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Abstract

Inverse execution is a non-deterministic process of discovering the inputs to a program starting from its
output. This paper deals with the inverse execution of Constraint Handling Rules (CHR). First a simple
inversion technique is proposed, which produces a reverse program consisting of rules with exchanged
left and right hand sides. The limitations of this method are presented and reveal the need for a different
CHR execution strategy. Then an extension is provided to execute the inverse program whilst exploring
all possible execution paths incrementally and exhaustively through different methods such as breadth-first
traversal or random path choice. An on-line tool was implemented to transform any forward CHR program
into its equivalent inverse; examples and results highlight the validity of this work.
KEYWORDS:Backwards, Constraint Handling Rules, Exhaustive Execution, Inverse, Reverse

1 Introduction

Program inversion is the backwards execution of a program, uncovering the possible inputs that
generate a particular output. The process is non-deterministic, since there maybe several possible
inputs for a given output. Some program inversions make very common inverse pairs, such as
encryption/decryption, compression/decompression, inverting arithmetic functions, insert/delete
operations on data structures, and roll-back transactions. From a software development point of
view, automatic program inversion could potentially allow programmers to write only one of
each inverse pair, thus the time required to write, maintain and debug such code could be halved.
Moreover, backwards computation can be seen as a form of abduction, which attempts to infer
the initial query from an observed result. On this basis, it is possible to have various applications
based on such abductive reasoning.

Constraint Handling Rules (CHR) is a committed-choice rule-based programming language
based on multi-headed multi-set guarded rewrite rules (Frühwirth 2009). It was originally de-
signed for the special purpose of creating user-defined constraint solvers to a host-language.
However over time, CHR matured to become a powerful and elegant general-purpose language
with various application domains (Frühwirth et al. 1996). The traditional execution of CHR in-
volves starting from an initial state or query and applying the program rules exhaustively until
a fixed point is reached. The final state is one in which no more rules are applicable. The rule
application strategy depends on the operational semantics of the language used.

A backwards or inverse execution of a CHR program, entails computing from a result to one or
all predecessor states. This process is non-deterministic; various intermediate states are possible
inputs which produce the same desired output. The aim of inverse execution would be to produce
a maximal remote ancestor state and all other intermediate states that could yield a particular
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output. The exhaustive backwards rule application and exploration of different program paths
could be attainable by the use of CHR with disjunction (CHR∨)(Abdennadher and Schütz 1998).
This extension to CHR makes use of a backtracking search to allow the invocation of different
rule bodies and hence could be used for the inverse execution.

Inverse execution of CHR can lead to various research possibilities, such as abductive reason-
ing (Christiansen 2009), simulating CHR executions, computing tautologies starting backwards
from true, computing inconsistency failures in a constraint solver by starting backwards from
failure, and computing with bidirectional rules in both directions which would bring CHR more
closer to its most abstract first-order logic semantics. Furthermore, an inversion could be used
for a result-directed execution of CHR (Sneyers 2010).

A naive implementation of inverse execution of CHR would be to exchange the left and right
hand sides of the rules. In this work, this method is presented as the simple inversion technique
and illustrative examples are provided. With experiments, it becomes evident that the simple
method is not sufficient to obtain the initial goal of reaching the maximal remote ancestor and all
intermediate states. Maximal remote ancestors in the forwards program correspond to exhaustive
rule application in the reverse program. Thus, a refined method known as exhaustive inversion
is described and running examples are provided to highlight the workings and results. An on-
line inverter tool was implemented using SWI-Prolog (Wielemaker et al. 2012), which allow
users to invert CHR programs as discussed in this paper; the tool can be found at: http://chr.
informatik.uni-ulm.de/inverter/.

The paper continues by presenting some preliminary background in Sections 2 and 3. Then the
inverse semantics of CHR and its simple execution are discussed in Section 4. This is followed
by an exhaustive execution mechanism for the inversion in Section 5. Finally the paper ends with
some concluding remarks in Section 6.

2 Related Work

Different approaches of program inversion have been investigated for various programming
paradigms. Functional languages have been a paradigm of many work, due to their high rela-
tion with mathematical functions. (Korf 1981) presented a technique for generating the inverse
function of a program written in a minimal subset of LISP. It presented a running example of
the inversion of a list. The language subset includes car, cdr, cons, cond and equal. Each
primitive program construct becomes inverted into a separate rule, moreover additional rules are
added to handle recursive and auxiliary function calls. Program constructs are easily inverted if
they are invertible functions (such as cons). Other non-invertible functions (such as cdr, car)
are inverted by the introduction of new variables, whose values can be sometimes determined by
solving the multiple simultaneous equations obtained for them.

