
CONSTRAINT SOLVING WITH CONSTRAINT HANDLINGRULESTHOM FR�UHWIRTHInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at (LMU)Oettingenstrasse 67, D-80538 Muni
h, Germanyfruehwir�informatik.uni-muen
hen.dewww.pst.informatik.uni-muen
hen.de/�fruehwir/We des
ribe how
onstraints are solved in
onstraint logi
 programming. Todes
ribe the algorithms at a high, abstra
t level, we use Constraint HandlingRules (CHR), a de
larative language extension espe
ially designed for writing user-de�ned
onstraints. CHR
onsist of multi-headed guarded rules that rewrite
on-straints into simpler ones until they are solved. In this arti
le, we assume somefamiliarity with Prolog.1 Introdu
tionThe advent of
onstraints in logi
 programming is one of the rare
ases wheretheoreti
al, pra
ti
al and
ommer
ial aspe
ts of a programming language havebeen improved simultaneously. Constraint logi
 programming1;2;3;4;5 (CLP)
ombines the advantages of logi
 programming and
onstraint solving. Inlogi
 programming languages like Prolog, problems are stated in a de
larativeway using rules to de�ne relations (predi
ates). Problems are solved by thebuilt-in logi
 programming engine using
hronologi
al ba
ktra
k sear
h toexplore
hoi
es. In
onstraint solving, eÆ
ient spe
ial-purpose algorithms areemployed to solve sub-problems involving distinguished relations referred toas
onstraints. A
onstraint solver
an thus be seen as inferen
e system.The solver supports some if not all of the basi
 operations on
onstraints:solving (satisfa
tion), simpli�
ation, propagation, normalization, entailment(de
iding impli
ation) and optimization (
omputing \best" solutions).The idea of CLP is to solve problems by stating
onstraints (
onditions,properties) whi
h must be satisi�ed by a solution of the problem. For example,
onsider a bi
y
le number lo
k. We forgot the �rst digit, but remember some
onstraints about it: The digit was an odd number, greater than 1, and nota prime number. Combining the pie
es of partial information expressed bythese
onstraints (digit, greater than 1, odd, not prime) we are able to derivethat the digit we are looking for is "9".Sin
e the beginning of the 90ties,
onstraint-based programming is
om-mer
ially su

essful. The world-wide revenue generated by
onstraint te
h-islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 1

nology for 1996 was estimated to be on the order of 100 Million Dollars.Constraint handling rules (CHR)7;6 are a high-level language espe
iallydesigned for writing
onstraint solvers. CHR are essentially a
ommitted-
hoi
e language
onsisting of multi-headed guarded rules that rewrite
on-straints into simpler ones until they are solved. CHR
an be seen of general-ization of the various CHIP
onstru
ts8 for user-de�ned
onstraints.CHR de�ne both simpli�
ation of and propagation over user-de�ned
on-straints. Simpli�
ation repla
es
onstraints by simpler
onstraints while pre-serving logi
al equivalen
e (e.g. X>Y,Y>X <=> false). Propagation adds new
onstraints whi
h are logi
ally redundant but may
ause further simpli�
ation(e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying the rules in
rementally solves
onstraints (e.g. A>B,B>C,C>A leads to false). With multiple heads and propa-gation rules, CHR provide two features whi
h are essential for non-trivial
on-straint handling. These features are not present in the related general-purpose
on
urrent logi
 programming languages9,
on
urrent
onstraint languages10and ALPS languages11.Besides de�ning the behaviour of
onstraints, CHR
an be and have beenused as� general purpose
on
urrent
onstraint language with ask and tell,� as fairly eÆ
ient produ
tion rule system,� as a spe
ial kind of theorem prover,� in general as system
ombining forward and ba
kward
haining.CHR exist
urrently in 7 implementations in several programming lan-guages (Prolog, LISP, OZ, Java). CHR have been used in dozens of proje
tsworldwide to en
ode dozens of
onstraint solvers, in
luding new domains su
has terminologi
al, spatial and temporal reasoning.Overview of the Paper. First we introdu
e CHR by example. Thenwe will give syntax and simple semanti
s for CHR. We will illustrate how tosolve
onstraints by using CHR to implement
onstraint solvers for them. Wewill give an overview of several solvers ranging from Boolean and arithmeti
to terminologi
al and path-
onsistent
onstraints.2 CHR by ExampleWe de�ne a user-de�ned
onstraint for less-than-or-equal, =<, that
an handlevariable arguments. The implementation will rely on synta
ti
al equality, =,whi
h is assumed to be a prede�ned (built-in)
onstraint.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 2

reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR spe
ify how =< simpli�es and propagates as a
onstraint. Theyimplement re
exivity, antisymmetry and transitivity in a straightforward way.CHR reflexivity states that X=<Y is logi
ally true, provided it is the
asethat X=Y. This test forms the (optional) guard of a rule, a pre
ondition on theappli
ability of the rule. Hen
e, whenever we see the
onstraint X=<X we
ansimplify it to true. CHR antisymmetry means that if we �nd X=<Y as wellas Y=<X in the
urrent
onstraint, we
an repla
e it by the logi
ally equivalentX=Y. Note the di�erent use of X=Y in the two rules: In the reflexivity rulethe equality is a pre
ondition (test) on the rule, while in the antisymmetryrule it is enfor
ed when the rule �res.The rules reflexivity and antisymmetry are simpli�
ation CHR. Therule transitivity propagates
onstraints. It states that the
onjun
tionX=<Y, Y=<Z implies X=<Z. Operationally, we add logi
al
onsequen
es as aredundant
onstraint. This kind of CHR is
alled propagation CHR.Redundan
y from propagation CHR is useful, as the queryA=<B,C=<A,B=<C shows: The �rst two
onstraints
ause CHR transitivityto �re and add C=<B to the query. This new
onstraint together with B=<Cmat
hes the head of CHR antisymmetry, X=<Y,Y=<X. So the two
onstraintsare repla
ed by B=C. In general, mat
hing takes into a

ount the synta
ti
alequalities that are implied by built-in
onstraints. The equality is appliedto the rest of the query, A=<B,C=<A, resulting in A=<B,B=<A where B=C.Therefore, sin
e the built-in
onstraint B=C was added, CHR antisymmetryapplies to the
onstraints A=<B,C=<A, resulting in A=B. The query
ontainsno more inequalities, the simpli�
ation stops. The
onstraint solver we builthas solved A=<B,C=<A,B=<C and produ
ed the answer A=B,B=C.3 Syntax and Semanti
sIn this se
tion we give syntax and simple semanti
s for CHR, for more detailedsemanti
s see12;6.A
onstraint is
onsidered to be a distinguished, spe
ial �rst-order predi-
ate (atomi
 formula). We use two disjoint sorts of predi
ate symbols for twodi�erent
lasses of
onstraints: One sort for built-in (prede�ned)
onstraintsand one sort for CHR (user-de�ned)
onstraints. Built-in
onstraints are thosehandled by a prede�ned, given
onstraint solver. Here we assume that thesynta
ti
 equality
onstraint = and the trivial
onstraints true and false areislip99-
hr: submitted to World S
ienti�
 on September 16, 1999 3

built-in. CHR
onstraints are those de�ned by a CHR program.3.1 SyntaxThe syntax of CHR is reminis
ent of Prolog and GHC. It is de�ned by EBNFgrammar rules.De�nition 3.1 A CHR program is a �nite set of CHR. There are two mainkinds of CHR. A simpli�
ation CHR is of the form[Name '�'℄ Head '<=>' [Guard '|'℄ Body.a propagation CHR is of the form[Name '�'℄ Head '==>' [Guard '|'℄ Body.where the rule has an optional Name, the multi-head Head is a
onjun
tionof CHR
onstraints. The optional guard Guard is a
onjun
tion of built-in
onstraints. The body Body is a
onjun
tion of built-in and CHR
onstraints.As in Prolog syntax, a
onjun
tion is a sequen
e of
onjun
ts separated by
ommata.3.2 Semanti
sThe de
larative semanti
s of a CHR program P is a
onjun
tion of univer-sally quanti�ed logi
al formulas (one for ea
h rule) and a
onsistent built{in
onstraint theory whi
h determines the meaning of the built{in
onstraintsappearing in the program. The delarative reading of a rule relates heads andbody provided the guard is true. A simpli�
ation rule means that the headsare true if and only if the body is satis�ed. A propagation rule means thatthe body is true if the heads are true.The operational semanti
s
an be des
ribed by a transition system. Herewe des
ribe it informally.A CHR
onstraint is implemented as both
ode and data in the
onstraintstore, whi
h is a data stru
ture holding
onstraints. Every time a CHR
on-straint is posted (exe
uted) or woken (re
onsidered, re-exe
uted), it
he
ksitself the appli
ability of the rules it appears in. Su
h a
onstraint is
alled(
urrently) a
tive.Heads. For ea
h rule, one of its heads is mat
hed against the
onstraint.Mat
hing su

