CONSTRAINT SOLVING WITH CONSTRAINT HANDLING
RULES

THOM FRUHWIRTH
Institut fur Informatik, Ludwig-Mazimilians-Universitat (LMU)
Oettingenstrasse 67, D-80538 Munich, Germany
fruehwir@informatik.uni-muenchen.de
www.pst.informatik.uni-muenchen.de/~ fruehwir/

We describe how constraints are solved in constraint logic programming. To
describe the algorithms at a high, abstract level, we use Constraint Handling
Rules (CHR), a declarative language extension especially designed for writing user-
defined constraints. CHR consist of multi-headed guarded rules that rewrite con-
straints into simpler ones until they are solved. In this article, we assume some
familiarity with Prolog.

1 Introduction

The advent of constraints in logic programming is one of the rare cases where
theoretical, practical and commercial aspects of a programming language have
been improved simultaneously. Constraint logic programming'-?>%° (CLP)
combines the advantages of logic programming and constraint solving. In
logic programming languages like Prolog, problems are stated in a declarative
way using rules to define relations (predicates). Problems are solved by the
built-in logic programming engine using chronological backtrack search to
explore choices. In constraint solving, efficient special-purpose algorithms are
employed to solve sub-problems involving distinguished relations referred to
as constraints. A constraint solver can thus be seen as inference system.
The solver supports some if not all of the basic operations on constraints:
solving (satisfaction), simplification, propagation, normalization, entailment
(deciding implication) and optimization (computing “best” solutions).

The idea of CLP is to solve problems by stating constraints (conditions,
properties) which must be satisified by a solution of the problem. For example,
consider a bicycle number lock. We forgot the first digit, but remember some
constraints about it: The digit was an odd number, greater than 1, and not
a prime number. Combining the pieces of partial information expressed by
these constraints (digit, greater than 1, odd, not prime) we are able to derive
that the digit we are looking for is ”9”.

Since the beginning of the 90ties, constraint-based programming is com-
mercially successful. The world-wide revenue generated by constraint tech-
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nology for 1996 was estimated to be on the order of 100 Million Dollars.

Constraint handling rules (CHR)™® are a high-level language especially
designed for writing constraint solvers. CHR are essentially a committed-
choice language consisting of multi-headed guarded rules that rewrite con-
straints into simpler ones until they are solved. CHR can be seen of general-
ization of the various CHIP constructs® for user-defined constraints.

CHR define both simplification of and propagation over user-defined con-
straints. Simplification replaces constraints by simpler constraints while pre-
serving logical equivalence (e.g. X>Y,Y>X <=> false). Propagation adds new
constraints which are logically redundant but may cause further simplification
(e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying the rules incrementally solves
constraints (e.g. A>B,B>C,C>A leads to false). With multiple heads and propa-
gation rules, CHR provide two features which are essential for non-trivial con-
straint handling. These features are not present in the related general-purpose
concurrent logic programming languages®, concurrent constraint languages'®
and ALPS languages'?.

Besides defining the behaviour of constraints, CHR can be and have been
used as

e general purpose concurrent constraint language with ask and tell,
e as fairly efficient production rule system,

e as a special kind of theorem prover,

e in general as system combining forward and backward chaining.

CHR exist currently in 7 implementations in several programming lan-
guages (Prolog, LISP, OZ, Java). CHR have been used in dozens of projects
worldwide to encode dozens of constraint solvers, including new domains such
as terminological, spatial and temporal reasoning.

Overview of the Paper. First we introduce CHR by example. Then
we will give syntax and simple semantics for CHR. We will illustrate how to
solve constraints by using CHR. to implement, constraint solvers for them. We
will give an overview of several solvers ranging from Boolean and arithmetic
to terminological and path-consistent constraints.

2 CHR by Example

We define a user-defined constraint for less-than-or-equal, =<, that can handle
variable arguments. The implementation will rely on syntactical equality, =,
which is assumed to be a predefined (built-in) constraint.
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reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ X=<Y,Y=<X <=> X=Y.
transitivity @ X=<Y,Y=<Z ==> X=<Z.

