language with randomness in rule applica-
tions using STS. In probabilistic CHR (PCHR) [5] randomness is expressed by
probabilistic rule choice. Among the rules that are applicable, the committed
choice of the rule is performed randomly by taking into account the relative
probability associated with each rule.

The following PCHR program implements tossing a coin. We use concrete
Prolog-style CHR syntax in the program examples. Syntactically, the probabili-
ties (weights) are the argument of the pragma annotation that is used in normal
CHR to give hints to the compiler. Here it will initiate source to source trans-
formation.

toss(Coin) <=> Coin=head pragma 0.5.
toss(Coin) <=> Coin=tail pragma 0.5.

Each side of the coin has the same probability. This behavior is modelled by
two rules that have the same probability to apply to a query toss(Coin), either
resulting in Coin=head or Coin=tail.

The example below shows how PCHR can be used to generate an n bit
random number. The random number is represented as a list of N bits that are
generated recursively and randomly one by one.



rl @ rand(N,L) <=> N=:=0 | L=[].

r2 @ rand(N,L) <=> N>0 | L=[0]|L1],
rand(N-1,L1) pragma 0.5.
r3 @ rand(N,L) <=> N>0 | L=[1|L1],

rand(N-1,L1) pragma 0.5.

As long as there are bits to generate, the next bit will either get value 0 or 1,
both with same probability. When the remaining list length N is zero, a non-
probabilistic simplification rule closes the list.

The three rules above will be represented as the following conjunction of
constraints to which the STS program will be applied:

constraint (rand/2),

head(rl,rand(N,L),id1,remove),
guard(rl,N=:=0),
body (r1,L=[1),

head(r2,rand(N,L),id2,remove),
guard (r2,N>0),

body(r2, (L=[0|L1] ,rand(N-1,L1))),
pragma(r2,0.5),

head(r3,rand(N,L),id3,remove),
guard (r3,N>0),

body(r3, (L=[1|L1] ,rand(N-1,L1))),
pragma(r3,0.5).

Now we consider the STS program for PCHR which will be applied to the
above example code in relational form. It simply states how the components of
the rules should be translated in case the rule is probabilistic. The STS basically
transforms the rules such that they generate a conflict set. Finally, we have to
extend the run-time system with some rules for conflict resolution.

Conflict Set Generation Transformation

The conflict set is the set of all rules that are applicable at a particular compu-
tation step. While in normal CHR, any rule can be chosen and it is a committed
choice, in probabilistic CHR we have to collect the unnormalized probabilities
(weights) from all candidates in the conflict set and then randomly choose one
rule according to their probabilities.

The two rules below define a generic standard transformation that makes the
conflict set of the object rules explicit.

make_propagation @
pragma(R,N),
head(R,H,I,remove),



body(R,B) <=>
pragma(R,N),
head(R,H,I,keep),
body (R, (remove (I),B)).

wrap_body @
pragma(R,N),
body (R,B) <=>
body (R, cand(N,B)).

The transformation rule make_propagation maps all rules into propagation rules
(replacing head(R,H,I,remove) by head(R,H,I,keep)) that explicitly remove
the head constraint(s) in the body of the rule using the standard CHR built-in
remove (cf. body (R, (remove(I),B))). (The same effect could also be achieved
using an auxiliary variable and without this standard CHR built-in, but it would
be less efficient.) The operational behaviour of the transformed rule at this stage
is the same, however the removal of head constraints has been made explicit.

The second transformation rule wraps the body of a rule with the run-time
CHR constraint cand, whose first argument is the information from the pragma.
This transformation changes the behavior of the rules, because their bodies will
not be executed, but only collected at run-time. The collection of cand con-
straints forms the current conflict set of the computation.

Note that it is essential that the transformation rules are always applied to
exhaustion and in textual order (in order of appearance).

Last but not least there is a final, third rule that adds a last object rule for
each defined CHR constraint C:

ensure_collection @
constraint (C) ==
head(rx,C,I,keep),
guard(rx,true),
body (rx,collect(0,R)).

The resulting propagation rule just calls the CHR constraint collect(0,R)
which triggers the conflict resolution. It has to be made sure that this rule is
added at the end of the object program (see discussion below). Note that names
for (generated) rules need not be unique. Here there will be a rule named rx for
every type of head constraint.