eeds if the
onstraint is an instan
e of the head, i.e. the headserves as a pattern. If mat
hing su

eeded and a rule has more than onehead, the
onstraint store is sear
hed for the
onstraints that mat
h the otherheads. If the mat
hing su

eeds, the guard is exe
uted. Otherwise the nextrule is tried.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 4

Guard. A guard is a pre
ondition on the appli
ability of a rule. Theguard either su

eeds or fails. A guard su

eeds if the exe
ution su

eedswithout
ausing an instantiation error and without tou
hing a variable fromthe heads. A variable is tou
hed if gets more
onstrained by a built-in
on-straint. If the guard su

eeds, the rule applies, one
ommits to it and it �res.Otherwise it fails and the next rule is tried.Body. If the �ring CHR is a simpli�
ation rule, the mat
hed
onstraintsare removed from the store and the body of the CHR is exe
uted. If the�ring CHR is a propagation rule the body of the CHR is exe
uted withoutremoving any
onstraints. It is remembered that the propagation rule �red,so it will not �re again with the same
onstraints. When the
urrently a
tive
onstraint has not been removed, the next rule is tried.(Re-)Try. If all rules have been tried and the a
tive
onstraint has notbeen removed, it suspends (waits, delays) until a variable o

urring in the
onstraint is tou
hed. Here suspension means that the
onstraint is insertedinto the
onstraint store as data. When a
onstraint is woken, all its rules aretried again.We require that the rules are applied fairly, i.e. that every rule that is ap-pli
able is applied eventually. Fairness is respe
ted and trivial non-terminationis avoided by applying a propagation rule at most on
e to the same
on-straints. A more
omplex operational semanti
s that addresses these issues
an be found in12.4 Constraint SolversIn this se
tion we introdu
e
onstraint solvers for Booleans (propositionallogi
), �nite interval domains in
remental path
onsisten
y, temporal rea-soning, for solving linear polynomials and for terminologi
al reasoning. Fordetails on the
onstraint solvers analysed here see7 and the CHR web pages:www.pst.informatik.uni-muen
hen.de/�fruehwir/
hr-intro.htmlWhile we
annot - within the spa
e limitations - introdu
e ea
h
onstraintdomain in detail, we still
an give an idea how one implements it using CHR.The usual abstra
t formalism to des
ribe a
onstraint system, i.e. inferen
erules, rewrite rules, sequents, formulas expressing axioms and theorems,
anbe written as CHR in a straightforward way. Starting from this exe
utablespe
i�
ation, the rules
an be re�ned and adapted to the spe
i�
s of theappli
ation.Note that any solver written with CHR will be determinate, in
rementaland
on
urrent by nature. By \determinate" we mean that the user-de�nedsolver
ommits to every
onstraint simpli�
ation it makes. By \in
remen-islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 5

tal" we mean that
onstraints
an be added to the
onstraint store one at atime (without a�e
ting
omputational
ost). The rules
an be applied
on
ur-rently to di�erent
onstraints, be
ause logi
ally
orre
t CHR
an only repla
e
onstraints by equivalent ones or add redundant
onstraints.4.1 Boolean Algebra, Propositional Logi
The domain of Boolean
onstraints in
ludes the
onstants 0 for falsity, 1for truth and the usual logi
al
onne
tives of propositional logi
, e.g. and,or, neg, imp, exor, modeled here as relations instead of fun
tions. We
an de�ne an and
onstraint using value propagation, a spe
ial
ase of ar

