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.atAbstra
t. We argue that adding Sour
e-to-Sour
e transformation (STS)to Constraint Handling Rules (CHR) is easy, desirable and elegant. The
entral ideas are to represent CHR programs in relational form, and theutilization of CHR proper to perform the transformations, a
ting uponthis representation. We illustrate the power and pra
ti
ality of STS forCHR on three non-trivial examples. The �rst example shows the appli-
ation of STS in a bootstrapping 
ompiler for CHR. Then we extendthe CHR language by probabilisti
 rule 
hoi
e and Prolog-style 
lauses,respe
tively.1 Introdu
tionSour
e-to-Sour
e transformations (STS) [8℄ are an attra
tive 
omponent in thetool boxes that 
omplement 
ore implementations of 
omputer languages. InSTS, users will write STS programs to manipulate other programs during their
ompilation. As an example 
onsider CPP, the pre-pro
essor for C. Users happilyapply STS to their advantage be
ause it makes their programs more 
on
ise andrea
tive to 
onditionals during 
ompilation.STS is really attra
tive when the language used to en
ode the transformationis expressive, and appli
able me
hani
ally. CPP is 
ertainly a useful tool, but itrather fails on the �rst 
ount - expressiveness - if we 
ompare it against ma
ropro
essing fa
ilities for (de
larative) languages like Lisp, S
heme, Prolog andothers, where the language for spe
ifying the ma
ro expansion is the same asthe target language. In these 
ases, the user has a turing 
omplete language athand that he already knows.The programming language Constraint Handling Rules (CHR) [2, 3℄ has a
-
umulated 
redibility, yet it la
ked STS. Whi
h was unfortunate, 
onsidering theexpressiveness of CHR. CHR is essentially a 
on
urrent 
ommitted-
hoi
e lan-guage 
onsisting of guarded rules that rewrite 
onjun
tions of 
onstraints intosimpler ones until they are solved. CHR 
an de�ne both simpli�
ation of andpropagation over user-de�ned 
onstraints. Simpli�
ation repla
es 
onstraints bysimpler 
onstraints. Propagation adds new 
onstraints whi
h may 
ause further



simpli�
ation. From a more general viewpoint, in the 
ontext of CHR, 
on-jun
tions of 
onstraints 
an be regarded as intera
ting 
olle
tions of 
on
urrentagents or pro
esses.A preliminary short report on STS for CHR appeared in [7℄.2 CHR by ExampleIn this se
tion we introdu
e CHR by example. We de�ne a user-de�ned 
onstraintfor less-than-or-equal, =<, that 
an handle variable arguments. The implemen-tation will rely on synta
ti
al equality, =, whi
h is assumed to be a prede�ned(built-in) 
onstraint.reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR spe
ify how =< simpli�es and propagates as a 
onstraint. They im-plement re
exivity, antisymmetry and transitivity in a straightforward way. Therule reflexivity states that X=<Y is logi
ally true, provided it is the 
ase thatX=Y. This test forms the (optional) guard of a rule, a pre
ondition on the appli-
ability of the rule. Hen
e, whenever we see the 
onstraint X=<X we 
an simplifyit to true. The rule antisymmetry means that if we �nd X=<Y as well as Y=<Xin the 
urrent 
onstraint, we 
an repla
e it by the logi
ally equivalent X=Y. Notethe di�erent use of X=Y in the two rules: In the reflexivity rule the equality isa pre
ondition (test) on the rule, while in the antisymmetry rule it is enfor
edwhen the rule �res.The rules reflexivity and antisymmetry are simpli�
ation CHR. The ruletransitivity propagates 
onstraints. It states that the 
onjun
tion X=<Y, Y=<Zimplies X=<Z. Operationally, we add logi
al 
onsequen
es as a redundant 
on-straint. This kind of CHR is 
alled propagation CHR.Redundan
y from propagation CHR is useful, as the query A=<B, C=<A,B=<C shows: The �rst two 
onstraints 
ause CHR transitivity to �re andadd C=<B to the query. This new 
onstraint together with B=<C mat
hes thehead of CHR antisymmetry, X=<Y,Y=<X. So the two 
onstraints are repla
edby B=C. In general, mat
hing takes into a

