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hen.de/�fruehwir/We des
ribe how 
onstraints are solved in 
onstraint logi
 programming. Todes
ribe the algorithms at a high, abstra
t level, we use Constraint HandlingRules (CHR), a de
larative language extension espe
ially designed for writing user-de�ned 
onstraints. CHR 
onsist of multi-headed guarded rules that rewrite 
on-straints into simpler ones until they are solved. In this arti
le, we assume somefamiliarity with Prolog.1 Introdu
tionThe advent of 
onstraints in logi
 programming is one of the rare 
ases wheretheoreti
al, pra
ti
al and 
ommer
ial aspe
ts of a programming language havebeen improved simultaneously. Constraint logi
 programming1;2;3;4;5 (CLP)
ombines the advantages of logi
 programming and 
onstraint solving. Inlogi
 programming languages like Prolog, problems are stated in a de
larativeway using rules to de�ne relations (predi
ates). Problems are solved by thebuilt-in logi
 programming engine using 
hronologi
al ba
ktra
k sear
h toexplore 
hoi
es. In 
onstraint solving, eÆ
ient spe
ial-purpose algorithms areemployed to solve sub-problems involving distinguished relations referred toas 
onstraints. A 
onstraint solver 
an thus be seen as inferen
e system.The solver supports some if not all of the basi
 operations on 
onstraints:solving (satisfa
tion), simpli�
ation, propagation, normalization, entailment(de
iding impli
ation) and optimization (
omputing \best" solutions).The idea of CLP is to solve problems by stating 
onstraints (
onditions,properties) whi
h must be satisi�ed by a solution of the problem. For example,
onsider a bi
y
le number lo
k. We forgot the �rst digit, but remember some
onstraints about it: The digit was an odd number, greater than 1, and nota prime number. Combining the pie
es of partial information expressed bythese 
onstraints (digit, greater than 1, odd, not prime) we are able to derivethat the digit we are looking for is "9".Sin
e the beginning of the 90ties, 
onstraint-based programming is 
om-mer
ially su

essful. The world-wide revenue generated by 
onstraint te
h-islip99-
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nology for 1996 was estimated to be on the order of 100 Million Dollars.Constraint handling rules (CHR)7;6 are a high-level language espe
iallydesigned for writing 
onstraint solvers. CHR are essentially a 
ommitted-
hoi
e language 
onsisting of multi-headed guarded rules that rewrite 
on-straints into simpler ones until they are solved. CHR 
an be seen of general-ization of the various CHIP 
onstru
ts8 for user-de�ned 
onstraints.CHR de�ne both simpli�
ation of and propagation over user-de�ned 
on-straints. Simpli�
ation repla
es 
onstraints by simpler 
onstraints while pre-serving logi
al equivalen
e (e.g. X>Y,Y>X <=> false). Propagation adds new
onstraints whi
h are logi
ally redundant but may 
ause further simpli�
ation(e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying the rules in
rementally solves
onstraints (e.g. A>B,B>C,C>A leads to false). With multiple heads and propa-gation rules, CHR provide two features whi
h are essential for non-trivial 
on-straint handling. These features are not present in the related general-purpose
on
urrent logi
 programming languages9, 
on
urrent 
onstraint languages10and ALPS languages11.Besides de�ning the behaviour of 
onstraints, CHR 
an be and have beenused as� general purpose 
on
urrent 
onstraint language with ask and tell,� as fairly eÆ
ient produ
tion rule system,� as a spe
ial kind of theorem prover,� in general as system 
ombining forward and ba
kward 
haining.CHR exist 
urrently in 7 implementations in several programming lan-guages (Prolog, LISP, OZ, Java). CHR have been used in dozens of proje
tsworldwide to en
ode dozens of 
onstraint solvers, in
luding new domains su
has terminologi
al, spatial and temporal reasoning.Overview of the Paper. First we introdu
e CHR by example. Thenwe will give syntax and simple semanti
s for CHR. We will illustrate how tosolve 
onstraints by using CHR to implement 
onstraint solvers for them. Wewill give an overview of several solvers ranging from Boolean and arithmeti
to terminologi
al and path-
onsistent 
onstraints.2 CHR by ExampleWe de�ne a user-de�ned 
onstraint for less-than-or-equal, =<, that 
an handlevariable arguments. The implementation will rely on synta
ti
al equality, =,whi
h is assumed to be a prede�ned (built-in) 
onstraint.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 2



reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR spe
ify how =< simpli�es and propagates as a 
onstraint. Theyimplement re
exivity, antisymmetry and transitivity in a straightforward way.CHR reflexivity states that X=<Y is logi
ally true, provided it is the 
asethat X=Y. This test forms the (optional) guard of a rule, a pre
ondition on theappli
ability of the rule. Hen
e, whenever we see the 
onstraint X=<X we 
ansimplify it to true. CHR antisymmetry means that if we �nd X=<Y as wellas Y=<X in the 
urrent 
onstraint, we 
an repla
e it by the logi
ally equivalentX=Y. Note the di�erent use of X=Y in the two rules: In the reflexivity rulethe equality is a pre
ondition (test) on the rule, while in the antisymmetryrule it is enfor
ed when the rule �res.The rules reflexivity and antisymmetry are simpli�
ation CHR. Therule transitivity propagates 
onstraints. It states that the 
onjun
tionX=<Y, Y=<Z implies X=<Z. Operationally, we add logi
al 
onsequen
es as aredundant 
onstraint. This kind of CHR is 
alled propagation CHR.Redundan
y from propagation CHR is useful, as the queryA=<B,C=<A,B=<C shows: The �rst two 
onstraints 
ause CHR transitivityto �re and add C=<B to the query. This new 
onstraint together with B=<Cmat
hes the head of CHR antisymmetry, X=<Y,Y=<X. So the two 
onstraintsare repla
ed by B=C. In general, mat
hing takes into a

ount the synta
ti
alequalities that are implied by built-in 
onstraints. The equality is appliedto the rest of the query, A=<B,C=<A, resulting in A=<B,B=<A where B=C.Therefore, sin
e the built-in 
onstraint B=C was added, CHR antisymmetryapplies to the 
onstraints A=<B,C=<A, resulting in A=B. The query 
ontainsno more inequalities, the simpli�
ation stops. The 
onstraint solver we builthas solved A=<B,C=<A,B=<C and produ
ed the answer A=B,B=C.3 Syntax and Semanti
sIn this se
tion we give syntax and simple semanti
s for CHR, for more detailedsemanti
s see12;6.A 
onstraint is 
onsidered to be a distinguished, spe
ial �rst-order predi-
ate (atomi
 formula). We use two disjoint sorts of predi
ate symbols for twodi�erent 
lasses of 
onstraints: One sort for built-in (prede�ned) 
onstraintsand one sort for CHR (user-de�ned) 
onstraints. Built-in 
onstraints are thosehandled by a prede�ned, given 
onstraint solver. Here we assume that thesynta
ti
 equality 
onstraint = and the trivial 
onstraints true and false areislip99-
hr: submitted to World S
ienti�
 on September 16, 1999 3



built-in. CHR 
onstraints are those de�ned by a CHR program.3.1 SyntaxThe syntax of CHR is reminis
ent of Prolog and GHC. It is de�ned by EBNFgrammar rules.De�nition 3.1 A CHR program is a �nite set of CHR. There are two mainkinds of CHR. A simpli�
ation CHR is of the form[Name '�'℄ Head '<=>' [Guard '|'℄ Body.a propagation CHR is of the form[Name '�'℄ Head '==>' [Guard '|'℄ Body.where the rule has an optional Name, the multi-head Head is a 
onjun
tionof CHR 
onstraints. The optional guard Guard is a 
onjun
tion of built-in
onstraints. The body Body is a 
onjun
tion of built-in and CHR 
onstraints.As in Prolog syntax, a 
onjun
tion is a sequen
e of 
onjun
ts separated by
ommata.3.2 Semanti
sThe de
larative semanti
s of a CHR program P is a 
onjun
tion of univer-sally quanti�ed logi
al formulas (one for ea
h rule) and a 
onsistent built{in
onstraint theory whi
h determines the meaning of the built{in 
onstraintsappearing in the program. The delarative reading of a rule relates heads andbody provided the guard is true. A simpli�
ation rule means that the headsare true if and only if the body is satis�ed. A propagation rule means thatthe body is true if the heads are true.The operational semanti
s 
an be des
ribed by a transition system. Herewe des
ribe it informally.A CHR 
onstraint is implemented as both 
ode and data in the 
onstraintstore, whi
h is a data stru
ture holding 
onstraints. Every time a CHR 
on-straint is posted (exe
uted) or woken (re
onsidered, re-exe
uted), it 
he
ksitself the appli
ability of the rules it appears in. Su
h a 
onstraint is 
alled(
urrently) a
tive.Heads. For ea
h rule, one of its heads is mat
hed against the 
onstraint.Mat
hing su