The CHR specify how =< simplifies and propagates as a constraint. They
implement reflexivity, antisymmetry and transitivity in a straightforward way.
CHR reflexivity states that X=<Y is logically true, provided it is the case
that X=Y. This test forms the (optional) guard of a rule, a precondition on the
applicability of the rule. Hence, whenever we see the constraint X=<X we can
simplify it to true. CHR antisymmetry means that if we find X=<Y as well
as Y=<X in the current constraint, we can replace it by the logically equivalent
X=Y. Note the different use of X=Y in the two rules: In the reflexivity rule
the equality is a precondition (test) on the rule, while in the antisymmetry
rule it is enforced when the rule fires.

The rules reflexivity and antisymmetry are simplification CHR. The
rule transitivity propagates constraints. It states that the conjunction
X=<Y, Y=<Z implies X=<Z. Operationally, we add logical consequences as a
redundant constraint. This kind of CHR is called propagation CHR.

Redundancy from propagation CHR is wuseful, as the query
A=<B,C=<A,B=<C shows: The first two constraints cause CHR transitivity
to fire and add C=<B to the query. This new constraint together with B=<C
matches the head of CHR antisymmetry, X=<Y,Y=<X. So the two constraints
are replaced by B=C. In general, matching takes into account the syntactical
equalities that are implied by built-in constraints. The equality is applied
to the rest of the query, A=<B,C=<A, resulting in A=<B,B=<A where B=C.
Therefore, since the built-in constraint B=C was added, CHR antisymmetry
applies to the constraints A=<B,C=<A, resulting in A=B. The query contains
no more inequalities, the simplification stops. The constraint solver we built
has solved A=<B,C=<A,B=<C and produced the answer A=B,B=C.

3 Syntax and Semantics

In this section we give syntax and simple semantics for CHR, for more detailed
semantics see!2:6,

A constraint is considered to be a distinguished, special first-order predi-
cate (atomic formula). We use two disjoint sorts of predicate symbols for two
different classes of constraints: One sort for built-in (predefined) constraints
and one sort for CHR (user-defined) constraints. Built-in constraints are those
handled by a predefined, given constraint solver. Here we assume that the
syntactic equality constraint = and the trivial constraints true and false are
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built-in. CHR, constraints are those defined by a CHR program.

3.1 Syntaz

The syntax of CHR is reminiscent of Prolog and GHC. It is defined by EBNF
grammar rules.

Definition 3.1 A CHR program is a finite set of CHR. There are two main
kinds of CHR. A simplification CHR is of the form

[Name ’@’] Head ’<=>’ [Guard ’|’] Body.
a propagation CHR is of the form
[Name ’@’] Head ’==>’ [Guard ’|’] Body.

where the rule has an optional Name, the multi-head Head is a conjunction
of CHR constraints. The optional guard Guard is a conjunction of built-in
constraints. The body Body is a conjunction of built-in and CHR. constraints.
As in Prolog syntax, a conjunction is a sequence of conjuncts separated by
commata.

3.2 Semantics

The declarative semantics of a CHR program P is a conjunction of univer-
sally quantified logical formulas (one for each rule) and a consistent built—in
constraint theory which determines the meaning of the built—in constraints
appearing in the program. The delarative reading of a rule relates heads and
body provided the guard is true. A simplification rule means that the heads
are true if and only if the body is satisfied. A propagation rule means that
the body is true if the heads are true.

The operational semantics can be described by a transition system. Here
we describe it informally.

A CHR constraint is implemented as both code and data in the constraint
store, which is a data structure holding constraints. Every time a CHR. con-
straint is posted (executed) or woken (reconsidered, re-executed), it checks
itself the applicability of the rules it appears in. Such a constraint is called
(currently) active.

Heads. For each rule, one of its heads is matched against the constraint.
Matching succeeds if the constraint is an instance of the head, i.e. the head
serves as a pattern. If matching succeeded and a rule has more than one
head, the constraint store is searched for the constraints that match the other
heads. If the matching succeeds, the guard is executed. Otherwise the next
rule is tried.
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Guard. A guard is a precondition on the applicability of a rule. The
guard either succeeds or fails. A guard succeeds if the execution succeeds
without causing an instantiation error and without touching a variable from
the heads. A variable is touched if gets more constrained by a built-in con-
straint. If the guard succeeds, the rule applies, one commits to it and it fires.
Otherwise it fails and the next rule is tried.

