
Sour
e-to-Sour
e Transformation for a Class ofExpressive RulesThom Fr�uhwirth and Christian Holzbaur1 Fakult�at f�ur InformatikUniversity of Ulm, GermanyThom.Fruehwirth�informatik.uni-ulm.de2 Department of Medi
al Cyberneti
s and Arti�
ial Intelligen
eUniversity of Vienna, Austria
hristian�ai.univie.a
.atAbstra
t. We argue that adding Sour
e-to-Sour
e transformation (STS)to Constraint Handling Rules (CHR) is easy, desirable and elegant. The
entral ideas are to represent CHR programs in relational form, and theutilization of CHR proper to perform the transformations, a
ting uponthis representation. We illustrate the power and pra
ti
ality of STS forCHR on three non-trivial examples. The �rst example shows the appli-
ation of STS in a bootstrapping
ompiler for CHR. Then we extendthe CHR language by probabilisti
 rule
hoi
e and Prolog-style
lauses,respe
tively.1 Introdu
tionSour
e-to-Sour
e transformations (STS) [8℄ are an attra
tive
omponent in thetool boxes that
omplement
ore implementations of
omputer languages. InSTS, users will write STS programs to manipulate other programs during their
ompilation. As an example
onsider CPP, the pre-pro
essor for C. Users happilyapply STS to their advantage be
ause it makes their programs more
on
ise andrea
tive to
onditionals during
ompilation.STS is really attra
tive when the language used to en
ode the transformationis expressive, and appli
able me
hani
ally. CPP is
ertainly a useful tool, but itrather fails on the �rst
ount - expressiveness - if we
ompare it against ma
ropro
essing fa
ilities for (de
larative) languages like Lisp, S
heme, Prolog andothers, where the language for spe
ifying the ma
ro expansion is the same asthe target language. In these
ases, the user has a turing
omplete language athand that he already knows.The programming language Constraint Handling Rules (CHR) [2, 3℄ has a
-
umulated
redibility, yet it la
ked STS. Whi
h was unfortunate,
onsidering theexpressiveness of CHR. CHR is essentially a
on
urrent
ommitted-
hoi
e lan-guage
onsisting of guarded rules that rewrite
onjun
tions of
onstraints intosimpler ones until they are solved. CHR
an de�ne both simpli�
ation of andpropagation over user-de�ned
onstraints. Simpli�
ation repla
es
onstraints bysimpler
onstraints. Propagation adds new
onstraints whi
h may
ause further

simpli�
ation. From a more general viewpoint, in the
ontext of CHR,
on-jun
tions of
onstraints
an be regarded as intera
ting
olle
tions of
on
urrentagents or pro
esses.A preliminary short report on STS for CHR appeared in [7℄.2 CHR by ExampleIn this se
tion we introdu
e CHR by example. We de�ne a user-de�ned
onstraintfor less-than-or-equal, =<, that
an handle variable arguments. The implemen-tation will rely on synta
ti
al equality, =, whi
h is assumed to be a prede�ned(built-in)
onstraint.reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR spe
ify how =< simpli�es and propagates as a
onstraint. They im-plement re
exivity, antisymmetry and transitivity in a straightforward way. Therule reflexivity states that X=<Y is logi
ally true, provided it is the
ase thatX=Y. This test forms the (optional) guard of a rule, a pre
ondition on the appli-
ability of the rule. Hen
e, whenever we see the
onstraint X=<X we
an simplifyit to true. The rule antisymmetry means that if we �nd X=<Y as well as Y=<Xin the
urrent
onstraint, we
an repla
e it by the logi
ally equivalent X=Y. Notethe di�erent use of X=Y in the two rules: In the reflexivity rule the equality isa pre
ondition (test) on the rule, while in the antisymmetry rule it is enfor
edwhen the rule �res.The rules reflexivity and antisymmetry are simpli�
ation CHR. The ruletransitivity propagates
onstraints. It states that the
onjun
tion X=<Y, Y=<Zimplies X=<Z. Operationally, we add logi
al
onsequen
es as a redundant
on-straint. This kind of CHR is
alled propagation CHR.Redundan
y from propagation CHR is useful, as the query A=<B, C=<A,B=<C shows: The �rst two
onstraints
ause CHR transitivity to �re andadd C=<B to the query. This new
onstraint together with B=<C mat
hes thehead of CHR antisymmetry, X=<Y,Y=<X. So the two
onstraints are repla
edby B=C. In general, mat
hing takes into a

