
Soure-to-Soure Transformation for a Class ofExpressive RulesThom Fr�uhwirth and Christian Holzbaur1 Fakult�at f�ur InformatikUniversity of Ulm, GermanyThom.Fruehwirth�informatik.uni-ulm.de2 Department of Medial Cybernetis and Arti�ial IntelligeneUniversity of Vienna, Austriahristian�ai.univie.a.atAbstrat. We argue that adding Soure-to-Soure transformation (STS)to Constraint Handling Rules (CHR) is easy, desirable and elegant. Theentral ideas are to represent CHR programs in relational form, and theutilization of CHR proper to perform the transformations, ating uponthis representation. We illustrate the power and pratiality of STS forCHR on three non-trivial examples. The �rst example shows the appli-ation of STS in a bootstrapping ompiler for CHR. Then we extendthe CHR language by probabilisti rule hoie and Prolog-style lauses,respetively.1 IntrodutionSoure-to-Soure transformations (STS) [8℄ are an attrative omponent in thetool boxes that omplement ore implementations of omputer languages. InSTS, users will write STS programs to manipulate other programs during theirompilation. As an example onsider CPP, the pre-proessor for C. Users happilyapply STS to their advantage beause it makes their programs more onise andreative to onditionals during ompilation.STS is really attrative when the language used to enode the transformationis expressive, and appliable mehanially. CPP is ertainly a useful tool, but itrather fails on the �rst ount - expressiveness - if we ompare it against maroproessing failities for (delarative) languages like Lisp, Sheme, Prolog andothers, where the language for speifying the maro expansion is the same asthe target language. In these ases, the user has a turing omplete language athand that he already knows.The programming language Constraint Handling Rules (CHR) [2, 3℄ has a-umulated redibility, yet it laked STS. Whih was unfortunate, onsidering theexpressiveness of CHR. CHR is essentially a onurrent ommitted-hoie lan-guage onsisting of guarded rules that rewrite onjuntions of onstraints intosimpler ones until they are solved. CHR an de�ne both simpli�ation of andpropagation over user-de�ned onstraints. Simpli�ation replaes onstraints bysimpler onstraints. Propagation adds new onstraints whih may ause further

simpli�ation. From a more general viewpoint, in the ontext of CHR, on-juntions of onstraints an be regarded as interating olletions of onurrentagents or proesses.A preliminary short report on STS for CHR appeared in [7℄.2 CHR by ExampleIn this setion we introdue CHR by example. We de�ne a user-de�ned onstraintfor less-than-or-equal, =<, that an handle variable arguments. The implemen-tation will rely on syntatial equality, =, whih is assumed to be a prede�ned(built-in) onstraint.reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR speify how =< simpli�es and propagates as a onstraint. They im-plement reexivity, antisymmetry and transitivity in a straightforward way. Therule reflexivity states that X=<Y is logially true, provided it is the ase thatX=Y. This test forms the (optional) guard of a rule, a preondition on the appli-ability of the rule. Hene, whenever we see the onstraint X=<X we an simplifyit to true. The rule antisymmetry means that if we �nd X=<Y as well as Y=<Xin the urrent onstraint, we an replae it by the logially equivalent X=Y. Notethe di�erent use of X=Y in the two rules: In the reflexivity rule the equality isa preondition (test) on the rule, while in the antisymmetry rule it is enforedwhen the rule �res.The rules reflexivity and antisymmetry are simpli�ation CHR. The ruletransitivity propagates onstraints. It states that the onjuntion X=<Y, Y=<Zimplies X=<Z. Operationally, we add logial onsequenes as a redundant on-straint. This kind of CHR is alled propagation CHR.Redundany from propagation CHR is useful, as the query A=<B, C=<A,B=<C shows: The �rst two onstraints ause CHR transitivity to �re andadd C=<B to the query. This new onstraint together with B=<C mathes thehead of CHR antisymmetry, X=<Y,Y=<X. So the two onstraints are replaedby B=C. In general, mathing takes into aount the syntatial equalities thatare implied by built-in onstraints. The equality is applied to the rest of thequery, A=<B,C=<A, resulting in A=<B,B=<A where B=C. Therefore, sine the built-in onstraint B=C was added, CHR antisymmetry applies to the onstraintsA=<B,C=<A, resulting in A=B. The query ontains no more inequalities, the sim-pli�ation stops. The onstraint solver we built has solved A=<B,C=<A,B=<C andprodued the answer A=B,B=C.3 Operational Semantis of CHRFor lak of spae, we refer for detailed syntax and semantis to the paper [4℄.Here we just disuss the ore of the operational semantis of CHR programs,whih is given by a state transition system.