onsisten
y. For more sophisti
ated algorithms see13.and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the
onstraint and(X,Y,Z), when it isknown that the �rst input argument X is 0,
an be redu
ed to asserting thatthe output Z must be 0. Hen
e the query and(X,Y,Z),X=0 will result in X=0,Z=0.Example 4.1 Consider the predi
ate add taken from the well-known full-adder
ir
uit. It adds three single digit binary numbers to produ
e a singlenumber
onsisting of two digits:add(I1,I2,I3,O1,O2) <=>xor(I1,I2,X1), and(I1,I2,A1),xor(X1,I3,O2), and(I3,X1,A2),or(A1,A2,O1).The query add(I1,I2,I3,O1,O2),I3=0,O1=1 will redu
e toI3=0,O1=1,I1=1,I2=1,O2=0. The
omputation pro
eeds as follows:Be
ause I3=0, the output A2 of the and-gate with input I3 must be 0. AsO1=1 and A2=0, the other input A1 of the or-gate must be 1. Be
ause A1 isalso the output of an and-gate, its inputs I1 and I2 must be both 1. Hen
ethe output X1 of the �rst xor-gate must be 0, and therefore also the outputO2 of the se
ond xor-gate must be 0. The query add(1,1,I3,O1,O2) redu
esto I3=O2,O1=1.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 6

This example illustrated the power of this simple but in
omplete solver.In
ompleteness means that the solver is too weak dete
t unsatis�ability in all
ases. To a
hieve
ompleteness, sear
h must be employed. This is done by try-ing to the values 0 or 1 for a variable, then by employing the
onstraint solveragain. This is repeated till a solution
onsisting only of synta
ti
 equalities isfound or unsatis�ability is dete
ted due to
ontradi
ting variable bindings.4.2 Terminologi
al ReasoningTerminologi
al formalisms (aka des
ription logi
s) are used to represent theterminologi
al knowledge of a parti
ular problem domain on an abstra
t logi-
al level. To des
ribe this kind of knowledge, one starts with atomi

on
eptsand roles, and then de�nes new
on
epts and their relationship in terms ofexisting
on
epts and roles. Con
epts
an be
onsidered as unary relationssimilar to types. Roles
orrespond to binary relations over obje
ts. Althoughthere is an established notation for terminologies, we use a more verbose syn-tax to help readers not familiar with the formalism.De�nition 4.1 Con
ept terms are de�ned indu
tively: Every
on
ept (name)
 is a
on
ept term. If s and t are
on
ept terms and r is a role (name), thenthe following expressions are also
on
ept terms:s and t (
onjun
tion), s or t (disjun
tion), nota s (
omplement),every r is s (value restri
tion), some r is s (exists-in restri
-tion).Obje
ts are
onstants or variables. Let a, b be obje
ts, r a role, and
 a
on
ept term. Then a : s is a membership assertion and (a; b) : r is a role-�llerassertion. An A-box is a
onjun
tion of membership and role-�ller assertions.De�nition 4.2 A terminology (T-box)
onsists of a �nite set of
on
ept def-initions
 isa s,where
 is a newly introdu
ed
on
ept name and s is a
on
ept term.Sin
e the
on
ept
 is new, it
annot be de�ned in terms of itself, i.e.
on-
ept de�nitions are a
y
li
 (non-re
ursive). This also implies that there are
on
epts without de�nition, they are
alled primitive.Example 4.2 The domain of a
on�guration appli
ation
omprises at leastdevi
es, interfa
es, and
on�gurations. The
on
ept de�nitions express thatthese
on
epts are disjoint:islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 7

interfa
e isa nota devi
e.
onfiguration isa nota (interfa
e or devi
e).Assume that a simple devi
e has at least one interfa
e. We introdu
e a role
onne
tor whi
h relates devi
es to interfa
es and employ the exists-in restri
-tion.simple devi
e isa devi
e and some
onne
tor isinterfa
e.We introdu
e instan
es of devi
es and interfa
es as
onstraints:p
:devi
e, rs231:interfa
e, (p
,rs231):
onne
torThe CHR
onstraint solver for terminologies en
odes the T-box by rulesand the A-box as CHR
onstraints, sin
e we want to solve problems over agiven terminology (T-box). A similar solver is des
ribed in14. The unfoldingand
ompletion rules16 and the propagation rules15 for the
onsisten
y testtranslate almost dire
tly to CHR _However, the former work does not providean in
remental algorithm and the latter does not simplify
onstraints.The
onsisten
y test of A-boxes simpli�es and propagates the assertionsin the A-box to make the knowledge more expli
it and looks for obvious
ontradi
tions (\
lashes") su
h as X : devi
e, X : nota devi
e. This isexpressed by the rule:I : nota S, I : S <=> false:The following simpli�
ation CHR show how the
omplement operator nota
an be pushed towards to the leaves of a
on
ept term:I : nota nota S <=> I : S.I : nota (S or T) <=> I : nota S and nota T.I : nota (S and T) <=> I : (nota S or nota T).I : nota (every R is S) <=> I : some R is nota S.I : nota some R is S <=> I : every R is nota S.An exists-in restri
tion generates a new variable that serves as a \witness" forthe restri
tion:I : some R is S <=> (I,J) : R, J : S.A value restri
tion has to be propagated to all role �llers:I : every R is S, (I,J) : R ==> J : S.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 8