The inverse computation of a first-order functional language can be performed by the universal
resolving algorithm (Abramov and Glück 2000; Abramov and Glück 2002). The algorithm has
three main steps. First a perfect process tree containing all possible computation paths is devel-
oped for the program with a partially specified input. Every node in the tree represents a state
of the program encoded within a configuration that includes a program term, an environment of
variable bindings and set of restrictions on the domain of the variables. Then a forward trace is
performed to generate a table of all input-output pairs from the perfect process tree, which is done
by following all the paths from the root to every terminal node. Given that all splits performed
in the tree are perfect, then the partitions performed for the input class are disjoint meaning that
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the computation is deterministic. The last step of the algorithm involves extracting the inverse of
a particular output. This is done by matching the given output against those in the input-output
table and hence obtaining the possible inputs.

A similar tree-based inversion technique was that of (Matsuda et al. 2010) which uses a
grammar-based approach to obtain the inverse of a program. The work states that every pro-
gram has a grammar, whose complexity characterizes how difficult it is to invert it. An inverse
can be derived by parsing the given output with respect to the corresponding unambiguous gram-
mar. A production tree is obtained from the output by parsing the grammar. Then according to
the correspondence, an evaluation tree of the program is generated from the production tree. The
environment used is reconstructed using the evaluation tree, hence recovering the input argu-
ments. The paper presents the grammar-based inversion with the class of regular tree grammars
as the presented case study, however the framework can be extended to other classes as well.

Declarative logic programs inherently support inversion (Sickel 1978). Relations are repre-
sented by predicates, where the arguments can represent the input and output parameters of a
function. The relations are defined declaratively, such that a function and its inverse are com-
putable by the same logic program. In this work, Prolog is used which implies that all built-in
predicates used would be reversible by nature.

(Shoham and McDermott 1984) presented three basic algorithms for function inversion, im-
plemented in Prolog but can be applied to any programming language with backtracking. The
algorithms are extensions of one another; they aim to inverse functions by interchanging the
input and output, thereby inverting the direction of knowledge. The algorithms involve revers-
ing the bodies of the encountered clauses and inverting basic arithmetic operations in an ad-hoc
manner. The paper included as an example the inversion of list sorting. However it was shown
that this technique cannot be used to invert all relations. Moreover an algorithm for redirection
of predicates using a breadth-first search of the computation tree was presented, however it was
demonstrated to be complete but impractical.

Most of the work on inverting imperative programs has focused on an incremental inverse. An
inversion technique for C was devised in (Biswas and Mall 1999) for debugging purposes, capa-
ble of a bidirectional execution of a C program. The language constructs are classified into five
different types, namely sequence statements, selection statements, iterative statements, unstruc-
tured statements and function call statements. Then similar to (Korf 1981), an inversion step is
devised for each statement type. A trace file that stores the program states during the forward ex-
ecution is created; it is required for statements that do not have a pure inverse. The trace file also
incorporates other information such as symbol tables and other needed references for iterative
and unstructured statements. Another imperative inversion attempt is presented in (Kanade et al.
2010), which was motivated to use program inversion for the representation dependence testing
of algorithms. An approach is devised to invert imperative programs by synthesizing an inverse
program that has a control-flow structure isomorphic to the original program using local inversion
(through symbolic equation solving) to invert loop-free code fragments. The inversion is done
by modifying the control flow of the input program with some reordering of statements. It works
for normalization programs (mapping from one value to another) including iterative programs
with arrays. Unknown variables get random assignments, then a constraint solver is invoked that
tries to find satisfying assignments. A similar approach was presented in (Hou et al. 2012) for
programs with arbitrary control flow and basic operations, which changed the inversion task to a
graph search problem. It operates by constructing a value search graph that represents recover-
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ability relationships between variable values. Special forward and backwards code is generated
for any program, which guides the execution in either direction.

The series of work presented in (Nishida et al. 2005; Nishida et al. 2007; Nishida and Vidal
2011) provides a two-phase inverse compiler that produces the inverse of term rewriting systems
(TRS). The first phase involves first classifying the given variables into givens and unknowns.
Then for every TRS rule an inverse rule is produced by swapping the right and left hand sides with
respect to the unknowns; conditionals are introduced for the new variables. Extra rules are also
introduced until all conditional parts are deterministic. The second phase involves performing
unraveling for the generated conditional TRSs, which means introducing new rules with fresh
variables for every conditional part. Amongst the examples presented in this work set is the
reverse of a list, which is also inverted in this paper.