Body. If the firing CHR is a simplification rule, the matched constraints
are removed from the store and the body of the CHR is executed. If the
firing CHR is a propagation rule the body of the CHR is executed without
removing any constraints. It is remembered that the propagation rule fired,
so it will not fire again with the same constraints. When the currently active
constraint has not been removed, the next rule is tried.

(Re-)Try. If all rules have been tried and the active constraint has not
been removed, it suspends (waits, delays) until a variable occurring in the
constraint is touched. Here suspension means that the constraint is inserted
into the constraint store as data. When a constraint is woken, all its rules are
tried again.

We require that the rules are applied fairly, i.e. that every rule that is ap-
plicable is applied eventually. Fairness is respected and trivial non-termination
is avoided by applying a propagation rule at most once to the same con-
straints. A more complex operational semantics that addresses these issues
can be found in'2.

4 Constraint Solvers

In this section we introduce constraint solvers for Booleans (propositional
logic), finite interval domains incremental path consistency, temporal rea-
soning, for solving linear polynomials and for terminological reasoning. For
details on the constraint solvers analysed here see” and the CHR web pages:
www.pst.informatik.uni-muenchen.de/~fruehwir/chr-intro.html

While we cannot - within the space limitations - introduce each constraint
domain in detail, we still can give an idea how one implements it using CHR.
The usual abstract formalism to describe a constraint system, i.e. inference
rules, rewrite rules, sequents, formulas expressing axioms and theorems, can
be written as CHR in a straightforward way. Starting from this executable
specification, the rules can be refined and adapted to the specifics of the
application.

Note that any solver written with CHR will be determinate, incremental
and concurrent by nature. By “determinate” we mean that the user-defined
solver commits to every constraint simplification it makes. By “incremen-
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tal” we mean that constraints can be added to the constraint store one at a
time (without affecting computational cost). The rules can be applied concur-
rently to different constraints, because logically correct CHR. can only replace
constraints by equivalent ones or add redundant constraints.

4.1 Boolean Algebra, Propositional Logic

The domain of Boolean constraints includes the constants 0 for falsity, 1
for truth and the usual logical connectives of propositional logic, e.g. and,
or, neg, imp, exor, modeled here as relations instead of functions. We
can define an and constraint using value propagation, a special case of arc

consistency. For more sophisticated algorithms see!3.

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and(X,Y,Z) <=> X=1 | Y=Z.
and(X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,Z) <=> Z=1 | X=1,Y=1.
and(X,Y,Z) <=> X=Y | Y=Z.

For example, the first rule says that the constraint and(X,Y,Z), when it is
known that the first input argument X is 0, can be reduced to asserting that
the output Z must be 0. Hence the query and (X,Y,Z) ,X=0 will result in X=0,
Z=0.

Example 4.1 Consider the predicate add taken from the well-known full-
adder circuit. It adds three single digit binary numbers to produce a single
number consisting of two digits:

add(I1,I12,I3,01,02) <=>
xor (I1,I2,X1), and(I1,I2,A1),
xor(X1,I3,02), and(I3,X1,A2),
or(A1,A2,01).

The query add(11,12,13,01,02),I3=0,01=1 will reduce to
I3=0,01=1,I1=1,I2=1,02=0. The computation proceeds as follows:
Because 13=0, the output A2 of the and-gate with input I3 must be 0. As
01=1 and A2=0, the other input A1 of the or-gate must be 1. Because A1 is
also the output of an and-gate, its inputs I1 and I2 must be both 1. Hence
the output X1 of the first xor-gate must be 0, and therefore also the output
02 of the second xor-gate must be 0. The query add(1,1,13,01,02) reduces
to I3=02,01=1.
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This example illustrated the power of this simple but incomplete solver.
Incompleteness means that the solver is too weak detect unsatisfiability in all
cases. To achieve completeness, search must be employed. This is done by try-
ing to the values 0 or 1 for a variable, then by employing the constraint solver
again. This is repeated till a solution consisting only of syntactic equalities is
found or unsatisfiability is detected due to contradicting variable bindings.