eeds if the 
onstraint is an instan
e of the head, i.e. the headserves as a pattern. If mat
hing su

eeded and a rule has more than onehead, the 
onstraint store is sear
hed for the 
onstraints that mat
h the otherheads. If the mat
hing su

eeds, the guard is exe
uted. Otherwise the nextrule is tried.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 4



Guard. A guard is a pre
ondition on the appli
ability of a rule. Theguard either su

eeds or fails. A guard su

eeds if the exe
ution su

eedswithout 
ausing an instantiation error and without tou
hing a variable fromthe heads. A variable is tou
hed if gets more 
onstrained by a built-in 
on-straint. If the guard su

eeds, the rule applies, one 
ommits to it and it �res.Otherwise it fails and the next rule is tried.Body. If the �ring CHR is a simpli�
ation rule, the mat
hed 
onstraintsare removed from the store and the body of the CHR is exe
uted. If the�ring CHR is a propagation rule the body of the CHR is exe
uted withoutremoving any 
onstraints. It is remembered that the propagation rule �red,so it will not �re again with the same 
onstraints. When the 
urrently a
tive
onstraint has not been removed, the next rule is tried.(Re-)Try. If all rules have been tried and the a
tive 
onstraint has notbeen removed, it suspends (waits, delays) until a variable o

urring in the
onstraint is tou
hed. Here suspension means that the 
onstraint is insertedinto the 
onstraint store as data. When a 
onstraint is woken, all its rules aretried again.We require that the rules are applied fairly, i.e. that every rule that is ap-pli
able is applied eventually. Fairness is respe
ted and trivial non-terminationis avoided by applying a propagation rule at most on
e to the same 
on-straints. A more 
omplex operational semanti
s that addresses these issues
an be found in12.4 Constraint SolversIn this se
tion we introdu
e 
onstraint solvers for Booleans (propositionallogi
), �nite interval domains in
remental path 
onsisten
y, temporal rea-soning, for solving linear polynomials and for terminologi
al reasoning. Fordetails on the 
onstraint solvers analysed here see7 and the CHR web pages:www.pst.informatik.uni-muen
hen.de/�fruehwir/
hr-intro.htmlWhile we 
annot - within the spa
e limitations - introdu
e ea
h 
onstraintdomain in detail, we still 
an give an idea how one implements it using CHR.The usual abstra
t formalism to des
ribe a 
onstraint system, i.e. inferen
erules, rewrite rules, sequents, formulas expressing axioms and theorems, 
anbe written as CHR in a straightforward way. Starting from this exe
utablespe
i�
ation, the rules 
an be re�ned and adapted to the spe
i�
s of theappli
ation.Note that any solver written with CHR will be determinate, in
rementaland 
on
urrent by nature. By \determinate" we mean that the user-de�nedsolver 
ommits to every 
onstraint simpli�
ation it makes. By \in
remen-islip99-
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tal" we mean that 
onstraints 
an be added to the 
onstraint store one at atime (without a�e
ting 
omputational 
ost). The rules 
an be applied 
on
ur-rently to di�erent 
onstraints, be
ause logi
ally 
orre
t CHR 
an only repla
e
onstraints by equivalent ones or add redundant 
onstraints.4.1 Boolean Algebra, Propositional Logi
The domain of Boolean 
onstraints in
ludes the 
onstants 0 for falsity, 1for truth and the usual logi
al 
onne
tives of propositional logi
, e.g. and,or, neg, imp, exor, modeled here as relations instead of fun
tions. We
an de�ne an and 
onstraint using value propagation, a spe
ial 
ase of ar