ount the synta
ti
al equalities thatare implied by built-in
onstraints. The equality is applied to the rest of thequery, A=<B,C=<A, resulting in A=<B,B=<A where B=C. Therefore, sin
e the built-in
onstraint B=C was added, CHR antisymmetry applies to the
onstraintsA=<B,C=<A, resulting in A=B. The query
ontains no more inequalities, the sim-pli�
ation stops. The
onstraint solver we built has solved A=<B,C=<A,B=<C andprodu
ed the answer A=B,B=C.3 Operational Semanti
s of CHRFor la
k of spa
e, we refer for detailed syntax and semanti
s to the paper [4℄.Here we just dis
uss the
ore of the operational semanti
s of CHR programs,whi
h is given by a state transition system.

Let P be a CHR program for the CHR
onstraints and CT be a
onstrainttheory for the built-in
onstraints. We use abstra
t rule syntax in this se
tion.The transition relation 7�! for CHR is as follows (where upper
ase letters standfor
onjun
tions of
onstraints):SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables using newsymbols, and these variables form the sequen
e �x. A rule with lhs H and guardG is appli
able to CHR
onstraints H 0 in the
ontext of
onstraints D, when the
ondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of the appli
able rules
an be applied, but it is a
ommitted
hoi
e, it
annot be undone.If a simpli�
ation rule (H , G | B) is applied to the CHR
onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagation rule(H) G | B) is applied to H 0, the Propagate transition adds B, H = H 0and G, but does not remove H 0. Trivial non-termination is avoided by applyinga propagation rule at most on
e to the same
onstraints [?℄.We now dis
uss in more detail the rule appli
ability
ondition CT j= D !9�x(H = H 0 ^G). The equation (H = H 0) is a notational shorthand for equatingthe arguments of the CHR
onstraints that o

ur in H and H 0. Operationally,the rule appli
ability
ondition
an be
he
ked as follows: Given the built-in
onstraints of D, try to solve the built-in
onstraints (H = H 0 ^ G) withoutfurther
onstraining (tou
hing) any variable in H 0 and D. This means that we�rst
he
k that H 0 mat
hes H and then
he
k the guard G under this mat
hing.4 STS transformation for CHRThe key idea of STS for CHR is that CHR rules will be translated into rela-tional normal form by introdu
ing spe
ial CHR
onstraints for the
omponentsof a rule, whi
h are head (lhs), guard (pre
ondition), body (rhs) and
ompilerpragmas (dire
tives). The STS
omponent of CHR guarantees that all synta
ti-
al
onstituents of CHR programs
an be mapped in both dire
tions (from andto this relational form). The STS transformer is a
onstraint solver (handler)that a
ts on this representation. When a �xpoint is rea
hed, the relational formis translated ba
k into CHR rules and normal
ompilation
ontinues.The result of this approa
h is that STS programs are
on
ise,
ompa
t andthus easy to inspe
t and analyze. Indeed, the
omplete STS program to imple-ment the language extension of probabilisti
 CHR
onsists of a few rules thateasily �t one page.