Let P be a CHR program for the CHR onstraints and CT be a onstrainttheory for the built-in onstraints. We use abstrat rule syntax in this setion.The transition relation 7�! for CHR is as follows (where upper ase letters standfor onjuntions of onstraints):SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables using newsymbols, and these variables form the sequene �x. A rule with lhs H and guardG is appliable to CHR onstraints H 0 in the ontext of onstraints D, when theondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of the appliable rulesan be applied, but it is a ommitted hoie, it annot be undone.If a simpli�ation rule (H , G | B) is applied to the CHR onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagation rule(H) G | B) is applied to H 0, the Propagate transition adds B, H = H 0and G, but does not remove H 0. Trivial non-termination is avoided by applyinga propagation rule at most one to the same onstraints [?℄.We now disuss in more detail the rule appliability ondition CT j= D !9�x(H = H 0 ^G). The equation (H = H 0) is a notational shorthand for equatingthe arguments of the CHR onstraints that our in H and H 0. Operationally,the rule appliability ondition an be heked as follows: Given the built-inonstraints of D, try to solve the built-in onstraints (H = H 0 ^ G) withoutfurther onstraining (touhing) any variable in H 0 and D. This means that we�rst hek that H 0 mathes H and then hek the guard G under this mathing.4 STS transformation for CHRThe key idea of STS for CHR is that CHR rules will be translated into rela-tional normal form by introduing speial CHR onstraints for the omponentsof a rule, whih are head (lhs), guard (preondition), body (rhs) and ompilerpragmas (diretives). The STS omponent of CHR guarantees that all syntati-al onstituents of CHR programs an be mapped in both diretions (from andto this relational form). The STS transformer is a onstraint solver (handler)that ats on this representation. When a �xpoint is reahed, the relational formis translated bak into CHR rules and normal ompilation ontinues.The result of this approah is that STS programs are onise, ompat andthus easy to inspet and analyze. Indeed, the omplete STS program to imple-ment the language extension of probabilisti CHR onsists of a few rules thateasily �t one page.

There is one problem to be solved: we need a means to keep the name spaesof objet and transformation rules apart. Colletions of CHR rules are urrentlyalready aggregated into so alled (onstraint) handlers. For STS, the CHR run-time system features a new builtin prediate to register handlers as transformers,their intended order of appliation, and options that give some additional ontrolover the expansion, i.e. printing of intermediate results.The onstraints ated upon by transformation handlers enode CHR andassoiated meta information in relational form where rule identi�ers onnetthe omponents of the rule that are head/4, guard/2, body/2, pragma/2,onstraint/1 (the notation spei�es the name and number of arguments ofeah relation). For eah CHR onstraint symbol in the objet program, there isa orresponding STS onstraint onstraint. Eah of the remaining STS on-straints head, guard, body and pragma starts with an identi�er for the rulethey ome from. The seond argument is the respetive omponent of the rule.For the onstraint head, the third argument is an identi�er for the onstraintmathing the rule head, and the last argument indiates if the onstraint is to bekept or removed. This information is neessary, beause any type of CHR ruleis represented in the same normalized, relational way.5 Example: Bootstrapping the CHR ompiler via STSOne major appliation domain of STS is the CHR ompiler itself. The rela-tional representation of CHR objet programs ombines very well with typialomputational requirements during ompilation sine1. ompilation relies heavily on mappings (ditionaries)2. CHR provide eÆient mappings, inluding indexed lookup and iteration3. operations on mappings are brief and to the point in CHRNote that CHR ompilation is non-loal in the sense that we need to know inwhih rules the onstraints our, and what onstraints appear together formingthe left hand sides of the rules [6℄. The task of omputing these ourrenes isexpressed preisely by the three rules taken from the bootstrapped ompiler:rossref_eah_head �head(R,Head1,Id1,T1) ==>funtor(Head1,F1,A1),o(F1/A1,head(R,Head1,Id1,T1),[℄).rossref_multi_headed_rule �head(R,Head1,Id1,T1),head(R,Head2,Id2,T2) ==>funtor(Head1,F1,A1),o(F1/A1,head(R,Head1,Id1,T1),[(Head2,Id2,T2)℄).rossref_ombine �

o(FA,Head,Ps1),o(FA,Head,Ps2) <=>merge(Ps1,Ps2,Ps3),o(FA,Head,Ps3).Due to the STS rule rossref eah head, every soure ode rule head givesrise to an ourrene onstraint o/3, that ats like an entry in the ross ref-erene. Suh an entry is identi�ed by: funtor name and arity of the head F/A,the head onstraint itself and a list of partner onstraints in a given soure oderule R.The seond STS rule rossref multi headed rule only applies to soureode rules with more than one head onstraint. It takes a pair of head onstraintsfrom the same rule and generates a ourrene onstraint for one of them. Therule will also apply to the same pair of onstraints in reversed order, so that theourrene onstraint will also be generated for the other head onstraint.With the third STS rule, the lists of partner onstraints of two ourreneso/3 are merged if they ourrenes refer to the same head onstraint Head.Note that all ditionary lookups in the omputation of this ross-referene areimpliit, as are the nested iterations over these ditionaries required to omputethe rossproduts. One an think of the above program fragment as reativesystem, onurrently and inrementally omputing parts of the ross-referenerossprodut as head/5 onstraints arrive in the onstraint store.6 Example: Probabilisti CHRIn this setion we extend the CHR language with randomness in rule applia-tions using STS. In probabilisti CHR (PCHR) [5℄ randomness is expressed byprobabilisti rule hoie. Among the rules that are appliable, the ommittedhoie of the rule is performed randomly by taking into aount the relativeprobability assoiated with eah rule.The following PCHR program implements tossing a oin. We use onreteProlog-style CHR syntax in the program examples. Syntatially, the probabili-ties (weights) are the argument of the pragma annotation that is used in normalCHR to give hints to the ompiler. Here it will initiate soure to soure trans-formation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Eah side of the oin has the same probability. This behavior is modelled bytwo rules that have the same probability to apply to a query toss(Coin), eitherresulting in Coin=head or Coin=tail.The example below shows how PCHR an be used to generate an n bitrandom number. The random number is represented as a list of N bits that aregenerated reursively and randomly one by one.

r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=> N>0 | L=[0|L1℄,rand(N-1,L1) pragma 0.5.r3 � rand(N,L) <=> N>0 | L=[1|L1℄,rand(N-1,L1) pragma 0.5.As long as there are bits to generate, the next bit will either get value 0 or 1,both with same probability. When the remaining list length N is zero, a non-probabilisti simpli�ation rule loses the list.The three rules above will be represented as the following onjuntion ofonstraints to whih the STS program will be applied:onstraint(rand/2),head(r1,rand(N,L),id1,remove),guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove),guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))),pragma(r2,0.5),head(r3,rand(N,L),id3,remove),guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))),pragma(r3,0.5).Now we onsider the STS program for PCHR whih will be applied to theabove example ode in relational form. It simply states how the omponents ofthe rules should be translated in ase the rule is probabilisti. The STS basiallytransforms the rules suh that they generate a onit set. Finally, we have toextend the run-time system with some rules for onit resolution.Conit Set Generation TransformationThe onit set is the set of all rules that are appliable at a partiular ompu-tation step. While in normal CHR, any rule an be hosen and it is a ommittedhoie, in probabilisti CHR we have to ollet the unnormalized probabilities(weights) from all andidates in the onit set and then randomly hoose onerule aording to their probabilities.The two rules below de�ne a generi standard transformation that makes theonit set of the objet rules expliit.make_propagation �pragma(R,N),head(R,H,I,remove),