The unfolding rules repla
e
on
ept names by their de�nitions. For ea
h
on
ept de�nition C isa S two rules are introdu
ed:I : C <=> I : S.I : nota C <=> I : nota S.The
onjun
tion rule generates two new, smaller assertions:I : S and T <=> I : S, I : T.The rules simplify terminologi
al
onstraints until a normal form isrea
hed. The normal form is either false (in
onsistent) or
ontains
on-straints of the form I : C, I : nota C, I : S or T, I : every R is Sand (I,J) : R, where C is a primitive
on
ept name. There are no
lashesand the value restri
tion has been propagated to every obje
t. To a
hieve
ompleteness, sear
h must be employed. This is done by splitting I : S orT into two
ases, I : S and I: T.4.3 Linear Polynomial EquationsThe initial motivation for introdu
ing
onstraints in logi
 programming lan-guages (Prolog) was the non-de
larative nature of the built-in predi
ates forarithmeti

omputations. Therefore, from the very beginning, CLP languagesin
luded
onstraint solving for linear polynomial equations and inequationsover reals (CLP(R)17) or rationals (Prolog-III18, CHIP8) adopting variantsof variable elimination alogrithms like Gaussian elimination and the Simplexalgorithm19. The theory underlying this
onstraint system is that of real
losed �elds, whi
h
overs linear and non-linear polynomials and was shownto be de
idable by Tarski.De�nition 4.3 A linear polynomial equation is of the form p+ b = 0 whereb is a
onstant and the polynomial p is the sum of monomials of the formai � xi with
oeÆ
ient ai 6= 0 and xi is a variable. Constants and
oeÆ
ientsare numbers. Variables are totally ordered. In an equation a1 �x1+ : : :+an �xn + b = 0, variables appear in stri
tly des
ending order.In
onstraint logi
 programming,
onstraints are added in
rementally.Therefore we
annot eliminate a variable in all other equations at on
e, butrather
onsider the other equations one by one. A simple solved form
anexhibit unsatis�ability: It is enough if the left-most variable of ea
h equationis the only left-most o

urren
e of this variable. Therefore the two rules be-low implement a
omplete and eÆ
ient solver for linear equations over both
oating point numbers (to approximate real numbers) and rational numbers.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 9

empty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>
ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.The empty rule says that if the polynomial
ontains no more variables, the
onstant B must be zero. The eliminate rule performs variable elimination.It takes two equations that start with the same variable. The �rst equation isleft un
hanged, it is used to eliminate the o

urren
e of the
ommon variablein the se
ond equation. The auxiliary built-in
onstraint
ompute simpli�esa polynomial arithmeti
 expression into a new polynomial. Note that novariable is made expli
it, i.e. no pivoting is performed. Any two equationswith the same �rst variable
an rea
t with ea
h other. Therefore, the solveris highly
on
urrent and distributed.The solver
an be extended by a few rules to
reate expli
it variablebindings, to make impli
it equalities between variables expli
it, to deal withinequations using sla
k variables as in the Simplex algorithm or fouriers algo-rithm.Non-linear polynomial
onstraints appear e.g. in modelling physi
al pro-
esses and in geometri
 reasoning for spatial databases and robot motionplanning. To ta
kle non-linear polynomials, te
hniques like Groebner Basesover
omplex numbers (CAL20) and Partial Cylindri
al Algebrai
 De
omposi-tion (RISC-CLP(Real)21) have been used. Another approa
h is to use intervalarithmeti
 as in CLP(BNR)22, Numeri
a23. This approa
h
an basi
ally beseen as a sophisti
ated extension of �nite interval domains (des
ribed below)to the reals and to non-linear polynomials.4.4 Path Consisten
yIn this se
tion we introdu
e
onstraint solvers that implement instan
es ofthe
lassi
al arti�
ial intelligen
e algorithm of path
onsisten
y to simplify
onstraint satisfa
tion problems24.De�nition 4.4 A binary
onstraint network
onsists of a set of variables anda set of (disjun
tive) binary
onstraints between them. The network
an berepresented by a dire
ted
onstraint graph, where the nodes denote variablesand the ar
s are labeled by binary
onstraints. Logi
ally, a network is a
onjun
tion of binary
onstraints.De�nition 4.5 A disjun
tive binary
onstraint
xy between two variables Xand Y , also written X fr1; : : : ; rng Y , is a �nite disjun
tion (X r1 Y) _ : : : _islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 10