There is one problem to be solved: we need a means to keep the name spa
esof obje
t and transformation rules apart. Colle
tions of CHR rules are
urrentlyalready aggregated into so
alled (
onstraint) handlers. For STS, the CHR run-time system features a new builtin predi
ate to register handlers as transformers,their intended order of appli
ation, and options that give some additional
ontrolover the expansion, i.e. printing of intermediate results.The
onstraints a
ted upon by transformation handlers en
ode CHR andasso
iated meta information in relational form where rule identi�ers
onne
tthe
omponents of the rule that are head/4, guard/2, body/2, pragma/2,
onstraint/1 (the notation spe
i�es the name and number of arguments ofea
h relation). For ea
h CHR
onstraint symbol in the obje
t program, there isa
orresponding STS
onstraint
onstraint. Ea
h of the remaining STS
on-straints head, guard, body and pragma starts with an identi�er for the rulethey
ome from. The se
ond argument is the respe
tive
omponent of the rule.For the
onstraint head, the third argument is an identi�er for the
onstraintmat
hing the rule head, and the last argument indi
ates if the
onstraint is to bekept or removed. This information is ne
essary, be
ause any type of CHR ruleis represented in the same normalized, relational way.5 Example: Bootstrapping the CHR
ompiler via STSOne major appli
ation domain of STS is the CHR
ompiler itself. The rela-tional representation of CHR obje
t programs
ombines very well with typi
al
omputational requirements during
ompilation sin
e1.
ompilation relies heavily on mappings (di
tionaries)2. CHR provide eÆ
ient mappings, in
luding indexed lookup and iteration3. operations on mappings are brief and to the point in CHRNote that CHR
ompilation is non-lo
al in the sense that we need to know inwhi
h rules the
onstraints o

ur, and what
onstraints appear together formingthe left hand sides of the rules [6℄. The task of
omputing these o

urren
es isexpressed pre
isely by the three rules taken from the bootstrapped
ompiler:
rossref_ea
h_head �head(R,Head1,Id1,T1) ==>fun
tor(Head1,F1,A1),o

(F1/A1,head(R,Head1,Id1,T1),[℄).
rossref_multi_headed_rule �head(R,Head1,Id1,T1),head(R,Head2,Id2,T2) ==>fun
tor(Head1,F1,A1),o

(F1/A1,head(R,Head1,Id1,T1),[(Head2,Id2,T2)℄).
rossref_
ombine �

o

(FA,Head,Ps1),o

(FA,Head,Ps2) <=>merge(Ps1,Ps2,Ps3),o

(FA,Head,Ps3).Due to the STS rule
rossref ea
h head, every sour
e
ode rule head givesrise to an o

urren
e
onstraint o

/3, that a
ts like an entry in the
ross ref-eren
e. Su
h an entry is identi�ed by: fun
tor name and arity of the head F/A,the head
onstraint itself and a list of partner
onstraints in a given sour
e
oderule R.The se
ond STS rule
rossref multi headed rule only applies to sour
e
ode rules with more than one head
onstraint. It takes a pair of head
onstraintsfrom the same rule and generates a o

urren
e
onstraint for one of them. Therule will also apply to the same pair of
onstraints in reversed order, so that theo

urren
e
onstraint will also be generated for the other head
onstraint.With the third STS rule, the lists of partner
onstraints of two o

urren
eso

/3 are merged if they o

urren
es refer to the same head
onstraint Head.Note that all di
tionary lookups in the
omputation of this
ross-referen
e areimpli
it, as are the nested iterations over these di
tionaries required to
omputethe
rossprodu
ts. One
an think of the above program fragment as rea
tivesystem,
on
urrently and in
rementally
omputing parts of the
ross-referen
e
rossprodu
t as head/5
onstraints arrive in the
onstraint store.6 Example: Probabilisti
 CHRIn this se
tion we extend the CHR language with randomness in rule appli
a-tions using STS. In probabilisti
 CHR (PCHR) [5℄ randomness is expressed byprobabilisti
 rule
hoi
e. Among the rules that are appli
able, the
ommitted
hoi
e of the rule is performed randomly by taking into a

ount the relativeprobability asso
iated with ea
h rule.The following PCHR program implements tossing a
oin. We use
on
reteProlog-style CHR syntax in the program examples. Synta
ti
ally, the probabili-ties (weights) are the argument of the pragma annotation that is used in normalCHR to give hints to the
ompiler. Here it will initiate sour
e to sour
e trans-formation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Ea
h side of the
oin has the same probability. This behavior is modelled bytwo rules that have the same probability to apply to a query toss(Coin), eitherresulting in Coin=head or Coin=tail.The example below shows how PCHR
an be used to generate an n bitrandom number. The random number is represented as a list of N bits that aregenerated re
ursively and randomly one by one.