onsisten
y. For more sophisti
ated algorithms see13.and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the 
onstraint and(X,Y,Z), when it isknown that the �rst input argument X is 0, 
an be redu
ed to asserting thatthe output Z must be 0. Hen
e the query and(X,Y,Z),X=0 will result in X=0,Z=0.Example 4.1 Consider the predi
ate add taken from the well-known full-adder 
ir
uit. It adds three single digit binary numbers to produ
e a singlenumber 
onsisting of two digits:add(I1,I2,I3,O1,O2) <=>xor(I1,I2,X1), and(I1,I2,A1),xor(X1,I3,O2), and(I3,X1,A2),or(A1,A2,O1).The query add(I1,I2,I3,O1,O2),I3=0,O1=1 will redu
e toI3=0,O1=1,I1=1,I2=1,O2=0. The 
omputation pro
eeds as follows:Be
ause I3=0, the output A2 of the and-gate with input I3 must be 0. AsO1=1 and A2=0, the other input A1 of the or-gate must be 1. Be
ause A1 isalso the output of an and-gate, its inputs I1 and I2 must be both 1. Hen
ethe output X1 of the �rst xor-gate must be 0, and therefore also the outputO2 of the se
ond xor-gate must be 0. The query add(1,1,I3,O1,O2) redu
esto I3=O2,O1=1.islip99-
hr: submitted to World S
ienti�
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This example illustrated the power of this simple but in
omplete solver.In
ompleteness means that the solver is too weak dete
t unsatis�ability in all
ases. To a
hieve 
ompleteness, sear
h must be employed. This is done by try-ing to the values 0 or 1 for a variable, then by employing the 
onstraint solveragain. This is repeated till a solution 
onsisting only of synta
ti
 equalities isfound or unsatis�ability is dete
ted due to 
ontradi
ting variable bindings.4.2 Terminologi
al ReasoningTerminologi
al formalisms (aka des
ription logi
s) are used to represent theterminologi
al knowledge of a parti
ular problem domain on an abstra
t logi-
al level. To des
ribe this kind of knowledge, one starts with atomi
 
on
eptsand roles, and then de�nes new 
on
epts and their relationship in terms ofexisting 
on
epts and roles. Con
epts 
an be 
onsidered as unary relationssimilar to types. Roles 
orrespond to binary relations over obje
ts. Althoughthere is an established notation for terminologies, we use a more verbose syn-tax to help readers not familiar with the formalism.De�nition 4.1 Con
ept terms are de�ned indu
tively: Every 
on
ept (name)
 is a 
on
ept term. If s and t are 
on
ept terms and r is a role (name), thenthe following expressions are also 
on
ept terms:s and t (
onjun
tion), s or t (disjun
tion), nota s (
omplement),every r is s (value restri
tion), some r is s (exists-in restri
-tion).Obje
ts are 
onstants or variables. Let a, b be obje
ts, r a role, and 
 a
on
ept term. Then a : s is a membership assertion and (a; b) : r is a role-�llerassertion. An A-box is a 
onjun
tion of membership and role-�ller assertions.De�nition 4.2 A terminology (T-box) 
onsists of a �nite set of 
on
ept def-initions
 isa s,where 
 is a newly introdu
ed 
on
ept name and s is a 
on
ept term.Sin
e the 
on
ept 
 is new, it 
annot be de�ned in terms of itself, i.e. 
on-
ept de�nitions are a
y
li
 (non-re
ursive). This also implies that there are
on
epts without de�nition, they are 
alled primitive.Example 4.2 The domain of a 
on�guration appli
ation 
omprises at leastdevi
es, interfa
es, and 
on�gurations. The 
on
ept de�nitions express thatthese 
on
epts are disjoint:islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 7