(X rn Y), where ea
h ri is a relation that is appli
able to X and Y . Theri are
alled primitive
onstraints. The
onverse of a primitive
onstraint rbetween X and Y is the primitive
onstraint s that holds between Y and Xas a
onsequen
e.For example, A f<g B;A f<;>g B;A f<;=; >g B are disjun
tive binary
onstraints
AB between A and B. A f<gB is the same as A < B, A f<;>gBis the same as A 6= B. Finally, A f<;=; >g B does not impose any restri
tionson A and B, the
onstraint is redundant. Usually, the number of primitive
onstraints is �nite and they are pairwise disjoint. We will asume this in thefollowing.De�nition 4.6 A network is path
onsistent if for pairs of nodes (i; j) andall paths i� i1� i2 : : : in� j between them, the dire
t
onstraint
ij is at leastas tight than the indire
t
onstraint along the path, i.e. the
omposition of
onstraints
ii1
 : : :

inj along the path.It follows from the de�nition of path
onsisten
y that we
an interse
tthe dire
t and indire
t
onstraint to arrive at a tighter dire
t
onstraint. Letinterse
tion be denoted by the operator �. A graph is
omplete if there is apair of ar
s, one in ea
h dire
tion, between every pair of nodes. If the graphunderlying the network is
omplete it suÆ
es to repeatedly
onsider pathsof length 2 at most: For ea
h triple of nodes (i; k; j) we repeatedly
ompute
ij :=
ij � (
ik

kj) until a �xpoint is rea
hed. This is the basi
 path
onsisten
y algorithm.Example 4.3 Given I � K ^ K � J ^ I � J and taking the triple (i; j; k),
ik

kj results in I � J and the result of interse
ting it with
ij is I = J .From (j; i; k) we get J = K (we
an
ompute
ji as the
onverse of
ij). From(k; j; i) we get K = I . Another round of
omputation
auses no more
hange,so the �xpoint is rea
hed with J = K ^ K = I .Sin
e path
onsisten
y is an in
omplete algorithm, sear
h must be em-ployed by
hoosing a primitive
onstraint from a set of disjun
tive
onstraints.Let the
onstraint
ij be represented by the CHR
onstraint
(I,J,C)where I and J are the variables and C is a set of primitive
onstraints repre-senting
. The basi
 operation of path
onsisten
y,
ij :=
ij � (
ik

kj),
anbe implemented dire
tly by the rule:path_
onsisten
y �
(I,K,C1),
(K,J,C2),
(I,J,C3) <=>
omposition(C1,C2,C12), interse
tion(C12,C3,C123),C123=\=C3 |
(I,K,C1),
(K,J,C2),
(I,J,C123).islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 11

The operations
 and � are implemented by the built-in
onstraints
omposition and interse
tion. Composition of disjun
tive
onstraints
anbe
omputed by pairwise
omposition of its primitive
onstraints. Interse
tionfor disjun
tive
onstraints
an be implemented by set interse
tion. C123=�C3ensures that the newly produ
ed
onstraint is di�erent to (and thus smallerthan) the previous one.Temporal ReasoningFollowing the framework of Meiri25, temporal reasoning is a
onstraint satis-fa
tion problem about the lo
ation of temporal variables along the time lineusing path
onsisten
y and ba
ktra
k sear
h. The framework integrates mostforms of temporal relations - qualitative and quantitative (metri
) over timepoints and intervals - by
onsidering them as disjun
tive binary
onstraints.We qui
kly introdu
e the temporal
onstraints available.Qualitative Point Constraints26. Variables represent time points andthere are three primitive
onstraints<;=; >. Composition of a
onstraint withitself or equality yields the
onstraint again, any other
omposition yields theredundant
onstraint.Quantitative Point Constraints27. The primitive
onstraints restri
tthe distan
e of two time points X and Y to be in an interval a : b, i.e.a � (Y � X) � b, where a and b are signed numbers or 1. Note thatthere is an in�nite number of primitive quantitative
onstraints and that they
an overlap. The
omposition of the intervals a : b with
 : d results in(a+
) : (b+ d), and the interse
tion in max(a;
) : min(b; d).Interval Constraints28. There are 13 primitive
onstraints possiblebetween two intervals, equality and 6 other relations with their
onverses.These
onstraints
an be de�ned in terms of the end-points of the intervals.Let I=[X,Y℄, J=[U,V℄. Notationally, we abbreviate
hains of (in)equalitiesbetween variables.I equals J if X=U<Y=V. I before J if X<Y<U<V.I during J if U<X<Y<V. I overlaps J if X<U<Y<V.I meets J if X<Y=U<V. I starts J if X=U<Y<V.I finishes J if U<X<Y=V.equals,after,
ontains,overlapped by,started by,finished by are the
onverses.Point - Interval Constraints25. There are 5 possible primitive
on-straints between a point and an interval. Let X be a point, J = [U,V℄ aninterval.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 12