4.2 Terminological Reasoning

Terminological formalisms (aka description logics) are used to represent the
terminological knowledge of a particular problem domain on an abstract logi-
cal level. To describe this kind of knowledge, one starts with atomic concepts
and roles, and then defines new concepts and their relationship in terms of
existing concepts and roles. Concepts can be considered as unary relations
similar to types. Roles correspond to binary relations over objects. Although
there is an established notation for terminologies, we use a more verbose syn-
tax to help readers not familiar with the formalism.

Definition 4.1 Concept terms are defined inductively: Every concept (name)
¢ is a concept term. If s and ¢ are concept terms and r is a role (name), then
the following expressions are also concept terms:

s and t (conjunction), s or t (disjunction), nota s (complement),

every r is s (value restriction), some r is s (exists-in restric-
tion).

Objects are constants or variables. Let a, b be objects, r a role, and ¢ a
concept term. Then a : s is a membership assertion and (a, b) : r is a role-filler
assertion. An A-box is a conjunction of membership and role-filler assertions.

Definition 4.2 A terminology (T-box) consists of a finite set of concept def-
imnitions
c isa s,

where ¢ is a newly introduced concept name and s is a concept term.

Since the concept ¢ is new, it cannot be defined in terms of itself, i.e. con-
cept definitions are acyclic (non-recursive). This also implies that there are
concepts without definition, they are called primitive.

Example 4.2 The domain of a configuration application comprises at least
devices, interfaces, and configurations. The concept definitions express that
these concepts are disjoint:
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interface isa nota device.
configuration isa nota (interface or device).

Assume that a simple device has at least one interface. We introduce a role
connector which relates devices to interfaces and employ the exists-in restric-
tion.

simple_ device isa device and some connector is
interface.

We introduce instances of devices and interfaces as constraints:
pc:device, rs231:interface, (pc,rs231):connector

The CHR constraint solver for terminologies encodes the T-box by rules
and the A-box as CHR constraints, since we want to solve problems over a
given terminology (T-box). A similar solver is described in'4. The unfolding
and completion rules'® and the propagation rules'® for the consistency test
translate almost directly to CHRHowever, the former work does not provide
an incremental algorithm and the latter does not simplify constraints.

The consistency test of A-boxes simplifies and propagates the assertions
in the A-box to make the knowledge more explicit and looks for obvious
contradictions (“clashes”) such as X : device, X : nota device. This is
expressed by the rule:

I : nota S, I : S <=> false.

The following simplification CHR show how the complement operator nota
can be pushed towards to the leaves of a concept term:

: notanota S <=> I : S.

: nota (S or T) <=> I : nota S and nota T.

: nota (S and T) <=> I : (nota S or nota T).

: nota (every R is S) <=> I : some R is nota S.
: nota some R is S <=> I : every R is nota S.

HHHHH

An exists-in restriction generates a new variable that serves as a “witness” for
the restriction:

I: someRisS <=> (I,J) : R, J: S.
A value restriction has to be propagated to all role fillers:

I: everyRis S, (I,J) : R ==> J : S.
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The unfolding rules replace concept names by their definitions. For each
concept definition C isa S two rules are introduced:

I :C <= 1I:S.
I : notaC <=> I : nota S.

The conjunction rule generates two new, smaller assertions:
I : Sand T <=> I :8S, I : T.

The rules simplify terminological constraints until a normal form is
reached. The normal form is either false (inconsistent) or contains con-
straints of the form I : C, I : nota C, I : Sor T, I : every R is S
and (I,J) : R, where C is a primitive concept name. There are no clashes
and the value restriction has been propagated to every object. To achieve
completeness, search must be employed. This is done by splitting I : S or
T into two cases, I : Sand I: T.