With the exception of TRS, the operational semantics of all other languages reviewed is quite
different than that of Constraint Handling Rules (CHR). In fact, CHR is quite similar to con-
ditional TRS; however CHR contains more phenomena like the existence of global knowledge
through the built-in constraint store and local variables (Abdennadher et al. 1996). Moreover
propagation rules in CHR cannot be directly expressed in conditional TRS without introducing
non-termination (Abdennadher 1997).

3 Constraint Handling Rules

3.1 Syntax

Constraint Handling Rules (CHR) (Frühwirth 2009; Frühwirth and Raiser 2011) is a high-level,
committed-choice, constraint logic programming language. It consists of guarded rules that per-
form conditional transformation of multi-sets of constraints, known as a constraint store, until a
fixed point is reached. It utilizes built-in constraints which are predefined by the host language,
and other user-defined CHR constraints. User-defined constraints are defined by a functor/arity
pair, for example a/2 is a binary constraint of name a. A generalized CHR simpagation rule is
given as:

rule-id @ Hk \ Hr ⇔ G | Bb, Bc

where Hk is known as the kept head constraints and Hr as removed head constraints; both are
a conjunction of one or more CHR constraints. The rule consists of an optional conjunction of
host language constraints known as the guard and given by G. Following the partitioning | is
the body of the rule, and it consists of built-in constraints (Bb) and user-defined CHR constraints
(Bc). Every rule has an optional unique identifier preceding it given by rule id.

Two other types of rules exist which are special cases of the generalized simpagation rule,
namely simplification and propagation rules. The first having no kept head constraints simplify-
ing the head to the body, and the latter having no removed head constraints thereby just adding
constraints to the store, and are of the forms:

simpf-rule-id @ Hr ⇔ G | Bb, Bc

prop-rule-id @ Hk ⇒ G | Bb, Bc

3.2 Very Abstract Semantics

The very abstract semantics (ωva) of CHR is formulated as a state transition system, where a
transition corresponds to a rule application. States are goals, consisting of a conjunction of built-
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in and CHR constraints. An initial state is an arbitrary one and a final state is a terminal one
where no further transitions are possible. The commutative and associative properties hold for
the logical conjunctions of constraints in a state, enabling permutations of conjuncts.

Let P be a CHR program and CT be a constraint theory for the built-in constraints defined
by the host-language. The body of a rule B consists of both built-in constraints Bb and CHR
constraints Bc, moreover Hk,Hr are a conjunction of CHR constraints, G is a conjunction of
built-in constraints and C is a conjunction of both types of constraints. The non-deterministic
ωva semantics includes one transition rule, namely:

Apply
(Hk ∧Hr ∧C) 7→r

apply (Hk ∧G∧B∧C)

if there is an instance of a rule r in P with new local variables x̄ such that:
r @ Hk \ Hr⇔ G | B and CT |= ∀(C→∃x̄G)

Most implementations of CHR do not use this semantics as it is highly non-deterministic (Duck
et al. 2004). In contrast, compilers use the refined operational semantics which defines the order
of constraint execution and rule application.

3.3 Constraint Handling Rules with Disjunction

An extension to CHR which makes use of disjunction within the bodies of the CHR rules is
known as CHR∨ (Abdennadher and Schütz 1998). It incorporates the use of a backtracking search
to allow the invocation of different rule bodies. In the Prolog implementation of CHR, the use of
Prolog’s disjunction can be used in the body of the rules. Application of a transition rule, thus
generates a branching derivation. A generalized simpagation rule with two possible disjunctive
body constraints (B1∨B2) is of the form:

simpgV-rule-id @ Hk \ Hr ⇔ G | B1; B2

The extended transition system for CHR∨ operates on a disjunction of CHR states known as
a configuration: s1∨ s2∨ . . .∨ sn. The original apply transition is applicable on a single state. An
additional split transition is applicable to any configuration containing a disjunction. It leads to a
branching derivation entailing two states, where each state can be processed independently.