interfa
e isa nota devi
e.
onfiguration isa nota (interfa
e or devi
e).Assume that a simple devi
e has at least one interfa
e. We introdu
e a role
onne
tor whi
h relates devi
es to interfa
es and employ the exists-in restri
-tion.simple devi
e isa devi
e and some 
onne
tor isinterfa
e.We introdu
e instan
es of devi
es and interfa
es as 
onstraints:p
:devi
e, rs231:interfa
e, (p
,rs231):
onne
torThe CHR 
onstraint solver for terminologies en
odes the T-box by rulesand the A-box as CHR 
onstraints, sin
e we want to solve problems over agiven terminology (T-box). A similar solver is des
ribed in14. The unfoldingand 
ompletion rules16 and the propagation rules15 for the 
onsisten
y testtranslate almost dire
tly to CHR _However, the former work does not providean in
remental algorithm and the latter does not simplify 
onstraints.The 
onsisten
y test of A-boxes simpli�es and propagates the assertionsin the A-box to make the knowledge more expli
it and looks for obvious
ontradi
tions (\
lashes") su
h as X : devi
e, X : nota devi
e. This isexpressed by the rule:I : nota S, I : S <=> false:The following simpli�
ation CHR show how the 
omplement operator nota
an be pushed towards to the leaves of a 
on
ept term:I : nota nota S <=> I : S.I : nota (S or T) <=> I : nota S and nota T.I : nota (S and T) <=> I : (nota S or nota T).I : nota (every R is S) <=> I : some R is nota S.I : nota some R is S <=> I : every R is nota S.An exists-in restri
tion generates a new variable that serves as a \witness" forthe restri
tion:I : some R is S <=> (I,J) : R, J : S.A value restri
tion has to be propagated to all role �llers:I : every R is S, (I,J) : R ==> J : S.islip99-
hr: submitted to World S
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The unfolding rules repla
e 
on
ept names by their de�nitions. For ea
h
on
ept de�nition C isa S two rules are introdu
ed:I : C <=> I : S.I : nota C <=> I : nota S.The 
onjun
tion rule generates two new, smaller assertions:I : S and T <=> I : S, I : T.The rules simplify terminologi
al 
onstraints until a normal form isrea
hed. The normal form is either false (in
onsistent) or 
ontains 
on-straints of the form I : C, I : nota C, I : S or T, I : every R is Sand (I,J) : R, where C is a primitive 
on
ept name. There are no 
lashesand the value restri
tion has been propagated to every obje
t. To a
hieve
ompleteness, sear
h must be employed. This is done by splitting I : S orT into two 
ases, I : S and I: T.4.3 Linear Polynomial EquationsThe initial motivation for introdu
ing 
onstraints in logi
 programming lan-guages (Prolog) was the non-de
larative nature of the built-in predi
ates forarithmeti
 
omputations. Therefore, from the very beginning, CLP languagesin
luded 
onstraint solving for linear polynomial equations and inequationsover reals (CLP(R)17) or rationals (Prolog-III18, CHIP8) adopting variantsof variable elimination alogrithms like Gaussian elimination and the Simplexalgorithm19. The theory underlying this 
onstraint system is that of real
losed �elds, whi
h 
overs linear and non-linear polynomials and was shownto be de
idable by Tarski.De�nition 4.3 A linear polynomial equation is of the form p+ b = 0 whereb is a 
onstant and the polynomial p is the sum of monomials of the formai � xi with 
oeÆ
ient ai 6= 0 and xi is a variable. Constants and 
oeÆ
ientsare numbers. Variables are totally ordered. In an equation a1 �x1+ : : :+an �xn + b = 0, variables appear in stri
tly des
ending order.In 
onstraint logi
 programming, 
onstraints are added in
rementally.Therefore we 
annot eliminate a variable in all other equations at on
e, butrather 
onsider the other equations one by one. A simple solved form 
anexhibit unsatis�ability: It is enough if the left-most variable of ea
h equationis the only left-most o

urren
e of this variable. Therefore the two rules be-low implement a 
omplete and eÆ
ient solver for linear equations over both
oating point numbers (to approximate real numbers) and rational numbers.islip99-
hr: submitted to World S
ienti�
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empty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>
ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.The empty rule says that if the polynomial 
ontains no more variables, the
onstant B must be zero. The eliminate rule performs variable elimination.It takes two equations that start with the same variable. The �rst equation isleft un
hanged, it is used to eliminate the o