4.8 Linear Polynomial Equations

The initial motivation for introducing constraints in logic programming lan-
guages (Prolog) was the non-declarative nature of the built-in predicates for
arithmetic computations. Therefore, from the very beginning, CLP languages
included constraint solving for linear polynomial equations and inequations
over reals (CLP(R)!") or rationals (Prolog-IIT'%, CHIP®) adopting variants
of variable elimination alogrithms like Gaussian elimination and the Simplex
algorithm!'®?. The theory underlying this constraint system is that of real
closed fields, which covers linear and non-linear polynomials and was shown
to be decidable by Tarski.

Definition 4.3 A linear polynomial equation is of the form p + b = 0 where
b is a constant and the polynomial p is the sum of monomials of the form
a; * x; with coefficient a; # 0 and z; is a variable. Constants and coefficients
are numbers. Variables are totally ordered. In an equation ay * x1 + ...+ an *
x, + b =0, variables appear in strictly descending order.

In constraint logic programming, constraints are added incrementally.
Therefore we cannot eliminate a variable in all other equations at once, but
rather consider the other equations one by one. A simple solved form can
exhibit unsatisfiability: It is enough if the left-most variable of each equation
is the only left-most occurrence of this variable. Therefore the two rules be-
low implement a complete and efficient solver for linear equations over both
floating point numbers (to approximate real numbers) and rational numbers.
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empty @ B eq 0 <=> number(B) | B=0.

eliminate @

A1*X+P1 eq 0, A2*xX+P2 eq 0 <=>
compute (P2+P1%xA2/A1,P3),
A1xX+P1 eq O, P3 eq O.

The empty rule says that if the polynomial contains no more variables, the
constant B must be zero. The eliminate rule performs variable elimination.
It takes two equations that start with the same variable. The first equation is
left unchanged, it is used to eliminate the occurrence of the common variable
in the second equation. The auxiliary built-in constraint compute simplifies
a polynomial arithmetic expression into a new polynomial. Note that no
variable is made explicit, i.e. no pivoting is performed. Any two equations
with the same first variable can react with each other. Therefore, the solver
is highly concurrent and distributed.

The solver can be extended by a few rules to create explicit variable
bindings, to make implicit equalities between variables explicit, to deal with
inequations using slack variables as in the Simplex algorithm or fouriers algo-
rithm.

Non-linear polynomial constraints appear e.g. in modelling physical pro-
cesses and in geometric reasoning for spatial databases and robot motion
planning. To tackle non-linear polynomials, techniques like Groebner Bases
over complex numbers (CAL2??) and Partial Cylindrical Algebraic Decomposi-
tion (RISC-CLP(Real)?!) have been used. Another approach is to use interval
arithmetic as in CLP(BNR)?2, Numerica?3. This approach can basically be
seen as a sophisticated extension of finite interval domains (described below)
to the reals and to non-linear polynomials.

4.4 Path Consistency

In this section we introduce constraint solvers that implement instances of
the classical artificial intelligence algorithm of path consistency to simplify
constraint satisfaction problems?*.

Definition 4.4 A binary constraint network consists of a set of variables and
a set of (disjunctive) binary constraints between them. The network can be
represented by a directed constraint graph, where the nodes denote variables
and the arcs are labeled by binary constraints. Logically, a network is a
conjunction of binary constraints.

Definition 4.5 A disjunctive binary constraint c,, between two variables X
and Y, also written X {ry,...,r,} Y, is a finite disjunction (X r; V)V ...V
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(X r, Y), where each r; is a relation that is applicable to X and Y. The
r; are called primitive constraints. The converse of a primitive constraint r
between X and Y is the primitive constraint s that holds between Y and X
as a consequence.

For example, A {<} B, A {<,>} B,A {<,=,>} B are disjunctive binary
constraints c4p between A and B. A {<} Bisthesameas A < B, A{<,>} B
is the same as A # B. Finally, A {<,=,>} B does not impose any restrictions
on A and B, the constraint is redundant. Usually, the number of primitive
constraints is finite and they are pairwise disjoint. We will asume this in the
following.

Definition 4.6 A network is path consistent if for pairs of nodes (7, j) and
all paths ¢ —i; —42 .. .4, —j between them, the direct constraint c;; is at least
as tight than the indirect constraint along the path, i.e. the composition of
constraints ¢;;, ® ... ® ¢;, ; along the path.