Split
((H1∨H2)∧C)∨S 7→∨ (H1∧C)∨ (H2∧C)∨S

4 Simple Inversion

This section includes an initial simple and naive attempt of the inversion of CHR. First the formal
semantics of the inversion of CHR is defined. Then a simulation of the inversion is described
whilst using the apply semantics, followed by illustrative examples at the end of the section.
CHR (Prolog) is used, thus the inversion of built-in constraints is ensured through the reversible
declarative nature of Prolog.
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4.1 Backwards Semantics

The apply transition of the very abstract semantics of CHR describes a forward rule application
on an initial state si to a final state s f . An inversion of this transition would be to define a transition
that transforms a final s f state to an initial si state. This transition is known as backwards, and
it is typically the same as the apply transition but with exchanging the left and right hand side
states of the transition.

Backwards
(Hk ∧G∧B∧C) 7→r

back (Hk ∧Hr ∧C)

if there is an instance of a rule r in P with new local variables x̄ such that:
r @ Hk \ Hr⇔ G | B and C T |= ∀(C→∃x̄G)

It is sometimes preferred to distinguish between types of body constraints; the relevance of
this will be explained later. Thus generic body constraints B can be rewritten as Bb and Bc. It
follows that the initial state of the backwards transition is rewritten as (Hk ∧G∧Bb∧Bc∧C).

4.2 Simulating Backwards

In this work the aim is to simulate the backwards transition using the abstract CHR semantics. In
other words, the result of the backwards transition will be achieved by only the apply transition.
The desired transition is the following:

(Hk ∧G∧Bb∧Bc∧C) 7→apply (Hk ∧Hr ∧C)

However if the transition is applied using the rule r, then the result obtained is not as desired.
Thus for this simulation transition to work, a reordering is necessitated in the rule applied. Fol-
lowing intuition and the manner of most inversion work on term-rewriting systems (Nishida et al.
2007), an inverse rule is generated by exchanging its left and right hand sides.

For simplification rules with only user constraints (Hr ⇔ G | Bc), an inverse rule would be:

inv-simpf @ Bc ⇔ G | Hr

If the body of the forward rule contains built-in constraints, these cannot be simply placed on the
left hand side of the inverse rule due to the syntax of CHR. These built-in body constraints can
be matched in the guard of the rule. Hence the inverse of a simplification rule (Hr ⇔ G | Bb,Bc)
is more correctly expressed as:

inv-simpf @ Bc ⇔ Bb,G | Hr

However with propagation rules, it is not possible to simply invert the rule sides. A simple
example to illustrate this with user-defined constraints a/0 and b/0:

forward @ a ==> b.

An initial state containing (a) produces a state (a,b). However an inverse program consisting
of the exchanged rule below, given a state (a,b) would result in the state (a,b,a) which is not
the initial state of the forward program.

incorrect-inverse @ b ==> a.

Thus a correct inverse of propagation rules can be achieved by a simpagation rule that removes
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the added constraints whilst retaining the left hand side ones. For this example the correct inverse
rule that uncovers the input (a) would be:

inverse @ a \ b <=> true.

Therefore the generic inverse of a propagation rule can be given as:

inv-prop @ Hk \ Bc ⇔ Bb,G | true

A simpagation rule is in fact a combination of both types of CHR rules. Thereby a combined
inverse r′ of a generalized simpagation rule is expressed as:

inv-simpg @ Hk \ Bc ⇔ Bb,G | Hr

The employment of this inverse rule inv-simpg (renamed as r′) with the apply transition on the
initial state of the backwards transition yields the following:
(Hk ∧G∧Bb∧Bc∧C)

7→r′
apply (Hk ∧Hr ∧G∧Bb∧G∧Bb∧C)

This resultant state can be reduced by idempotency of built-in constraints to the following state:
≡ (Hk ∧G∧Hr ∧Bb∧C)

The initial input state was (Hk ∧Hr ∧G) and that recovered by the backwards simulation is
(Hk ∧Hr ∧G∧Bb ∧C). It is easily noticeable that these two states are similar yet not the same.
The result of the simulation is more strict, containing more built-in constraints which could not
be removed or forgotten.

Similarly, the inversion of a generalized forward simpagation rule with a disjunctive body
would result in an inverse rule with disjunctive heads. This would be represented with two inverse
rules, one for every disjunct. Hence a forward rule of the form:

simpgV @ Hk \ Hr ⇔ G | (B1b,B1c); (B2b,B2c)

Exchanging the left and right hand sides of the rule, then splitting the disjunction of the heads,
results in the two rules:

inv1-simpgV @ Hk \ B1c ⇔ B1b,G | Hr

inv2-simpgV @ Hk \ B2c ⇔ B2b,G | Hr

4.3 Examples

In this subsection, the aim is to realize the simulation of the backwards transition and show
some examples. The inverse program is executed under a normal CHR executor system; which
is committed-choice, and executes rules top to bottom and explores goals left to right.