ount the synta
ti
al equalities thatare implied by built-in 
onstraints. The equality is applied to the rest of thequery, A=<B,C=<A, resulting in A=<B,B=<A where B=C. Therefore, sin
e the built-in 
onstraint B=C was added, CHR antisymmetry applies to the 
onstraintsA=<B,C=<A, resulting in A=B. The query 
ontains no more inequalities, the sim-pli�
ation stops. The 
onstraint solver we built has solved A=<B,C=<A,B=<C andprodu
ed the answer A=B,B=C.3 Operational Semanti
s of CHRFor la
k of spa
e, we refer for detailed syntax and semanti
s to the paper [4℄.Here we just dis
uss the 
ore of the operational semanti
s of CHR programs,whi
h is given by a state transition system.



Let P be a CHR program for the CHR 
onstraints and CT be a 
onstrainttheory for the built-in 
onstraints. We use abstra
t rule syntax in this se
tion.The transition relation 7�! for CHR is as follows (where upper 
ase letters standfor 
onjun
tions of 
onstraints):SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H ) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables using newsymbols, and these variables form the sequen
e �x. A rule with lhs H and guardG is appli
able to CHR 
onstraints H 0 in the 
ontext of 
onstraints D, when the
ondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of the appli
able rules
an be applied, but it is a 
ommitted 
hoi
e, it 
annot be undone.If a simpli�
ation rule (H , G | B) is applied to the CHR 
onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagation rule(H ) G | B) is applied to H 0, the Propagate transition adds B, H = H 0and G, but does not remove H 0. Trivial non-termination is avoided by applyinga propagation rule at most on
e to the same 
onstraints [?℄.We now dis
uss in more detail the rule appli
ability 
ondition CT j= D !9�x(H = H 0 ^G). The equation (H = H 0) is a notational shorthand for equatingthe arguments of the CHR 
onstraints that o

ur in H and H 0. Operationally,the rule appli
ability 
ondition 
an be 
he
ked as follows: Given the built-in
onstraints of D, try to solve the built-in 
onstraints (H = H 0 ^ G) withoutfurther 
onstraining (tou
hing) any variable in H 0 and D. This means that we�rst 
he
k that H 0 mat
hes H and then 
he
k the guard G under this mat
hing.4 STS transformation for CHRThe key idea of STS for CHR is that CHR rules will be translated into rela-tional normal form by introdu
ing spe
ial CHR 
onstraints for the 
omponentsof a rule, whi
h are head (lhs), guard (pre
ondition), body (rhs) and 
ompilerpragmas (dire
tives). The STS 
omponent of CHR guarantees that all synta
ti-
al 
onstituents of CHR programs 
an be mapped in both dire
tions (from andto this relational form). The STS transformer is a 
onstraint solver (handler)that a
ts on this representation. When a �xpoint is rea
hed, the relational formis translated ba
k into CHR rules and normal 
ompilation 
ontinues.The result of this approa
h is that STS programs are 
on
ise, 
ompa
t andthus easy to inspe
t and analyze. Indeed, the 
omplete STS program to imple-ment the language extension of probabilisti
 CHR 
onsists of a few rules thateasily �t one page.



There is one problem to be solved: we need a means to keep the name spa
esof obje
t and transformation rules apart. Colle
tions of CHR rules are 
urrentlyalready aggregated into so 
alled (
onstraint) handlers. For STS, the CHR run-time system features a new builtin predi
ate to register handlers as transformers,their intended order of appli
ation, and options that give some additional 
ontrolover the expansion, i.e. printing of intermediate results.The 
onstraints a
ted upon by transformation handlers en
ode CHR andasso
iated meta information in relational form where rule identi�ers 
onne
tthe 
omponents of the rule that are head/4, guard/2, body/2, pragma/2,
onstraint/1 (the notation spe
i�es the name and number of arguments ofea
h relation). For ea
h CHR 
onstraint symbol in the obje
t program, there isa 
orresponding STS 
onstraint 
onstraint. Ea
h of the remaining STS 
on-straints head, guard, body and pragma starts with an identi�er for the rulethey 
ome from. The se
ond argument is the respe
tive 
omponent of the rule.For the 
onstraint head, the third argument is an identi�er for the 
onstraintmat
hing the rule head, and the last argument indi
ates if the 
onstraint is to bekept or removed. This information is ne
essary, be
ause any type of CHR ruleis represented in the same normalized, relational way.5 Example: Bootstrapping the CHR 
ompiler via STSOne major appli
ation domain of STS is the CHR 
ompiler itself. The rela-tional representation of CHR obje
t programs 
ombines very well with typi
al
omputational requirements during 
ompilation sin
e1. 
ompilation relies heavily on mappings (di
tionaries)2. CHR provide eÆ
ient mappings, in
luding indexed lookup and iteration3. operations on mappings are brief and to the point in CHRNote that CHR 
ompilation is non-lo
al in the sense that we need to know inwhi
h rules the 
onstraints o