X pbefore J if X<U<V.X pafter J if U<V<X. X pduring J if U<X<V.X pstarts J if X=U<V. X pfinishes J if U<X=V.The
onverses express interval-point
onstraints.Relating Constraints of Di�erent Types29. Qualitative time point
onstraints
an be mapped into quantitative point
onstraints, while quanti-tative
onstraints
an only be approximated by qualitative
onstraints. Points
an be represented by end-points of intervals and interval
onstraints
an beapproximated by
onstraints on their endpoints. These mappings are used tosolve heterogeneous
onstraints over the same variables.We
an instantiate the generi
 path
onsisten
y solver of the previous se
-tion by de�ning the interse
tion and
omposition operations for the temporal
onstraints des
ribed above. The implementation is des
ribed in detail andwith variations in30.Example 4.4 The
onstraints on intervals X, Y, Z
(X,Y,fpbefore,pstartsg),
(X,Z,fpstarts,pduringg),
(Y,Z,fbefore,
ontains,afterg)
an be tightened by path
onsisten
y to
(X,Y,fbeforeg),
(Z,Y,fbeforeg),
(X,Z,fstarts,duringg),while the
onstraints on points U, V and on intervals Y, Z
(V,U,f0-1,3-4g),
(U,Y,fpbefore,pstartsg),
(Z,V,fp
ontains,pstarted byg),
(Y,Z,fbefore,
ontainsg)turn out to be in
onsistent.4.5 Finite domainsFinite domains appeared �rst in CHIP31, more re
ent and more advan
edCLP languages are
lp(FD)32 and

(FD)33. Sin
e integers are used as do-main, some arithmeti
 is possible. The theory underlying this
onstraint do-main is Presburgers arithmeti
. It axiomatizes the linear fragment of integerarithmeti
 and is de
idable. The
onstraint X in Dom means that the valuefor the variable X must be in the given �nite domain Dom. More pre
isely, ifDom is an� enumeration domain, Set, then X is an integer in the set Set,� interval domain, Min:Max, then X is an integer between Min and Max.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 13

The di�eren
e between an interval domain and an enumeration domain isthat in the former
onstraint simpli�
ation is performed only on the intervalbounds, while in the latter
onstraint simpli�
ation is performed on ea
helement in the enumeration. Thus enumeration domains allow more
onstraintsimpli�
ation but on the other hand are only tra
table for suÆ
iently smallenumerations.For spa
e limitations, we only
onsider interval domains here. The follow-ing rules implement an ar

onsisten
y algorithm for interval
onstraints. Ar

onsisten
y
an be seen as spe
ial
ase of path
onsisten
y, where all but one
onstraint is unary instead of binary. Like path
onsisten
y, this algorithmis in
omplete. Sear
h
an be employed for
ompleteness by
hoosing valuesfrom the intervals or by splitting them.% Intervalsin
onsistent � X in A:B <=> A>B | false.interse
tion � X in A:B, X in C:D <=> X in max(A,C):min(B,D).% (In)equalitiesle � X le Y, X in A:B, Y in C:D <=> B>D |X le Y, X in A:D, Y in C:D.le � X le Y, X in A:B, Y in C:D <=> C<A |X le Y, X in A:B, Y in A:D.eq � X eq Y, X in A:B, Y in C:D <=> A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.eq � X eq Y, X in A:B, Y in C:D <=> B=\=D |X eq Y, X in A:min(B,D), Y in C:min(D,B).% Addition X+Y=Zadd � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>not (A>=E-D,B=<F-C, C>=E-B,D=<F-A, E>=A+C,F=<B+D) |add(X,Y,Z), X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).The guards ensure that a rule is only applied if at least one interval getssmaller. For example, givenA in 1:3, B in 2:4, C in 0:4, add(A,B,C)the add rule adds the interval
onstraintsA in -1:2, B in 0:3, C in 3:7islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 14