The process involves producing a reverse program which contains a rearranged inverse rule,
as described earlier, for every forward generalized simpagation rule as shown below.

inv-rule-id @ Hk \ Bc ⇔ Bb,G | Hr

If a forward simplification rule contains no CHR constraints in its body, then its inverse rule
would have no constraints on the left hand side. Implementation wise, this can be resolved by the
introduction of a dummy CHR constraint top/0 to the body of the forward rule, which results in
a valid inverse rule (usage will be shown in Example 4 in Subsection 5.2).

Example 1 (List reverse) – The reverse of a list is a typical problem whose inversion was
attempted in literature (Korf 1981; Nishida and Vidal 2011). It is a one-to-one function, which
can be easily inverted. A forward CHR program that performs the reversal of a list provided as a
constraint reverse/1 into a reversed list wrapped in a constraint out/1, can be given as:
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rule1 @ reverse(X) <=> reverse(X,[]).

rule2 @ reverse([X|Xs],Ys) <=> reverse(Xs,[X|Ys]).

rule3 @ reverse([],X) <=> out(X).

Applying the method described would produce the following inverse program:

inv-rule1 @ reverse(X,[]) <=> reverse(X).

inv-rule2 @ reverse(Xs,[X|Ys]) <=> reverse([X|Xs],Ys).

inv-rule3 @ out(X) <=> reverse([],X).

A sample run of a forward query reverse([1,2,3]) produces the result out([3,2,1]). Then
the result query out([3,2,1]) yields reverse([3,2,1]) with the inverse program.

A similar and more practical example is that of encrypting a list of elements using a Ceaser
cipher. The encryption program is written which maps list elements to their ciphers. The inverse
of this program would automatically decrypt a cipher to its original plain text. Due to limitation
of space, this application is available in the on-line inversion tool implemented.

Example 2 (Exchange sort) – The inversion of list sorting was investigated in (Shoham and
McDermott 1984) with the quick-sort algorithm. A typical CHR sort is the exchange sort, which
sorts numbers stored as constraints of the form a(Index,Value) by exchanging any pair of
elements that are in the incorrect order. This can be done with a single simplification rule:

esort @ a(I,V), a(J,W) <=> I>J, V<W | a(I,W), a(J,V).

The inverse rule becomes:

inv-esort @ a(I,W), a(J,V) <=> I>J, V<W | a(I,V), a(J,W).

A run of the forward program for a query a(0,6),a(1,2),a(2,4), would yield the result
a(0,2),a(1,4),a(2,6). A run of the inverse program for the previously generated result of
a(0,2),a(1,4),a(2,6), would produce a result a(0,6),a(1,4),a(2,2).

It is evident that the input uncovered by the inverse program is a possible solution but not the
exact one used in the forward run. In fact, the result shows the numbers in a descending order;
this is the worst-case scenario of the exchange sorting problem. However the inversion of a list
sorting algorithm, should produce all permutations of the list. Any permutation would produce
the same sorted result, it would be impossible to determine which one is the particular input of
the forward run. The sorting problem is in fact a many-to-one problem, hence its inverse should
be a one-to-many function. It is noticed that simple inversion is not sufficient for this inversion.
The reason being that the compiler execution strategy of CHR, invokes a committed-choice top
to bottom rule application, whilst exploring goals from left to right. This execution generates
only one single result, rather than uncovering the multiple possible inputs.

5 Exhaustive Inversion

As seen by the sorting example, the normal execution of inverse rules does not suffice to uncover
all possible inputs. The inversion of many-to-one functions (specially if their definition is of many
rules) is clearly non-deterministic; requiring a different execution strategy capable of exploring
all possible execution paths. In this work, the inverse programs are transformed to allow for an
exhaustive execution. The details of the exhaustive execution is provided in Subsection 5.1. Then
this transformation is applied on the simple inversion rules and illustrative examples are depicted
in Subsection 5.2.
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5.1 Exhaustive Execution

The operational semantics of the CHR compiler defines a committed-choice and depth-first ex-
ploration of the goals. A breadth-first execution strategy was implemented in (De Koninck et al.
2006) as a source-to-source transformation of an initial program to one with nodes and edges, al-
lowing different traversal strategies. In this work a different transformation is used, inspired from
conflict resolution (Frühwirth 2009). The transformation is adopted to facilitate the exploration
of different execution schemes for CHR. The original idea presented in the book is extended with
disjunction, such that every intermediate node in the traversal is a possible solution.