ur, and what 
onstraints appear together formingthe left hand sides of the rules [6℄. The task of 
omputing these o

urren
es isexpressed pre
isely by the three rules taken from the bootstrapped 
ompiler:
rossref_ea
h_head �head(R,Head1,Id1,T1) ==>fun
tor(Head1,F1,A1),o

(F1/A1,head(R,Head1,Id1,T1),[℄).
rossref_multi_headed_rule �head(R,Head1,Id1,T1),head(R,Head2,Id2,T2) ==>fun
tor(Head1,F1,A1),o

(F1/A1,head(R,Head1,Id1,T1),[(Head2,Id2,T2)℄).
rossref_
ombine �



o

(FA,Head,Ps1),o

(FA,Head,Ps2) <=>merge(Ps1,Ps2,Ps3),o

(FA,Head,Ps3).Due to the STS rule 
rossref ea
h head, every sour
e 
ode rule head givesrise to an o

urren
e 
onstraint o

/3, that a
ts like an entry in the 
ross ref-eren
e. Su
h an entry is identi�ed by: fun
tor name and arity of the head F/A,the head 
onstraint itself and a list of partner 
onstraints in a given sour
e 
oderule R.The se
ond STS rule 
rossref multi headed rule only applies to sour
e
ode rules with more than one head 
onstraint. It takes a pair of head 
onstraintsfrom the same rule and generates a o

urren
e 
onstraint for one of them. Therule will also apply to the same pair of 
onstraints in reversed order, so that theo

urren
e 
onstraint will also be generated for the other head 
onstraint.With the third STS rule, the lists of partner 
onstraints of two o

urren
eso

/3 are merged if they o

urren
es refer to the same head 
onstraint Head.Note that all di
tionary lookups in the 
omputation of this 
ross-referen
e areimpli
it, as are the nested iterations over these di
tionaries required to 
omputethe 
rossprodu
ts. One 
an think of the above program fragment as rea
tivesystem, 
on
urrently and in
rementally 
omputing parts of the 
ross-referen
e
rossprodu
t as head/5 
onstraints arrive in the 
onstraint store.6 Example: Probabilisti
 CHRIn this se
tion we extend the CHR language with randomness in rule appli
a-tions using STS. In probabilisti
 CHR (PCHR) [5℄ randomness is expressed byprobabilisti
 rule 
hoi
e. Among the rules that are appli
able, the 
ommitted
hoi
e of the rule is performed randomly by taking into a

ount the relativeprobability asso
iated with ea
h rule.The following PCHR program implements tossing a 
oin. We use 
on
reteProlog-style CHR syntax in the program examples. Synta
ti
ally, the probabili-ties (weights) are the argument of the pragma annotation that is used in normalCHR to give hints to the 
ompiler. Here it will initiate sour
e to sour
e trans-formation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Ea
h side of the 
oin has the same probability. This behavior is modelled bytwo rules that have the same probability to apply to a query toss(Coin), eitherresulting in Coin=head or Coin=tail.The example below shows how PCHR 
an be used to generate an n bitrandom number. The random number is represented as a list of N bits that aregenerated re
ursively and randomly one by one.