urren
e of the 
ommon variablein the se
ond equation. The auxiliary built-in 
onstraint 
ompute simpli�esa polynomial arithmeti
 expression into a new polynomial. Note that novariable is made expli
it, i.e. no pivoting is performed. Any two equationswith the same �rst variable 
an rea
t with ea
h other. Therefore, the solveris highly 
on
urrent and distributed.The solver 
an be extended by a few rules to 
reate expli
it variablebindings, to make impli
it equalities between variables expli
it, to deal withinequations using sla
k variables as in the Simplex algorithm or fouriers algo-rithm.Non-linear polynomial 
onstraints appear e.g. in modelling physi
al pro-
esses and in geometri
 reasoning for spatial databases and robot motionplanning. To ta
kle non-linear polynomials, te
hniques like Groebner Basesover 
omplex numbers (CAL20) and Partial Cylindri
al Algebrai
 De
omposi-tion (RISC-CLP(Real)21) have been used. Another approa
h is to use intervalarithmeti
 as in CLP(BNR)22, Numeri
a23. This approa
h 
an basi
ally beseen as a sophisti
ated extension of �nite interval domains (des
ribed below)to the reals and to non-linear polynomials.4.4 Path Consisten
yIn this se
tion we introdu
e 
onstraint solvers that implement instan
es ofthe 
lassi
al arti�
ial intelligen
e algorithm of path 
onsisten
y to simplify
onstraint satisfa
tion problems24.De�nition 4.4 A binary 
onstraint network 
onsists of a set of variables anda set of (disjun
tive) binary 
onstraints between them. The network 
an berepresented by a dire
ted 
onstraint graph, where the nodes denote variablesand the ar
s are labeled by binary 
onstraints. Logi
ally, a network is a
onjun
tion of binary 
onstraints.De�nition 4.5 A disjun
tive binary 
onstraint 
xy between two variables Xand Y , also written X fr1; : : : ; rng Y , is a �nite disjun
tion (X r1 Y ) _ : : : _islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 10



(X rn Y ), where ea
h ri is a relation that is appli
able to X and Y . Theri are 
alled primitive 
onstraints. The 
onverse of a primitive 
onstraint rbetween X and Y is the primitive 
onstraint s that holds between Y and Xas a 
onsequen
e.For example, A f<g B;A f<;>g B;A f<;=; >g B are disjun
tive binary
onstraints 
AB between A and B. A f<gB is the same as A < B, A f<;>gBis the same as A 6= B. Finally, A f<;=; >g B does not impose any restri
tionson A and B, the 
onstraint is redundant. Usually, the number of primitive
onstraints is �nite and they are pairwise disjoint. We will asume this in thefollowing.De�nition 4.6 A network is path 
onsistent if for pairs of nodes (i; j) andall paths i� i1� i2 : : : in� j between them, the dire
t 
onstraint 
ij is at leastas tight than the indire
t 
onstraint along the path, i.e. the 
omposition of
onstraints 
ii1 
 : : :
 
inj along the path.It follows from the de�nition of path 
onsisten
y that we 
an interse
tthe dire
t and indire
t 
onstraint to arrive at a tighter dire
t 
onstraint. Letinterse
tion be denoted by the operator �. A graph is 
omplete if there is apair of ar
s, one in ea
h dire
tion, between every pair of nodes. If the graphunderlying the network is 
omplete it suÆ
es to repeatedly 
onsider pathsof length 2 at most: For ea
h triple of nodes (i; k; j) we repeatedly 
ompute
ij := 
ij � (
ik 
 
kj) until a �xpoint is rea
hed. This is the basi
 path
onsisten
y algorithm.Example 4.3 Given I � K ^ K � J ^ I � J and taking the triple (i; j; k),
ik 
 