r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=> N>0 | L=[0|L1℄,rand(N-1,L1) pragma 0.5.r3 � rand(N,L) <=> N>0 | L=[1|L1℄,rand(N-1,L1) pragma 0.5.As long as there are bits to generate, the next bit will either get value 0 or 1,both with same probability. When the remaining list length N is zero, a non-probabilisti
 simpli�
ation rule
loses the list.The three rules above will be represented as the following
onjun
tion of
onstraints to whi
h the STS program will be applied:
onstraint(rand/2),head(r1,rand(N,L),id1,remove),guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove),guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))),pragma(r2,0.5),head(r3,rand(N,L),id3,remove),guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))),pragma(r3,0.5).Now we
onsider the STS program for PCHR whi
h will be applied to theabove example
ode in relational form. It simply states how the
omponents ofthe rules should be translated in
ase the rule is probabilisti
. The STS basi
allytransforms the rules su
h that they generate a
on
i
t set. Finally, we have toextend the run-time system with some rules for
on
i
t resolution.Con
i
t Set Generation TransformationThe
on
i
t set is the set of all rules that are appli
able at a parti
ular
ompu-tation step. While in normal CHR, any rule
an be
hosen and it is a
ommitted
hoi
e, in probabilisti
 CHR we have to
olle
t the unnormalized probabilities(weights) from all
andidates in the
on
i
t set and then randomly
hoose onerule a

ording to their probabilities.The two rules below de�ne a generi
 standard transformation that makes the
on
i
t set of the obje
t rules expli
it.make_propagation �pragma(R,N),head(R,H,I,remove),

body(R,B) <=>pragma(R,N),head(R,H,I,keep),body(R,(remove(I),B)).wrap_body �pragma(R,N),body(R,B) <=>body(R,
and(N,B)).The transformation rule make propagationmaps all rules into propagation rules(repla
ing head(R,H,I,remove) by head(R,H,I,keep)) that expli
itly removethe head
onstraint(s) in the body of the rule using the standard CHR built-inremove (
f. body(R,(remove(I),B))). (The same e�e
t
ould also be a
hievedusing an auxiliary variable and without this standard CHR built-in, but it wouldbe less eÆ
ient.) The operational behaviour of the transformed rule at this stageis the same, however the removal of head
onstraints has been made expli
it.The se
ond transformation rule wraps the body of a rule with the run-timeCHR
onstraint
and, whose �rst argument is the information from the pragma.This transformation
hanges the behavior of the rules, be
ause their bodies willnot be exe
uted, but only
olle
ted at run-time. The
olle
tion of
and
on-straints forms the
urrent
on
i
t set of the
omputation.Note that it is essential that the transformation rules are always applied toexhaustion and in textual order (in order of appearan
e).Last but not least there is a �nal, third rule that adds a last obje
t rule forea
h de�ned CHR
onstraint C:ensure_
olle
tion �
onstraint(C) ==>head(rx,C,I,keep),guard(rx,true),body(rx,
olle
t(0,R)).The resulting propagation rule just
alls the CHR
onstraint
olle
t(0,R)whi
h triggers the
on
i
t resolution. It has to be made sure that this rule isadded at the end of the obje
t program (see dis
ussion below). Note that namesfor (generated) rules need not be unique. Here there will be a rule named rx forevery type of head
onstraint.For our example of random n-bit numbers, the appli
ation of the STS rulesand the �nal translation ba
k into rule syntax results in the following
ode(variable names have been generated automati
ally):r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |
and(0.5,(remove(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |

and(0.5,(remove(C),B=[1|D℄,rand(A-1,D))).rx � rand(A,B)#C ==>
olle
t(0,D).The #C added to the rule heads is CHR syntax for a