r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=> N>0 | L=[0|L1℄,rand(N-1,L1) pragma 0.5.r3 � rand(N,L) <=> N>0 | L=[1|L1℄,rand(N-1,L1) pragma 0.5.As long as there are bits to generate, the next bit will either get value 0 or 1,both with same probability. When the remaining list length N is zero, a non-probabilisti
 simpli�
ation rule 
loses the list.The three rules above will be represented as the following 
onjun
tion of
onstraints to whi
h the STS program will be applied:
onstraint(rand/2),head(r1,rand(N,L),id1,remove),guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove),guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))),pragma(r2,0.5),head(r3,rand(N,L),id3,remove),guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))),pragma(r3,0.5).Now we 
onsider the STS program for PCHR whi
h will be applied to theabove example 
ode in relational form. It simply states how the 
omponents ofthe rules should be translated in 
ase the rule is probabilisti
. The STS basi
allytransforms the rules su
h that they generate a 
on
i
t set. Finally, we have toextend the run-time system with some rules for 
on
i
t resolution.Con
i
t Set Generation TransformationThe 
on
i
t set is the set of all rules that are appli
able at a parti
ular 
ompu-tation step. While in normal CHR, any rule 
an be 
hosen and it is a 
ommitted
hoi
e, in probabilisti
 CHR we have to 
olle
t the unnormalized probabilities(weights) from all 
andidates in the 
on
i
t set and then randomly 
hoose onerule a

ording to their probabilities.The two rules below de�ne a generi
 standard transformation that makes the
on
i
t set of the obje
t rules expli
it.make_propagation �pragma(R,N),head(R,H,I,remove),



body(R,B) <=>pragma(R,N),head(R,H,I,keep),body(R,(remove(I),B)).wrap_body �pragma(R,N),body(R,B) <=>body(R,
and(N,B)).The transformation rule make propagationmaps all rules into propagation rules(repla
ing head(R,H,I,remove) by head(R,H,I,keep)) that expli
itly removethe head 
onstraint(s) in the body of the rule using the standard CHR built-inremove (
f. body(R,(remove(I),B))). (The same e�e
t 
ould also be a
hievedusing an auxiliary variable and without this standard CHR built-in, but it wouldbe less eÆ
ient.) The operational behaviour of the transformed rule at this stageis the same, however the removal of head 
onstraints has been made expli
it.The se
ond transformation rule wraps the body of a rule with the run-timeCHR 
onstraint 
and, whose �rst argument is the information from the pragma.This transformation 
hanges the behavior of the rules, be
ause their bodies willnot be exe
uted, but only 
olle
ted at run-time. The 
olle
tion of 
and 
on-straints forms the 
urrent 
on
i
t set of the 
omputation.Note that it is essential that the transformation rules are always applied toexhaustion and in textual order (in order of appearan
e).Last but not least there is a �nal, third rule that adds a last obje
t rule forea
h de�ned CHR 
onstraint C:ensure_
olle
tion �
onstraint(C) ==>head(rx,C,I,keep),guard(rx,true),body(rx,
olle
t(0,R)).The resulting propagation rule just 
alls the CHR 
onstraint 
olle
t(0,R)whi
h triggers the 
on
i
t resolution. It has to be made sure that this rule isadded at the end of the obje
t program (see dis
ussion below). Note that namesfor (generated) rules need not be unique. Here there will be a rule named rx forevery type of head 
onstraint.For our example of random n-bit numbers, the appli
ation of the STS rulesand the �nal translation ba
k into rule syntax results in the following 
ode(variable names have been generated automati
ally):r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |
and(0.5,(remove(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |




and(0.5,(remove(C),B=[1|D℄,rand(A-1,D))).rx � rand(A,B)#C ==> 
olle
t(0,D).The #C added to the rule heads is CHR syntax for a

essing the identi�er of the
onstraint that mat
hed the head. Note that the �rst rule is left untranslatedsin
e it was not probabilisti
.Con
i
t ResolutionCon
i
t resolution 
hooses one rule (body) to apply from the 
on
i
t set ofappli
able rules. In our 
ase, the probability normalisation and evaluation of the
on
i
t set is a
hieved by the following rules that are de�ned in the STS programfor PCHR and that are added to the transformed obje
t program (where 
and/2is repla
ed by 
and/4):
olle
t(M,R),
and(N,B) <=>
and(R,M,M+N,B),
olle
t(M+N,R).
olle
t(M,R) <=> random(0,M,R).
and(R,M,MN,B) <=> R < M | true.
and(R,M,MN,B) <=> R >= MN | true.
and(R,M,MN,B) <=> M =< R, R < MN | 
all(B).The 
onstraint 
olle
t(M,R) takes a 
andidate rule body 
and(N,B) and re-pla
es it by 
and(R,M,M+N,B) before 
ontinuing with 
olle
t(M+N,R). Thee�e
t of this rule is that ea
h 
andidate 
onstraint is extended by the 
ommonvariable R and by the interval M to M+N, where N is its unnormalized probabilitymeasure (weight).Instead of expli
itly normalizing the probabilities (weights), 
olle
t addsthem up and �nally 
alls random(0,M,R) to produ
e a random number in theinterval from 0 to M. Note that this random number will be bound to the variableR. The 
onjun
tion of extended 
andidate rule bodies a
ts as a 
on
urrent 
olle
-tion of agents. As soon as they re
eive the random number through the variable(
hannel) R, they 
an pro
eed. If the value of R is outside of their range of weightsM to MN, the 
andidate agent simply goes away. Otherwise, it is the randomly
hosen 
andidate and it will 
all its original rule body B.In this way, from the set of appli
able rules, one of the rules is randomly
hosen and applied. The probability distribution is a