It follows from the definition of path consistency that we can intersect
the direct and indirect constraint to arrive at a tighter direct constraint. Let
intersection be denoted by the operator ®. A graph is complete if there is a
pair of arcs, one in each direction, between every pair of nodes. If the graph
underlying the network is complete it suffices to repeatedly consider paths
of length 2 at most: For each triple of nodes (i, k, j) we repeatedly compute
cij = ¢ij ® (cir ® c;) until a fixpoint is reached. This is the basic path
consistency algorithm.

Example 4.3 Given I < K A K < J A I > J and taking the triple (i, j, k),
cir, ® c; results in I < J and the result of intersecting it with ¢;; is I = J.
From (7,1, k) we get J = K (we can compute c¢;j; as the converse of ¢;;). From
(k,j,i) we get K = I. Another round of computation causes no more change,
so the fixpoint is reached with J =K A K =1.

Since path consistency is an incomplete algorithm, search must be em-
ployed by choosing a primitive constraint from a set of disjunctive constraints.

Let the constraint c;; be represented by the CHR constraint c(I,J,C)
where I and J are the variables and C is a set of primitive constraints repre-
senting c. The basic operation of path consistency, ¢;; 1= ¢;; ® (cir ® cxj), can
be implemented directly by the rule:

path_consistency @

c(I,K,C1), c(K,J,C2), c(I,J,C3) <=>
composition(C1,C2,C12), intersection(C12,C3,C123),
C123=\=C3 |
c(1I,K,C1), c(K,J,C2), c(I,J,C123).
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The operations ® and @ are implemented by the built-in constraints
composition and intersection. Composition of disjunctive constraints can
be computed by pairwise composition of its primitive constraints. Intersection
for disjunctive constraints can be implemented by set intersection. C123=C3
ensures that the newly produced constraint is different to (and thus smaller
than) the previous one.

Temporal Reasoning

Following the framework of Meiri?®, temporal reasoning is a constraint satis-
faction problem about the location of temporal variables along the time line
using path consistency and backtrack search. The framework integrates most
forms of temporal relations - qualitative and quantitative (metric) over time
points and intervals - by considering them as disjunctive binary constraints.
We quickly introduce the temporal constraints available.

Qualitative Point Constraints?. Variables represent time points and
there are three primitive constraints <, =, >. Composition of a constraint with
itself or equality yields the constraint again, any other composition yields the
redundant constraint.

Quantitative Point Constraints®”. The primitive constraints restrict
the distance of two time points X and Y to be in an interval a : b, i.e.
a < (Y —X) < b, where a and b are signed numbers or co. Note that
there is an infinite number of primitive quantitative constraints and that they
can overlap. The composition of the intervals a : b with ¢ : d results in
(a+¢): (b+d), and the intersection in max(a,c) : min(b, d).

Interval Constraints?®. There are 13 primitive constraints possible
between two intervals, equality and 6 other relations with their converses.
These constraints can be defined in terms of the end-points of the intervals.
Let I=[X,Y], J=[U,V]. Notationally, we abbreviate chains of (in)equalities
between variables.

I equals J if X=U<Y=V. I before J if X<Y<UKV.
I during J if U<X<Y<V. T overlaps J if X<U<Y<V.
I meets J if X<Y=UKV. I starts J if X=U<Y<V.
I finishes J if U<X<Y=V.

equals,after,contains,overlapped by,started by,finished by are the
converses.

Point - Interval Constraints?®>. There are 5 possible primitive con-
straints between a point and an interval. Let X be a point, J = [U,V] an
interval.
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X pbefore J if X<UKV.
X pafter J if U<V<X. X pduring J if U<X<V.
X pstarts J if X=U<V. X pfinishes J if U<X=V.

The converses express interval-point constraints.

Relating Constraints of Different Types??. Qualitative time point
constraints can be mapped into quantitative point constraints, while quanti-
tative constraints can only be approximated by qualitative constraints. Points
can be represented by end-points of intervals and interval constraints can be
approximated by constraints on their endpoints. These mappings are used to
solve heterogeneous constraints over the same variables.