essing the identi�er of the
onstraint that mat
hed the head. Note that the �rst rule is left untranslatedsin
e it was not probabilisti
.Con
i
t ResolutionCon
i
t resolution
hooses one rule (body) to apply from the
on
i
t set ofappli
able rules. In our
ase, the probability normalisation and evaluation of the
on
i
t set is a
hieved by the following rules that are de�ned in the STS programfor PCHR and that are added to the transformed obje
t program (where
and/2is repla
ed by
and/4):
olle
t(M,R),
and(N,B) <=>
and(R,M,M+N,B),
olle
t(M+N,R).
olle
t(M,R) <=> random(0,M,R).
and(R,M,MN,B) <=> R < M | true.
and(R,M,MN,B) <=> R >= MN | true.
and(R,M,MN,B) <=> M =< R, R < MN |
all(B).The
onstraint
olle
t(M,R) takes a
andidate rule body
and(N,B) and re-pla
es it by
and(R,M,M+N,B) before
ontinuing with
olle
t(M+N,R). Thee�e
t of this rule is that ea
h
andidate
onstraint is extended by the
ommonvariable R and by the interval M to M+N, where N is its unnormalized probabilitymeasure (weight).Instead of expli
itly normalizing the probabilities (weights),
olle
t addsthem up and �nally
alls random(0,M,R) to produ
e a random number in theinterval from 0 to M. Note that this random number will be bound to the variableR. The
onjun
tion of extended
andidate rule bodies a
ts as a
on
urrent
olle
-tion of agents. As soon as they re
eive the random number through the variable(
hannel) R, they
an pro
eed. If the value of R is outside of their range of weightsM to MN, the
andidate agent simply goes away. Otherwise, it is the randomly
hosen
andidate and it will
all its original rule body B.In this way, from the set of appli
able rules, one of the rules is randomly
hosen and applied. The probability distribution is a

ording to the weights ofthe individual rules.

Dis
ussion: Ordering generated rulesSTS transformation in CHR is
on
urrent and in
remental, i.e. transformationrules are applied while the
omponents of the original rules arrive. In most
ases,the order of the generated rules re
e
ts the order of the original rules. While theorder of rules does not matter in most CHR programs that solve
onstraints(they are
on
uent), the order still has an impa
t on eÆ
ien
y. Moreover, CHRfor e.g. the bootstrapping
ompiler or the probabilisti
 language extension areorder sensitive in some parts.In parti
ular, in the example dis
ussed here,
olle
t has to be exe
uted afterall
and/4
onstraints have been generated. This
an be a
hieved by relying ontextual exe
ution order of rules. But then the rules named rx must be the lastones in the generated
ode. We
urrently have not found a
ompletly
onvin
ingmeans to elegantly ensure this order. There are many possibilities to put rulesat the end of the generated
ode,{ sort generated rules a

ording to rule name (ad ho
 solution),{ test for the absen
e of the pragma
onstraints (ad ho
 solution),{ introdu
e a dummy
onstraint finally at the end of the relational rule
onstraints (not elegant),{ put the last transformation rule into a separate transformer (
lean but a bittedious),{ use rule appli
ations strategies (an overkill),but more experiments are ne
essary to
ome up with the right way to do it.Hen
e this issue is a topi
 for future work.7 Example: Clauses for CHRIn this example, we introdu
e Prolog-style
lauses as new type of rules intoCHR. A logi
al
lause H B is represented by the pragma-annotated ruleH <=> B pragma
lause. Operationally, the appli
ation of a
lause rule is onlyspe
ulative (don't know indeterminism), while normal CHR rules are
ommitted-
hoi
e (don't
are indeterminism). This means that the head H is uni�ed withthe
urrent
onstraints, not mat
hed, and that if the body B fails, the exe
utionis simply undone by
hronologi
al ba
ktra
king. In
ontrast to Prolog, however,the head H may be a
onjun
tion.Consider the following program that
omputes paths in a graph bottom-up,whi
h is not dire
tly possible in Prolog due to the la
k of multiple head atoms:r1 �path(X,Y,[X,Y℄), edge(X,Y) <=> true pragma
lause.r2 �path(X,Y,[X|P℄), edge(X,Z) <=> path(Z,Y,P) pragma
lause.r3 �path(X,Y,T) <=> fail.