For our example of random n-bit numbers, the application of the STS rules
and the final translation back into rule syntax results in the following code
(variable names have been generated automatically):

rl @ rand(A,B)#C <=> A=:=0 | B=[].

r2 @ rand(A,B)#C ==> A>0 |
cand (0.5, (remove(C) ,B=[0|D] ,rand(A-1,D))).
r3 @ rand(A,B)#C ==> A>0 |



cand (0.5, (remove(C) ,B=[1|D] ,rand(A-1,D))).
rx @ rand(A,B)#C ==> collect(0,D).

The #C added to the rule heads is CHR syntax for accessing the identifier of the
constraint that matched the head. Note that the first rule is left untranslated
since it was not probabilistic.

Conflict Resolution

Conflict resolution chooses one rule (body) to apply from the conflict set of
applicable rules. In our case, the probability normalisation and evaluation of the
conflict set is achieved by the following rules that are defined in the STS program
for PCHR and that are added to the transformed object program (where cand/2
is replaced by cand/4):

collect (M,R),
cand(N,B) <=>
cand(R,M,M+N,B),
collect (M+N,R).

collect (M,R) <=> random(O,M,R).

cand(R,M,MN,B) <=> R < M | true.
cand(R,M,MN,B) <=> R >= MN | true.
cand(R,M,MN,B) <=> M =< R, R < MN | call(B).

The constraint collect (M,R) takes a candidate rule body cand(N,B) and re-
places it by cand(R,M,M+N,B) before continuing with collect (M+N,R). The
effect of this rule is that each candidate constraint is extended by the common
variable R and by the interval M to M+N, where N is its unnormalized probability
measure (weight).

Instead of explicitly normalizing the probabilities (weights), collect adds
them up and finally calls random(0,M,R) to produce a random number in the
interval from 0 to M. Note that this random number will be bound to the variable
R.

The conjunction of extended candidate rule bodies acts as a concurrent collec-
tion of agents. As soon as they receive the random number through the variable
(channel) R, they can proceed. If the value of R is outside of their range of weights
M to MN, the candidate agent simply goes away. Otherwise, it is the randomly
chosen candidate and it will call its original rule body B.

In this way, from the set of applicable rules, one of the rules is randomly
chosen and applied. The probability distribution is according to the weights of
the individual rules.



Discussion: Ordering generated rules

STS transformation in CHR is concurrent and incremental, i.e. transformation
rules are applied while the components of the original rules arrive. In most cases,
the order of the generated rules reflects the order of the original rules. While the
order of rules does not matter in most CHR programs that solve constraints
(they are confluent), the order still has an impact on efficiency. Moreover, CHR
for e.g. the bootstrapping compiler or the probabilistic language extension are
order sensitive in some parts.

In particular, in the example discussed here, collect has to be executed after
all cand/4 constraints have been generated. This can be achieved by relying on
textual execution order of rules. But then the rules named rx must be the last
ones in the generated code. We currently have not found a completly convincing
means to elegantly ensure this order. There are many possibilities to put rules
at the end of the generated code,

— sort generated rules according to rule name (ad hoc solution),

— test for the absence of the pragma constraints (ad hoc solution),

— introduce a dummy constraint finally at the end of the relational rule
constraints (not elegant),

— put the last transformation rule into a separate transformer (clean but a bit
tedious),

— use rule applications strategies (an overkill),

but more experiments are necessary to come up with the right way to do it.
Hence this issue is a topic for future work.

7 Example: Clauses for CHR

In this example, we introduce Prolog-style clauses as new type of rules into
CHR. A logical clause H «+ B is represented by the pragma-annotated rule
H <=> B pragma clause. Operationally, the application of a clause rule is only
speculative (don’t know indeterminism), while normal CHR rules are committed-
choice (don’t care indeterminism). This means that the head H is unified with
the current constraints, not matched, and that if the body B fails, the execution
is simply undone by chronological backtracking. In contrast to Prolog, however,
the head H may be a conjunction.

Consider the following program that computes paths in a graph bottom-up,
which is not directly possible in Prolog due to the lack of multiple head atoms:

rl @

path(X,Y,[X,Y]), edge(X,Y) <=> true pragma clause.

r2 @

path(X,Y,[X|P]), edge(X,Z) <=> path(Z,Y,P) pragma clause.
r3 @

path(X,Y,T) <=> fail.



The last rule encodes Prolog’s closed world assumption. Note that it is a
normal simplification CHR. Also note that rules are applied in textual order.
Note that the computation will always terminate, since each rule application
consumes one edge constraint or results in failure.