body(R,B) <=>pragma(R,N),head(R,H,I,keep),body(R,(remove(I),B)).wrap_body �pragma(R,N),body(R,B) <=>body(R,and(N,B)).The transformation rule make propagationmaps all rules into propagation rules(replaing head(R,H,I,remove) by head(R,H,I,keep)) that expliitly removethe head onstraint(s) in the body of the rule using the standard CHR built-inremove (f. body(R,(remove(I),B))). (The same e�et ould also be ahievedusing an auxiliary variable and without this standard CHR built-in, but it wouldbe less eÆient.) The operational behaviour of the transformed rule at this stageis the same, however the removal of head onstraints has been made expliit.The seond transformation rule wraps the body of a rule with the run-timeCHR onstraint and, whose �rst argument is the information from the pragma.This transformation hanges the behavior of the rules, beause their bodies willnot be exeuted, but only olleted at run-time. The olletion of and on-straints forms the urrent onit set of the omputation.Note that it is essential that the transformation rules are always applied toexhaustion and in textual order (in order of appearane).Last but not least there is a �nal, third rule that adds a last objet rule foreah de�ned CHR onstraint C:ensure_olletion �onstraint(C) ==>head(rx,C,I,keep),guard(rx,true),body(rx,ollet(0,R)).The resulting propagation rule just alls the CHR onstraint ollet(0,R)whih triggers the onit resolution. It has to be made sure that this rule isadded at the end of the objet program (see disussion below). Note that namesfor (generated) rules need not be unique. Here there will be a rule named rx forevery type of head onstraint.For our example of random n-bit numbers, the appliation of the STS rulesand the �nal translation bak into rule syntax results in the following ode(variable names have been generated automatially):r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |and(0.5,(remove(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |

and(0.5,(remove(C),B=[1|D℄,rand(A-1,D))).rx � rand(A,B)#C ==> ollet(0,D).The #C added to the rule heads is CHR syntax for aessing the identi�er of theonstraint that mathed the head. Note that the �rst rule is left untranslatedsine it was not probabilisti.Conit ResolutionConit resolution hooses one rule (body) to apply from the onit set ofappliable rules. In our ase, the probability normalisation and evaluation of theonit set is ahieved by the following rules that are de�ned in the STS programfor PCHR and that are added to the transformed objet program (where and/2is replaed by and/4):ollet(M,R),and(N,B) <=>and(R,M,M+N,B),ollet(M+N,R).ollet(M,R) <=> random(0,M,R).and(R,M,MN,B) <=> R < M | true.and(R,M,MN,B) <=> R >= MN | true.and(R,M,MN,B) <=> M =< R, R < MN | all(B).The onstraint ollet(M,R) takes a andidate rule body and(N,B) and re-plaes it by and(R,M,M+N,B) before ontinuing with ollet(M+N,R). Thee�et of this rule is that eah andidate onstraint is extended by the ommonvariable R and by the interval M to M+N, where N is its unnormalized probabilitymeasure (weight).Instead of expliitly normalizing the probabilities (weights), ollet addsthem up and �nally alls random(0,M,R) to produe a random number in theinterval from 0 to M. Note that this random number will be bound to the variableR. The onjuntion of extended andidate rule bodies ats as a onurrent olle-tion of agents. As soon as they reeive the random number through the variable(hannel) R, they an proeed. If the value of R is outside of their range of weightsM to MN, the andidate agent simply goes away. Otherwise, it is the randomlyhosen andidate and it will all its original rule body B.In this way, from the set of appliable rules, one of the rules is randomlyhosen and applied. The probability distribution is aording to the weights ofthe individual rules.