The last rule en
odes Prolog's
losed world assumption. Note that it is anormal simpli�
ation CHR. Also note that rules are applied in textual order.Note that the
omputation will always terminate, sin
e ea
h rule appli
ation
onsumes one edge
onstraint or results in failure.To the transformer (de�ned below) these rules are represented as a set of
onstraints:head(r1,path(X,Y,[X,Y℄),Id1,remove),
onstraint(edge/2),head(r1,edge(X,Y), Id2,remove),
onstraint(path/3),head(r2,path(X,Y,[X|P℄),Id3,remove),head(r2,edge(X,Z), Id4,remove),head(r3,path(X,Y,T), Id5,remove),guard(r1,true), body(r1,true), pragma(r1,
lause),guard(r2,true), body(r2,path(Z,Y,P)), pragma(r2,
lause),guard(r3,true), body(r3,fail)The transformation maps all
lause-annotated rules into propagation rulesthat either expli
itly remove the head
onstraints and exe
ute their body or justexe
ute true, i.e. go away unnoti
ed. In the latter
ase, another rule will betried.For the implementation we have to rely on disjun
tion, as it is implemented bythe operator ';' in Prolog. The disjun
ts are tried left-to-right by
hronologi
alba
ktra
king. This
onstru
t is available in an extension of CHR,
alled CHR_[1℄, that is available in all Prolog-based CHR implementations.The following rules
on
isely implement the
omplete transformation in anultra-
ompa
t way:make_heads �pragma(R,
lause), head(R,H,I,remove), body(R,B) <=>pragma(R,
lause),same_fun
tor(H,H1),head(R,H1,I,keep),body(R,(remove(I),H=H1,B)).make_guard_body �pragma(R,
lause), guard(R,C), body(R,B) <=>guard(R,true),body(R,(C,B;true)).The rule make heads repla
es ea
h rule head H that was to be removed bya s
eleton H1 that is kept but expli
itly removed by the CHR built-in removein the body of the rule. The s
eleton H1 has the same fun
tion name and arityas H, but its arguments are fresh, pairwise di�erent variables. The head and itss
eleton are expli
itly uni�ed in the body of the rule. The e�e
t of this
hange isto repla
e mat
hing in the head by uni�
ation in the body. Note the similaritywith the rule make propagation that was used in probabilisti
 CHR.

After all heads are pro
essed in this way, the se
ond rule make guard bodymoves the guard into the body and introdu
es a disjun
tion with true in thebody. The e�e
t of this
hange is to repla
e guard
he
king by trying to assertthe guard
onstraints or ba
ktra
k and do nothing.The result of applying the transformation to our example is as follows:r1 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, B=F, C=[A,B℄; true).r2 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, C=[A|H℄,path(F,B,H); true).r3 � path(A,B,C)#D <=> fail.In the
ode, the equalties between the head and its s
eleton have been auto-mati
ally simpli�ed by the CHR
ompiler.With the generated rules, the query edge(a,b), edge(b,
), edge(
,d),edge(d,a), path(X,X,T) will produ
e all
y
li
 paths in the given graph:T = [d,a,b,
,d℄, X = dT = [
,d,a,b,
℄, X =
T = [b,
,d,a,b℄, X = bT = [a,b,
,d,a℄, X = a8 Con
lusionsWe motivated the in
orporation of STS into CHR and proposed a way to doit. Based on the experien
e gathered, the me
hanism seems adequate,
on
iseand elegant. So far, we have implemented as language extensions a fair versionof CHR, probabilisti
 CHR [5℄, linear logi
 CHR, and (multi-headed)
lausesfor CHR. The other major STS appli
ation is the bootrapped CHR
ompileritself, where the transition from prepro
essing (e.g. synta
ti
 de-sugaring) tosubstantial
ompilation tasks is smooth and natural.In summary, STS for CHR
onsists of the following steps{ CHR rules are translated into relational normal form.{ There are spe
ial CHR
onstraints for the
omponents of a rule (head, guard,body,
ompiler pragmas).{ The STS program is just a regular CHR program/solver.{ The relational form resulting from applying the transformation is translatedba
k into CHR rules.All future (performan
e) improvements to the CHR system are immediatelyre
e
ted in the transformation pro
ess. Apart from a
tual transformations, ourSTS also naturally provides basi
 support for program analysis like proving
ertain algebrai
 properties of CHR programs like symmetries, set semanti
s,