ording to the weights ofthe individual rules.



Dis
ussion: Ordering generated rulesSTS transformation in CHR is 
on
urrent and in
remental, i.e. transformationrules are applied while the 
omponents of the original rules arrive. In most 
ases,the order of the generated rules re
e
ts the order of the original rules. While theorder of rules does not matter in most CHR programs that solve 
onstraints(they are 
on
uent), the order still has an impa
t on eÆ
ien
y. Moreover, CHRfor e.g. the bootstrapping 
ompiler or the probabilisti
 language extension areorder sensitive in some parts.In parti
ular, in the example dis
ussed here, 
olle
t has to be exe
uted afterall 
and/4 
onstraints have been generated. This 
an be a
hieved by relying ontextual exe
ution order of rules. But then the rules named rx must be the lastones in the generated 
ode. We 
urrently have not found a 
ompletly 
onvin
ingmeans to elegantly ensure this order. There are many possibilities to put rulesat the end of the generated 
ode,{ sort generated rules a

ording to rule name (ad ho
 solution),{ test for the absen
e of the pragma 
onstraints (ad ho
 solution),{ introdu
e a dummy 
onstraint finally at the end of the relational rule
onstraints (not elegant),{ put the last transformation rule into a separate transformer (
lean but a bittedious),{ use rule appli
ations strategies (an overkill),but more experiments are ne
essary to 
ome up with the right way to do it.Hen
e this issue is a topi
 for future work.7 Example: Clauses for CHRIn this example, we introdu
e Prolog-style 
lauses as new type of rules intoCHR. A logi
al 
lause H  B is represented by the pragma-annotated ruleH <=> B pragma 
lause. Operationally, the appli
ation of a 
lause rule is onlyspe
ulative (don't know indeterminism), while normal CHR rules are 
ommitted-
hoi
e (don't 
are indeterminism). This means that the head H is uni�ed withthe 
urrent 
onstraints, not mat
hed, and that if the body B fails, the exe
utionis simply undone by 
hronologi
al ba
ktra
king. In 
ontrast to Prolog, however,the head H may be a 
onjun
tion.Consider the following program that 
omputes paths in a graph bottom-up,whi
h is not dire
tly possible in Prolog due to the la
k of multiple head atoms:r1 �path(X,Y,[X,Y℄), edge(X,Y) <=> true pragma 
lause.r2 �path(X,Y,[X|P℄), edge(X,Z) <=> path(Z,Y,P) pragma 
lause.r3 �path(X,Y,T) <=> fail.