Disussion: Ordering generated rulesSTS transformation in CHR is onurrent and inremental, i.e. transformationrules are applied while the omponents of the original rules arrive. In most ases,the order of the generated rules reets the order of the original rules. While theorder of rules does not matter in most CHR programs that solve onstraints(they are onuent), the order still has an impat on eÆieny. Moreover, CHRfor e.g. the bootstrapping ompiler or the probabilisti language extension areorder sensitive in some parts.In partiular, in the example disussed here, ollet has to be exeuted afterall and/4 onstraints have been generated. This an be ahieved by relying ontextual exeution order of rules. But then the rules named rx must be the lastones in the generated ode. We urrently have not found a ompletly onviningmeans to elegantly ensure this order. There are many possibilities to put rulesat the end of the generated ode,{ sort generated rules aording to rule name (ad ho solution),{ test for the absene of the pragma onstraints (ad ho solution),{ introdue a dummy onstraint finally at the end of the relational ruleonstraints (not elegant),{ put the last transformation rule into a separate transformer (lean but a bittedious),{ use rule appliations strategies (an overkill),but more experiments are neessary to ome up with the right way to do it.Hene this issue is a topi for future work.7 Example: Clauses for CHRIn this example, we introdue Prolog-style lauses as new type of rules intoCHR. A logial lause H B is represented by the pragma-annotated ruleH <=> B pragma lause. Operationally, the appliation of a lause rule is onlyspeulative (don't know indeterminism), while normal CHR rules are ommitted-hoie (don't are indeterminism). This means that the head H is uni�ed withthe urrent onstraints, not mathed, and that if the body B fails, the exeutionis simply undone by hronologial baktraking. In ontrast to Prolog, however,the head H may be a onjuntion.Consider the following program that omputes paths in a graph bottom-up,whih is not diretly possible in Prolog due to the lak of multiple head atoms:r1 �path(X,Y,[X,Y℄), edge(X,Y) <=> true pragma lause.r2 �path(X,Y,[X|P℄), edge(X,Z) <=> path(Z,Y,P) pragma lause.r3 �path(X,Y,T) <=> fail.

The last rule enodes Prolog's losed world assumption. Note that it is anormal simpli�ation CHR. Also note that rules are applied in textual order.Note that the omputation will always terminate, sine eah rule appliationonsumes one edge onstraint or results in failure.To the transformer (de�ned below) these rules are represented as a set ofonstraints:head(r1,path(X,Y,[X,Y℄),Id1,remove), onstraint(edge/2),head(r1,edge(X,Y), Id2,remove), onstraint(path/3),head(r2,path(X,Y,[X|P℄),Id3,remove),head(r2,edge(X,Z), Id4,remove),head(r3,path(X,Y,T), Id5,remove),guard(r1,true), body(r1,true), pragma(r1,lause),guard(r2,true), body(r2,path(Z,Y,P)), pragma(r2,lause),guard(r3,true), body(r3,fail)The transformation maps all lause-annotated rules into propagation rulesthat either expliitly remove the head onstraints and exeute their body or justexeute true, i.e. go away unnotied. In the latter ase, another rule will betried.For the implementation we have to rely on disjuntion, as it is implemented bythe operator ';' in Prolog. The disjunts are tried left-to-right by hronologialbaktraking. This onstrut is available in an extension of CHR, alled CHR_[1℄, that is available in all Prolog-based CHR implementations.The following rules onisely implement the omplete transformation in anultra-ompat way:make_heads �pragma(R,lause), head(R,H,I,remove), body(R,B) <=>pragma(R,lause),same_funtor(H,H1),head(R,H1,I,keep),body(R,(remove(I),H=H1,B)).make_guard_body �pragma(R,lause), guard(R,C), body(R,B) <=>guard(R,true),body(R,(C,B;true)).The rule make heads replaes eah rule head H that was to be removed bya seleton H1 that is kept but expliitly removed by the CHR built-in removein the body of the rule. The seleton H1 has the same funtion name and arityas H, but its arguments are fresh, pairwise di�erent variables. The head and itsseleton are expliitly uni�ed in the body of the rule. The e�et of this hange isto replae mathing in the head by uni�ation in the body. Note the similaritywith the rule make propagation that was used in probabilisti CHR.