To the transformer (defined below) these rules are represented as a set of
constraints:

head(r1,path(X,Y,[X,Y]),Id1l,remove), constraint (edge/2),

head(r1,edge(X,Y), Id2,remove), constraint (path/3),
head (r2,path(X,Y, [X|P]),Id3,remove),
head(r2,edge(X,2), Id4,remove),

head(r3,path(X,Y,T), Id5,remove),

guard(rl,true), body(ri,true), pragma(ri,clause),
guard(r2,true), body(r2,path(Z,Y,P)), pragma(r2,clause),
guard (r3,true), body(r3,fail)

The transformation maps all clause-annotated rules into propagation rules
that either explicitly remove the head constraints and execute their body or just
execute true, i.e. go away unnoticed. In the latter case, another rule will be
tried.

For the implementation we have to rely on disjunction, as it is implemented by
the operator ?;’ in Prolog. The disjuncts are tried left-to-right by chronological
backtracking. This construct is available in an extension of CHR, called CHRY
[1], that is available in all Prolog-based CHR implementations.

The following rules concisely implement the complete transformation in an
ultra-compact way:

make_heads @
pragma(R,clause), head(R,H,I,remove), body(R,B) <=>
pragma(R,clause),
same_functor(H,H1),
head(R,H1,I,keep),
body (R, (remove (I) ,H=H1,B)).

make_guard_body @

pragma(R,clause), guard(R,C), body(R,B) <=>
guard(R,true),
body (R, (C,B;true)) .

The rule make_heads replaces each rule head H that was to be removed by
a sceleton H1 that is kept but explicitly removed by the CHR built-in remove
in the body of the rule. The sceleton H1 has the same function name and arity
as H, but its arguments are fresh, pairwise different variables. The head and its
sceleton are explicitly unified in the body of the rule. The effect of this change is
to replace matching in the head by unification in the body. Note the similarity
with the rule make_propagation that was used in probabilistic CHR.



After all heads are processed in this way, the second rule make_guard body
moves the guard into the body and introduces a disjunction with true in the
body. The effect of this change is to replace guard checking by trying to assert
the guard constraints or backtrack and do nothing.

The result of applying the transformation to our example is as follows:

rl @ path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),
A=E, B=F, C=[A,B]
; true).

r2 @ path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),
A=E, C=[Al|H],
path(F,B,H)
; true).

r3 @ path(A,B,C)#D <=> fail.

In the code, the equalties between the head and its sceleton have been auto-
matically simplified by the CHR compiler.

With the generated rules, the query edge(a,b), edge(b,c), edge(c,d),
edge(d,a), path(X,X,T) will produce all cyclic paths in the given graph:

= [d,a,b,c,d]l, X =d
[c,d,a,b,c], X =
[b,c,d,a,b]l, X
[a,b,c,d,al, X

L B e |

c
b
a

8 Conclusions

We motivated the incorporation of STS into CHR and proposed a way to do
it. Based on the experience gathered, the mechanism seems adequate, concise
and elegant. So far, we have implemented as language extensions a fair version
of CHR, probabilistic CHR [5], linear logic CHR, and (multi-headed) clauses
for CHR. The other major STS application is the bootrapped CHR compiler
itself, where the transition from preprocessing (e.g. syntactic de-sugaring) to
substantial compilation tasks is smooth and natural.
In summary, STS for CHR. consists of the following steps

— CHR rules are translated into relational normal form.

— There are special CHR constraints for the components of a rule (head, guard,
body, compiler pragmas).

— The STS program is just a regular CHR program/solver.

— The relational form resulting from applying the transformation is translated
back into CHR. rules.

All future (performance) improvements to the CHR system are immediately
reflected in the transformation process. Apart from actual transformations, our
STS also naturally provides basic support for program analysis like proving
certain algebraic properties of CHR programs like symmetries, set semantics,



etc., which are important during the actual compilation [6]. We also expect that
STS in CHR will have synergies with the Literate CHR. system that is currently
developed [9].

In the future, we have to investigate means to influence the order and schedul-
ing of rules and constraints in the code generated from STS as discussed at the
end of section 6. We plan a new release of CHR that features the bootstrapping
compiler together with the STS capabilities described in this paper.

Another important issue is the correctness of the STS. Note that all the
transformations we discussed turn a non-operational CHR, program into an oper-
ational one. In this case, correctness means to check the result against a specifica-
tion of the behavior of the desired language. We also plan to address correctness
preserving STS.
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