The transformation works by delaying the execution of the rule bodies. All rules with head
constraints that match the goal are collected in a rule-set list (using delay-ignore rules). A rule
(named collect) merges these lists, such that for any goal there is a set of all applicable rules.
Then once a rule is chosen from within a rule-set (using halt-fire and halt-choose rules),
the chosen rule is fired by applying its body (through its respective apply rule). All intermediate
goals are obtained using CHR∨ by introducing a disjunctive true in appropriate locations.

The left-hand side of a CHR rule which is needed to check for matching is encapsulated in
a rule/2 constraint containing lists of the heads kept and removed respectively. An additional
global constraint strategy/1 is used to decide on the execution strategy followed. ruleset is
a constraint used to collect all the applicable CHR rules in its argument list. fire is an auxiliary
constraint to trigger the start of the execution, and apply is a constraint that executes a chosen
rule by triggering the appropriate apply rule.

A normal execution would entail that any rule whose heads match would be a possible rule
and added to the rule-set. However, an exhaustive execution is desired which should consider
incomplete rule-sets. Hence this is achieved by a delay-ignore rule, which either adds the
current rule to the rule-set, or ignores this program rule.

Thus for every simpagation rule (Hk \ Hr ⇔ G | Bb, Bc), a pair of rules is introduced (one
to add/not-add the rule to the rule-set and the other in case the rule is chosen for application):

delay-ignore @ Hk, Hr ⇒ G | ruleset([rule(Hk,Hr)]); true.

apply @ Hk \ Hr, apply(rule(Hk,Hr)) ⇔ G | B.

To merge two rule-sets into one constraint, a generic rule is added to any translated program:

collect @ ruleset(L1), ruleset(L2) <=> append(L1,L2,L3), ruleset(L3).

During the execution of the rules contained in a rule-set, it is possible to either decide that
the current state is a solution, or that the rule-set is to be fired (through a local fireruleset
constraint). This is accomplished through the halt-fire rule.

halt-fire @ ruleset(L) \ fire <=> L\=[] | true; fireruleset.

Once the rule-set is to be executed, a rule must be chosen from the rule-set list; this is de-
termined by adding a choose/3. Then a chosen rule, might be either applied and the resultant
state be an intermediate state or that further application of the rule-set should be performed. This
necessitates the rule halt-choose shown below:

halt-choose @ fireruleset, ruleset(L)

<=> choose(L,R,L1), ruleset(L1), apply(R), (true; fireruleset).

The choice of a rule from a rule-set depends on the strategy(S) constraint. Thus to imple-
ment a breadth-first-traversal (where S = b f s) which extracts the first rule R from the rule-set L
with the remaining rules in L1, the following rule can be defined:

bfs @ strategy(S) \ choose(L,R,L1) <=> S = bfs | L=[R|L1].
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For a random execution of the rules (where S= rand), and given a predicate random select(R,
L, L1) (Wielemaker et al. 2012) which selects a random rule R from L with the remaining rules
in L1, then the following rule can be defined:

rand @ strategy(S) \ choose(L,R,L1) <=> S = rand | random_select(R,L,L1).

5.2 Implementation of Exhaustive Inverse

The exhaustive exploration of the inverse of a CHR program can be performed by combining the
simple inversion with the exhaustive execution transformation.

Step 1 - Exhaustive Version of the Inverse – Every forward rule r is transformed into two
rules, delay-ignore-r and apply-r. If one is to substitute the inverse rule constraints into the
exhaustive rules, then for any forward rule the following pair can be generated:

delay-ignore-r @ Hk,Bc ⇒ Bb,G | ruleset([rule(Hk,Bc)]); true.

apply-r @ Hk \ Bc, apply(rule(Hk,Bc)) ⇔ Bb,G | Hr.

Step 2 - Generic Rules – The generic collect, halt-fire and halt-choose rules, and the
required strategy exploration rule e.g. bfs or rand are added to the transformed program.

During the inverse execution, guards and body built-in constraints may contain variables that
are unbound yet. In this work, it is assumed that all built-in constraints used are bidirectional
and an internal solver is responsible for determining the values of these variables. Moreover, the
transformation is restricted to the class of range-restricted CHR rules.