After all heads are proessed in this way, the seond rule make guard bodymoves the guard into the body and introdues a disjuntion with true in thebody. The e�et of this hange is to replae guard heking by trying to assertthe guard onstraints or baktrak and do nothing.The result of applying the transformation to our example is as follows:r1 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, B=F, C=[A,B℄; true).r2 � path(A,B,C)#D, edge(E,F)#G ==> (remove(D), remove(G),A=E, C=[A|H℄,path(F,B,H); true).r3 � path(A,B,C)#D <=> fail.In the ode, the equalties between the head and its seleton have been auto-matially simpli�ed by the CHR ompiler.With the generated rules, the query edge(a,b), edge(b,), edge(,d),edge(d,a), path(X,X,T) will produe all yli paths in the given graph:T = [d,a,b,,d℄, X = dT = [,d,a,b,℄, X = T = [b,,d,a,b℄, X = bT = [a,b,,d,a℄, X = a8 ConlusionsWe motivated the inorporation of STS into CHR and proposed a way to doit. Based on the experiene gathered, the mehanism seems adequate, oniseand elegant. So far, we have implemented as language extensions a fair versionof CHR, probabilisti CHR [5℄, linear logi CHR, and (multi-headed) lausesfor CHR. The other major STS appliation is the bootrapped CHR ompileritself, where the transition from preproessing (e.g. syntati de-sugaring) tosubstantial ompilation tasks is smooth and natural.In summary, STS for CHR onsists of the following steps{ CHR rules are translated into relational normal form.{ There are speial CHR onstraints for the omponents of a rule (head, guard,body, ompiler pragmas).{ The STS program is just a regular CHR program/solver.{ The relational form resulting from applying the transformation is translatedbak into CHR rules.All future (performane) improvements to the CHR system are immediatelyreeted in the transformation proess. Apart from atual transformations, ourSTS also naturally provides basi support for program analysis like provingertain algebrai properties of CHR programs like symmetries, set semantis,

et., whih are important during the atual ompilation [6℄. We also expet thatSTS in CHR will have synergies with the Literate CHR system that is urrentlydeveloped [9℄.In the future, we have to investigate means to inuene the order and shedul-ing of rules and onstraints in the ode generated from STS as disussed at theend of setion 6. We plan a new release of CHR that features the bootstrappingompiler together with the STS apabilities desribed in this paper.Another important issue is the orretness of the STS. Note that all thetransformations we disussed turn a non-operational CHR program into an oper-ational one. In this ase, orretness means to hek the result against a spei�a-tion of the behavior of the desired language. We also plan to address orretnesspreserving STS.Aknowledgements Thanks to Walter Guttmann and Mar Meister for ritialomments on earlier versions of this paper. Part of this work was performedby the authors while at the Institut f�ur Informatik at the Ludwig-Maximilians-University Munih, Germany.Referenes1. S. Abdennadher and H. Sh�utz, CHR_: A Flexible Query Language, Interna-tional onferene on Flexible Query Answering Systems, FQAS'98, Springer LNCS,Roskilde, Denmark, May 1998.2. Constraint Handling Rules, Speial Issue Journal of Applied Arti�ial Intelligene(C. Holzbaur and T. Fr�uhwirth, Eds.), Taylor & Franis, Vol 14(4), April 2000.3. Douments Mentioning Constraint Handling Rules, www.google.om/searh?q="onstraint+handling+rules"+filetype:ps+OR+filetype:pdf, 2003.4. T. Fr�uhwirth, Theory and Pratie of Constraint Handling Rules, Speial Issueon Constraint Logi Programming (P. Stukey and K. Marriot, Eds.), Journal ofLogi Programming, Vol 37(1-3), pp 95-138, Otober 1998.5. T. Fr�uhwirth, A. Di Pierro, and H. Wikliky, Probabilisti Constraint HandlingRules, 11th International Workshop on Funtional and (Constraint) Logi Pro-gramming (WFLP 2002), Seleted Papers, Guest Editors: Maro Comini andMoreno Falashi, Vol. 76 of Eletroni Notes in Theoretial Computer Siene(ENTCS), 2002.6. C. Holzbaur, M.G. de la Banda, D. Je�rey, P. J. Stukey, Optimizing Compilationof Constraint Handling Rules, in Proeedings of the International Joint Confereneon Logi Programming (ICLP'01), 2001.7. C. Holzbaur, Soure-to-Soure Transformation for Constraint Handling Rules,Workshop on Funtional and (Constraint) Logi Programming (WFLP 2002), Uni-versity of Udine, Italy, June 2002.8. D.B. Loveman, Program improvement by soure-to-soure transformation, Journalof the ACM, 24(1):121{145, 1977.9. S. E. Torres, A Literate Programming System for Logi Programs with Constraints,Workshop on Funtional and (Constraint) Logi Programming (WFLP 2002), Uni-versity of Udine, Italy, June 2002.