kj results in I � J and the result of interse
ting it with 
ij is I = J .From (j; i; k) we get J = K (we 
an 
ompute 
ji as the 
onverse of 
ij). From(k; j; i) we get K = I . Another round of 
omputation 
auses no more 
hange,so the �xpoint is rea
hed with J = K ^ K = I .Sin
e path 
onsisten
y is an in
omplete algorithm, sear
h must be em-ployed by 
hoosing a primitive 
onstraint from a set of disjun
tive 
onstraints.Let the 
onstraint 
ij be represented by the CHR 
onstraint 
(I,J,C)where I and J are the variables and C is a set of primitive 
onstraints repre-senting 
. The basi
 operation of path 
onsisten
y, 
ij := 
ij � (
ik
 
kj), 
anbe implemented dire
tly by the rule:path_
onsisten
y �
(I,K,C1), 
(K,J,C2), 
(I,J,C3) <=>
omposition(C1,C2,C12), interse
tion(C12,C3,C123),C123=\=C3 |
(I,K,C1), 
(K,J,C2), 
(I,J,C123).islip99-
hr: submitted to World S
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The operations 
 and � are implemented by the built-in 
onstraints
omposition and interse
tion. Composition of disjun
tive 
onstraints 
anbe 
omputed by pairwise 
omposition of its primitive 
onstraints. Interse
tionfor disjun
tive 
onstraints 
an be implemented by set interse
tion. C123=�C3ensures that the newly produ
ed 
onstraint is di�erent to (and thus smallerthan) the previous one.Temporal ReasoningFollowing the framework of Meiri25, temporal reasoning is a 
onstraint satis-fa
tion problem about the lo
ation of temporal variables along the time lineusing path 
onsisten
y and ba
ktra
k sear
h. The framework integrates mostforms of temporal relations - qualitative and quantitative (metri
) over timepoints and intervals - by 
onsidering them as disjun
tive binary 
onstraints.We qui
kly introdu
e the temporal 
onstraints available.Qualitative Point Constraints26. Variables represent time points andthere are three primitive 
onstraints<;=; >. Composition of a 
onstraint withitself or equality yields the 
onstraint again, any other 
omposition yields theredundant 
onstraint.Quantitative Point Constraints27. The primitive 
onstraints restri
tthe distan
e of two time points X and Y to be in an interval a : b, i.e.a � (Y � X) � b, where a and b are signed numbers or 1. Note thatthere is an in�nite number of primitive quantitative 
onstraints and that they
an overlap. The 
omposition of the intervals a : b with 
 : d results in(a+ 
) : (b+ d), and the interse
tion in max(a; 
) : min(b; d).Interval Constraints28. There are 13 primitive 
onstraints possiblebetween two intervals, equality and 6 other relations with their 
onverses.These 
onstraints 
an be de�ned in terms of the end-points of the intervals.Let I=[X,Y℄, J=[U,V℄. Notationally, we abbreviate 
hains of (in)equalitiesbetween variables.I equals J if X=U<Y=V. I before J if X<Y<U<V.I during J if U<X<Y<V. I overlaps J if X<U<Y<V.I meets J if X<Y=U<V. I starts J if X=U<Y<V.I finishes J if U<X<Y=V.equals,after,
ontains,overlapped by,started by,finished by are the
onverses.Point - Interval Constraints25. There are 5 possible primitive 
on-straints between a point and an interval. Let X be a point, J = [U,V℄ aninterval.islip99-
hr: submitted to World S
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X pbefore J if X<U<V.X pafter J if U<V<X. X pduring J if U<X<V.X pstarts J if X=U<V. X pfinishes J if U<X=V.The 
onverses express interval-point 
onstraints.Relating Constraints of Di�erent Types29. Qualitative time point
onstraints 
an be mapped into quantitative point 
onstraints, while quanti-tative 
onstraints 
an only be approximated by qualitative 
onstraints. Points
an be represented by end-points of intervals and interval 
onstraints 
an beapproximated by 
onstraints on their endpoints. These mappings are used tosolve heterogeneous 
onstraints over the same variables.We 
an instantiate the generi
 path 
onsisten
y solver of the previous se
-tion by de�ning the interse
tion and 
omposition operations for the temporal
onstraints des
ribed above. The implementation is des
ribed in detail andwith variations in30.Example 4.4 The 
onstraints on intervals X, Y, Z
(X,Y,fpbefore,pstartsg), 
(X,Z,fpstarts,pduringg),
(Y,Z,fbefore,
ontains,afterg)
an be tightened by path 
onsisten
y to
(X,Y,fbeforeg), 
(Z,Y,fbeforeg), 
(X,Z,fstarts,duringg),while the 
onstraints on points U, V and on intervals Y, Z
(V,U,f0-1,3-4g), 
(U,Y,fpbefore,pstartsg),
(Z,V,fp
ontains,pstarted byg), 
(Y,Z,fbefore,
ontainsg)turn out to be in
onsistent.4.5 Finite domainsFinite domains appeared �rst in CHIP31, more re
ent and more advan
edCLP languages are 
lp(FD)32 and 