Furthermore, a translator was implemented capable of transforming any ordinary CHR pro-
gram into an inverse CHR program, supporting simple inversion and exhaustive inversion with
breadth-first or random execution strategies. The translator can be found under: http://chr.
informatik.uni-ulm.de/inverter/.

Example 3 (Exchange sort revisited) – Accordingly, it follows to revisit the exchange sort
example and apply an exhaustive inversion with a breadth-first execution strategy (S = b f s).
Thus for the forward esort rule, two rules are generated:

delay-ignore-esort @ a(I,W), a(J,V) ==> I>J, V<W

| ruleset([rule([],[a(I,W),a(J,V)]]); true.

apply-esort @ a(I,W), a(J,V), apply(rule([],[a(I,W),a(J,V)]))

<=> I>J, V<W | a(I,V),a(J,W).

The same sample query is repeated, but rewriting it to include the exhaustive execution trigger
constraint, i.e. strategy(bfs),a(0,2),a(1,4),a(2,6),fire. It generates several results, which
form the complete set of all permutations. However there exists several redundancies; the inten-
sive use of disjunction produces several duplicate states which are revisited multiple times. The
inverse program is terminating, and the use of a breadth-first strategy covers the entire search
space. The reason for this is that the number of permutations of a list that yield a certain sorted
output is finite. Shown below are some of the possible inverses (duplicates are removed):

a(0,2),a(1,4),a(2,6);

a(0,6),a(2,2),a(1,4);

a(0,2),a(1,6),a(2,4);

a(0,6),a(1,4),a(2,2);

a(0,4),a(1,6),a(2,2); ...

Example 3 (Greatest Common Divisor) – The Euclidean algorithm for the computation of
the greatest common divisor for a multi-set of numbers represented by gcd/1 constraints, is
expressed in CHR as shown below (where eq/2 is a built-in equality constraint). This is a multi-
line program, hence the rule order of the inverse program would be interesting for observation.

http://chr.informatik.uni-ulm.de/inverter/
http://chr.informatik.uni-ulm.de/inverter/
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base @ gcd(0) <=> true.

gcd @ gcd(N) \ gcd(M) <=> 0<N, N=<M | L eq M-N, gcd(L).

The base case is a simplification rule with a body consisting of only built-in constraints and
requires special handling as explained earlier. The second rule is a normal simpagation rule. Ex-
haustive inversion transformation (S = b f s) is applied, hence the forward program is transformed
into the following four rules:
delay-ignore-base @ top ==> ruleset([rule([],[top])]); true.

apply-base @ top, apply(rule([],[top])) <=> gcd(0), top.

delay-ignore-gcd @ gcd(N), gcd(L)

==> L eq M-N, 0<N, N=<M | ruleset([rule([gcd(N)],[gcd(L)])]); true.

apply-gcd @ gcd(N) \ gcd(L),apply(rule([gcd(N)],[gcd(L)]))

<=> L eq M-N, 0<N, N=<M | gcd(M).

A typical run of the forward program to compute the greatest common divisor of three numbers
is given as:
?- gcd(12),gcd(8),gcd(4).

gcd(4).

Using the simple inversion method on an input query of gcd(4),top, results in an infinite
running depth-first traversal of the second inverse rule. Although no terminating result can be
achieved, an internal trace of the backwards search path followed would be:
?- gcd(4),top.

--> gcd(4),gcd(0) --> gcd(4),gcd(4) --> gcd(4),gcd(8) --> gcd(4),gcd(12) --> ...

Using a breadth-first execution strategy and taking the result of the forward run as an input for
the inverse program, yields the output depicted below (some lines have been trimmed to reduce
space).
?- strategy(bfs),gcd(4),top,fire.

gcd(4);

gcd(0),gcd(4);

gcd(4),gcd(4);

gcd(0),gcd(4),gcd(4);

gcd(8),gcd(0),gcd(4); ...

If a random execution strategy is used, it would allow the exploration of different possible
inverse execution paths, without being confined in a depth-first or breadth-first manner. Starting
from a query of one number, there are infinitely many possible inputs. Repeating the previous
query produces the different runs below, which give various different input queries with varying
number of input constraints:
?- strategy(rand),gcd(4),top,fire.

gcd(4);

gcd(0),gcd(4);

gcd(4),gcd(4);

gcd(8),gcd(4);

gcd(12),gcd(8); ...