We can instantiate the generic path consistency solver of the previous sec-
tion by defining the intersection and composition operations for the temporal
constraints described above. The implementation is described in detail and
with variations in3°.

Example 4.4 The constraints on intervals X, Y, Z

c(X,Y,{pbefore,pstarts}), c(X,Z,{pstarts,pduring}),
c(Y,Z,{before,contains,after})

can be tightened by path consistency to
c(X,Y,{before}), c(Z,Y,{before}), c(X,Z,{starts,during}),
while the constraints on points U, V and on intervals Y, Z

c(v,u,{0-1,3-4}), c(U,Y,{pbefore,pstarts}),
c(Z,V,{pcontains,pstarted.by}), c(Y,Z,{before,contains})

turn out to be inconsistent.

4.5 Finite domains

Finite domains appeared first in CHIP3!, more recent and more advanced
CLP languages are clp(FD)*? and cc(FD)?3. Since integers are used as do-
main, some arithmetic is possible. The theory underlying this constraint do-
main is Presburgers arithmetic. It axiomatizes the linear fragment of integer
arithmetic and is decidable. The constraint X in Dom means that the value
for the variable X must be in the given finite domain Dom. More precisely, if
Dom is an

e enumeration domain, Set, then X is an integer in the set Set,

e interval domain, Min:Max, then X is an integer between Min and Max.
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The difference between an interval domain and an enumeration domain is
that in the former constraint simplification is performed only on the interval
bounds, while in the latter constraint simplification is performed on each
element in the enumeration. Thus enumeration domains allow more constraint
simplification but on the other hand are only tractable for sufficiently small
enumerations.

For space limitations, we only consider interval domains here. The follow-
ing rules implement an arc consistency algorithm for interval constraints. Arc
consistency can be seen as special case of path consistency, where all but one
constraint is unary instead of binary. Like path consistency, this algorithm
is incomplete. Search can be employed for completeness by choosing values
from the intervals or by splitting them.

% Intervals
inconsistent @ X in A:B <=> A>B | false.
intersection @ X in A:B, X in C:D <=> X in max(A,C):min(B,D).

% (In)equalities

le @ X 1le Y, X in A:B, Y in C:D <=> B>D |
X le Y, X in A:D, Y in C:D.
le @ X le Y, X in A:B, Y in C:D <=> C<A |
X le Y, X in A:B, Y in A:D.
eq @ X eq VY, X in A:B, Y in C:D <=> A=\=C |
X eqV, X in max(A,C):B, Y in max(C,A):D.
eq @ X eq Y, X in A:B, Y in C:D <=> B=\=D |
XeqVY, X in A:min(B,D), Y in C:min(D,B).

% Addition X+Y=Z
add @ add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>
not (A>=E-D,B=<F-C, C>=E-B,D=<F-A, E>=A+C,F=<B+D) |
add(X,Y,Z), X in max(A,E-D):min(B,F-C),
Y in max(C,E-B) :min(D,F-A),
Z in max(E,A+C) :min(F,B+D).

The guards ensure that a rule is only applied if at least one interval gets
smaller. For example, given

A in 1:3, B in 2:4, C in 0:4, add(A,B,C)
the add rule adds the interval constraints

A in -1:2, B in 0:3, C in 3:7
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and after some intersection we arrive at:
add(A,B,C), A in 1:2, B in 2:3, C in 3:4

The rules above can be modified to work for intervals of real numbers: To
avoid non-termination, intervals that are too small are not considered by the
rules anymore.

5 Conclusions

We described how constraints are solved in constraint logic programming. To
describe the algorithms at a high, abstract level, we used Constraint Handling
Rules (CHR), a declarative language extension especially designed for writing
user-defined constraints.

While existing solvers are usually about datastructures and their opera-
tions (e.g. finite domains, Booleans, numbers), CHR open the way for more
generic (e.g. path consistency) and more conceptual constraint solvers (e.g.
temporal, spatial and terminological reasoning). Indeed, CHR have been used
successfully in challenging applications, where other existing CLP systems
could not be applied with the same results in terms of simplicity, flexibility
and efficiency.
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