(FD)33. Sin
e integers are used as do-main, some arithmeti
 is possible. The theory underlying this 
onstraint do-main is Presburgers arithmeti
. It axiomatizes the linear fragment of integerarithmeti
 and is de
idable. The 
onstraint X in Dom means that the valuefor the variable X must be in the given �nite domain Dom. More pre
isely, ifDom is an� enumeration domain, Set, then X is an integer in the set Set,� interval domain, Min:Max, then X is an integer between Min and Max.islip99-
hr: submitted to World S
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The di�eren
e between an interval domain and an enumeration domain isthat in the former 
onstraint simpli�
ation is performed only on the intervalbounds, while in the latter 
onstraint simpli�
ation is performed on ea
helement in the enumeration. Thus enumeration domains allow more 
onstraintsimpli�
ation but on the other hand are only tra
table for suÆ
iently smallenumerations.For spa
e limitations, we only 
onsider interval domains here. The follow-ing rules implement an ar
 
onsisten
y algorithm for interval 
onstraints. Ar

onsisten
y 
an be seen as spe
ial 
ase of path 
onsisten
y, where all but one
onstraint is unary instead of binary. Like path 
onsisten
y, this algorithmis in
omplete. Sear
h 
an be employed for 
ompleteness by 
hoosing valuesfrom the intervals or by splitting them.% Intervalsin
onsistent � X in A:B <=> A>B | false.interse
tion � X in A:B, X in C:D <=> X in max(A,C):min(B,D).% (In)equalitiesle � X le Y, X in A:B, Y in C:D <=> B>D |X le Y, X in A:D, Y in C:D.le � X le Y, X in A:B, Y in C:D <=> C<A |X le Y, X in A:B, Y in A:D.eq � X eq Y, X in A:B, Y in C:D <=> A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.eq � X eq Y, X in A:B, Y in C:D <=> B=\=D |X eq Y, X in A:min(B,D), Y in C:min(D,B).% Addition X+Y=Zadd � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>not (A>=E-D,B=<F-C, C>=E-B,D=<F-A, E>=A+C,F=<B+D) |add(X,Y,Z), X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).The guards ensure that a rule is only applied if at least one interval getssmaller. For example, givenA in 1:3, B in 2:4, C in 0:4, add(A,B,C)the add rule adds the interval 
onstraintsA in -1:2, B in 0:3, C in 3:7islip99-
hr: submitted to World S
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and after some interse
tion we arrive at:add(A,B,C), A in 1:2, B in 2:3, C in 3:4The rules above 
an be modi�ed to work for intervals of real numbers: Toavoid non-termination, intervals that are too small are not 
onsidered by therules anymore.5 Con
lusionsWe des
ribed how 
onstraints are solved in 
onstraint logi
 programming. Todes
ribe the algorithms at a high, abstra
t level, we used Constraint HandlingRules (CHR), a de
larative language extension espe
ially designed for writinguser-de�ned 
onstraints.While existing solvers are usually about datastru
tures and their opera-tions (e.g. �nite domains, Booleans, numbers), CHR open the way for moregeneri
 (e.g. path 
onsisten
y) and more 
on
eptual 
onstraint solvers (e.g.temporal, spatial and terminologi
al reasoning). Indeed, CHR have been usedsu

essfully in 
hallenging appli
ations, where other existing CLP systems
ould not be applied with the same results in terms of simpli
ity, 
exibilityand eÆ
ien
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