?- strategy(rand),gcd(4),top,fire.

gcd(4);

gcd(0),gcd(4);

gcd(0),gcd(0),gcd(4);

gcd(4),gcd(0),gcd(4);

gcd(4),gcd(4),gcd(4); ...

?- strategy(rand),gcd(4),top,fire.

gcd(4);

gcd(0),gcd(4);

gcd(4),gcd(4);

gcd(8),gcd(4);

gcd(12),gcd(4);

gcd(0),gcd(12),gcd(4);

gcd(4),gcd(12),gcd(4);

gcd(0),gcd(4),gcd(12),gcd(4); ...

?- strategy(rand),gcd(4),top,fire.

...

gcd(4),gcd(8),gcd(0),gcd(4);

gcd(8),gcd(4),gcd(8),gcd(4);

gcd(8),gcd(8),gcd(8),gcd(4);

gcd(0),gcd(8),gcd(8),gcd(8),gcd(4);

gcd(8),gcd(8),gcd(8),gcd(8),gcd(4);

...
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6 Conclusion

Inverse execution is the process of computing backwards the inputs of a program starting from its
output. Many techniques have been researched for the inversion of functional languages, term-
rewriting systems and others. In the paper, inverse execution was attempted for CHR, which is a
novel model for this language.

The inversion technique devised is similar to that of term-rewriting systems (Nishida and Vidal
2011), in that the sides of the rules are exchanged. This idea is extended to accommodate for the
presence of CHR propagation rules. For every forward rule, an inverse rule is produced; such that
constraints removed by a forward rule are added by the inverse rule, those added by a forward
rule are removed by the inverse and those kept in the forward rule remain in the inverse rule.
The paper introduced two execution techniques for inverting programs, simple inversion and
exhaustive inversion. The simple inversion was accomplished under a normal CHR system. The
execution is performed in a depth-first manner (i.e. exploring goals left to right and rules top to
bottom), which yields a correct yet incomplete result. It was found effective to inverse one-to-one
functions, yet was limited to programs with only one rule.

However for many-to-one functions, an inverse would be of a one-to-many cardinality. A
second execution attempt, namely exhaustive inversion, was devised to ensure that all possible
inversion paths are explored hence uncovering all possible inputs. The technique is inspired from
a conflict resolution implementation (Frühwirth 2009) to handle the different paths of CHR rules
whilst utilizing the disjunction offered by CHR∨ (Abdennadher and Schütz 1998). Experiments
were performed with a breadth-first execution of the inverse tree and a random execution for
some extreme cases.

One-to-one functions are reversible, and the input can be obtained from a given output. On
the other hand, many-to-one functions are also reversible, but it is not possible to determine
which of the many inputs produced a certain output. Hence if the function has infinitely many
possibilities that yield a certain output, then the inverse program is non-terminating (such as
the G.C.D. problem). However, the list sorting problem is also a many-to-one function but the
number of input permutations of a list is finite; thus its inverse program is a terminating one.

This work revealed that exhaustive inversion becomes a search problem, hence its complexity
becomes exponential. As future work, the aim is to test the inversion approach on real exper-
imental data to check how it scales up. The examples chosen in this paper and those included
in the on-line tool are toy examples; serving as a proof of concept. However the intention is to
experiment with more large scale inversion problems, like the encryption/decryption of large text
files and further applications. The examples presented show that inversion might provide inter-
esting insights on problems from a different viewpoint; such as the observation that the simple
inverse of sorting yields the worst-case list, or that the inversion of the greatest common divisor
of a number yields a tree of all possible sets of numbers generating that divisor.

The exhaustive execution strategy used can be optimized by enhancing the use of disjunction
in the exhaustive execution and investigating other possible execution strategies. This future
optimization could reduce the number of redundancies obtained by revisiting some inverse states.
Alternatively, it could be valuable to substitute the exhaustive execution with that of the angelic
semantics (Martinez 2011). This semantics aims to explore all possible logical consequences, to
obtain a complete set of computed goals for an initial goal, however an operational semantics for
this work has not been published to date.
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ABDENNADHER, S. AND SCHÜTZ, H. 1998. CHR∨: A flexible query language. In Flexible Query An-
swering Systems. Lecture Notes in Computer Science, vol. 1495. Springer-Verlag, 1–14.
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FRÜHWIRTH, T. 2009. Constraint Handling Rules. Cambridge University Press.
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