et
., whi
h are important during the a
tual
ompilation [6℄. We also expe
t thatSTS in CHR will have synergies with the Literate CHR system that is
urrentlydeveloped [9℄.In the future, we have to investigate means to in
uen
e the order and s
hedul-ing of rules and
onstraints in the
ode generated from STS as dis
ussed at theend of se
tion 6. We plan a new release of CHR that features the bootstrapping
ompiler together with the STS
apabilities des
ribed in this paper.Another important issue is the
orre
tness of the STS. Note that all thetransformations we dis
ussed turn a non-operational CHR program into an oper-ational one. In this
ase,
orre
tness means to
he
k the result against a spe
i�
a-tion of the behavior of the desired language. We also plan to address
orre
tnesspreserving STS.A
knowledgements Thanks to Walter Guttmann and Mar
 Meister for
riti
al
omments on earlier versions of this paper. Part of this work was performedby the authors while at the Institut f�ur Informatik at the Ludwig-Maximilians-University Muni
h, Germany.Referen
es1. S. Abdennadher and H. S
h�utz, CHR_: A Flexible Query Language, Interna-tional
onferen
e on Flexible Query Answering Systems, FQAS'98, Springer LNCS,Roskilde, Denmark, May 1998.2. Constraint Handling Rules, Spe
ial Issue Journal of Applied Arti�
ial Intelligen
e(C. Holzbaur and T. Fr�uhwirth, Eds.), Taylor & Fran
is, Vol 14(4), April 2000.3. Do
uments Mentioning Constraint Handling Rules, www.google.
om/sear
h?q="
onstraint+handling+rules"+filetype:ps+OR+filetype:pdf, 2003.4. T. Fr�uhwirth, Theory and Pra
ti
e of Constraint Handling Rules, Spe
ial Issueon Constraint Logi
 Programming (P. Stu
key and K. Marriot, Eds.), Journal ofLogi
 Programming, Vol 37(1-3), pp 95-138, O
tober 1998.5. T. Fr�uhwirth, A. Di Pierro, and H. Wikli
ky, Probabilisti
 Constraint HandlingRules, 11th International Workshop on Fun
tional and (Constraint) Logi
 Pro-gramming (WFLP 2002), Sele
ted Papers, Guest Editors: Mar
o Comini andMoreno Falas
hi, Vol. 76 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e(ENTCS), 2002.6. C. Holzbaur, M.G. de la Banda, D. Je�rey, P. J. Stu
key, Optimizing Compilationof Constraint Handling Rules, in Pro
eedings of the International Joint Conferen
eon Logi
 Programming (ICLP'01), 2001.7. C. Holzbaur, Sour
e-to-Sour
e Transformation for Constraint Handling Rules,Workshop on Fun
tional and (Constraint) Logi
 Programming (WFLP 2002), Uni-versity of Udine, Italy, June 2002.8. D.B. Loveman, Program improvement by sour
e-to-sour
e transformation, Journalof the ACM, 24(1):121{145, 1977.9. S. E. Torres, A Literate Programming System for Logi
 Programs with Constraints,Workshop on Fun
tional and (Constraint) Logi
 Programming (WFLP 2002), Uni-versity of Udine, Italy, June 2002.