The last rule en
odes Prolog's 
losed world assumption. Note that it is anormal simpli�
ation CHR. Also note that rules are applied in textual order.Note that the 
omputation will always terminate, sin
e ea
h rule appli
ation
onsumes one edge 
onstraint or results in failure.To the transformer (de�ned below) these rules are represented as a set of
onstraints:head(r1,path(X,Y,[X,Y℄),Id1,remove), 
onstraint(edge/2),head(r1,edge(X,Y), Id2,remove), 
onstraint(path/3),head(r2,path(X,Y,[X|P℄),Id3,remove),head(r2,edge(X,Z), Id4,remove),head(r3,path(X,Y,T), Id5,remove),guard(r1,true), body(r1,true), pragma(r1,
lause),guard(r2,true), body(r2,path(Z,Y,P)), pragma(r2,
lause),guard(r3,true), body(r3,fail)The transformation maps all 
lause-annotated rules into propagation rulesthat either expli
itly remove the head 
onstraints and exe
ute their body or justexe
ute true, i.e. go away unnoti
ed. In the latter 
ase, another rule will betried.For the implementation we have to rely on disjun
tion, as it is implemented bythe operator ';' in Prolog. The disjun
ts are tried left-to-right by 
hronologi
alba
ktra
king. This 
onstru
t is available in an extension of CHR, 
alled CHR_[1℄, that is available in all Prolog-based CHR implementations.The following rules 
on
isely implement the 
omplete transformation in anultra-
ompa
t way:make_heads �pragma(R,
lause), head(R,H,I,remove), body(R,B) <=>pragma(R,
lause),same_fun
tor(H,H1),head(R,H1,I,keep),body(R,(remove(I),H=H1,B)).make_guard_body �pragma(R,
lause), guard(R,C), body(R,B) <=>guard(R,true),body(R,(C,B;true)).The rule make heads repla
es ea
h rule head H that was to be removed bya s
eleton H1 that is kept but expli
itly removed by the CHR built-in removein the body of the rule. The s
eleton H1 has the same fun
tion name and arityas H, but its arguments are fresh, pairwise di�erent variables. The head and itss
eleton are expli
itly uni�ed in the body of the rule. The e�e
t of this 
hange isto repla
e mat
hing in the head by uni�
ation in the body. Note the similaritywith the rule make propagation that was used in probabilisti
 CHR.



After all heads are pro
essed in this way, the se
ond rule make guard bodymoves the guard into the body and introdu
es a disjun
tion with true in thebody. The e�e
t of this 
hange is to repla
e guard 
he
king by trying to assertthe guard 
onstraints or ba
ktra
k and do nothing.The result of applying the transformation to our example is as follows:r1 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, B=F, C=[A,B℄; true).r2 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, C=[A|H℄,path(F,B,H); true).r3 � path(A,B,C)#D <=> fail.In the 
ode, the equalties between the head and its s
eleton have been auto-mati
ally simpli�ed by the CHR 
ompiler.With the generated rules, the query edge(a,b), edge(b,
), edge(
,d),edge(d,a), path(X,X,T) will produ
e all 
y
li
 paths in the given graph:T = [d,a,b,
,d℄, X = dT = [
,d,a,b,
℄, X = 
T = [b,
,d,a,b℄, X = bT = [a,b,
,d,a℄, X = a8 Con
lusionsWe motivated the in
orporation of STS into CHR and proposed a way to doit. Based on the experien
e gathered, the me
hanism seems adequate, 
on
iseand elegant. So far, we have implemented as language extensions a fair versionof CHR, probabilisti
 CHR [5℄, linear logi
 CHR, and (multi-headed) 
lausesfor CHR. The other major STS appli
ation is the bootrapped CHR 
ompileritself, where the transition from prepro
essing (e.g. synta
ti
 de-sugaring) tosubstantial 
ompilation tasks is smooth and natural.In summary, STS for CHR 
onsists of the following steps{ CHR rules are translated into relational normal form.{ There are spe
ial CHR 
onstraints for the 
omponents of a rule (head, guard,body, 
ompiler pragmas).{ The STS program is just a regular CHR program/solver.{ The relational form resulting from applying the transformation is translatedba
k into CHR rules.All future (performan
e) improvements to the CHR system are immediatelyre
e
ted in the transformation pro
ess. Apart from a
tual transformations, ourSTS also naturally provides basi
 support for program analysis like proving
ertain algebrai
 properties of CHR programs like symmetries, set semanti
s,



et
., whi
h are important during the a
tual 
ompilation [6℄. We also expe
t thatSTS in CHR will have synergies with the Literate CHR system that is 
urrentlydeveloped [9℄.In the future, we have to investigate means to in
uen
e the order and s
hedul-ing of rules and 
onstraints in the 
ode generated from STS as dis
ussed at theend of se
tion 6. We plan a new release of CHR that features the bootstrapping
ompiler together with the STS 
apabilities des
ribed in this paper.Another important issue is the 
orre
tness of the STS. Note that all thetransformations we dis
ussed turn a non-operational CHR program into an oper-ational one. In this 
ase, 
orre
tness means to 
he
k the result against a spe
i�
a-tion of the behavior of the desired language. We also plan to address 
orre
tnesspreserving STS.A
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