and after some interse
tion we arrive at:add(A,B,C), A in 1:2, B in 2:3, C in 3:4The rules above
an be modi�ed to work for intervals of real numbers: Toavoid non-termination, intervals that are too small are not
onsidered by therules anymore.5 Con
lusionsWe des
ribed how
onstraints are solved in
onstraint logi
 programming. Todes
ribe the algorithms at a high, abstra
t level, we used Constraint HandlingRules (CHR), a de
larative language extension espe
ially designed for writinguser-de�ned
onstraints.While existing solvers are usually about datastru
tures and their opera-tions (e.g. �nite domains, Booleans, numbers), CHR open the way for moregeneri
 (e.g. path
onsisten
y) and more
on
eptual
onstraint solvers (e.g.temporal, spatial and terminologi
al reasoning). Indeed, CHR have been usedsu

essfully in
hallenging appli
ations, where other existing CLP systems
ould not be applied with the same results in terms of simpli
ity,
exibilityand eÆ
ien
y.Referen
es1. P. van Hentenry
k, H. Simonis and M. Din
bas, Constraint Satisfa
tionUsing Constraint Logi
 Programming, Arti�
ial Intelligen
e, 58(1-3):113{159, De
ember 1992.2. T. Fr�uhwirth, A. Herold, V. K�u
henho�, T. Le Provost, P. Lim, E. Mon-froy and M. Walla
e. Constraint Logi
 Programming - An Informal In-trodu
tion, Chapter in Logi
 Programming in A
tion, Springer LNCS636, September 1992.3. J. Ja�ar and M. J. Maher, Constraint Logi
 Programming: A Survey,Journal of Logi
 Programming 19,20:503-581, 1994.4. T. Fr�uhwirth and S. Abdennadher, Constraint-Programmierung (in Ger-man), Textbook, Springer Verlag, Heidelberg, Germany, September 1997.5. K. Marriott and P. J. Stu
key, Programming with Constraints, MITPress, USA, Mar
h 1998.6. S. Abdennadher, T. Fr�uhwirth and H. Meuss, Con
uen
e and Semanti
sof Constraint Simpli�
ation Rules, Journal Constraints, Volume 4, Issue2, Kluwer A
ademi
 Publishers, May 1999.islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 15

7. T. Fr�uhwirth, Theory and Pra
ti
e of Constraint Handling Rules, Spe
ialIssue on Constraint Logi
 Programming (P. J. Stu
key and K. Marriot,Eds.), Journal of Logi
 Programming, Vol 37(1-3):95-138 O
t-De
 98.8. M. Din
bas et al., The Constraint Logi
 Programming Language CHIP,Fifth Generation Computer Systems, Tokyo, Japan, De
ember 1988.9. E. Shapiro, The Family of Con
urrent Logi
 Programming Languages,ACM Computing Surveys, 21(3):413-510, September 1989.10. V. A. Saraswat, Con
urrent Constraint Programming, MIT Press, Cam-bridge, Mass., USA, 1993.11. M. J. Maher, Logi
 Semanti
s for a Class of Committed-Choi
e Programs,4th Intl Conf on Logi
 Programming, Melbourne, Australia, pp 858-876,MIT Press, Cambridge, Mass., USA, 1987.12. S. Abdennadher, Operational Semanti
s and Con
uen
e of ConstraintPropagation Rules, 3rd Intl Conf on Prin
iples and Pra
ti
e of ConstraintProgramming (CP'97), Linz, Austria, Springer LNCS 1330, pp 252-265,O
tober/November 1997.13. S. Menju et al., A Study on Boolean Constraint Solvers, Constraint Logi
Programming: Sele
ted Resear
h, (F. Benhamou and A. Colmerauer,Eds.), MIT Press, Cambridge, Mass., USA, 1993.14. T. Fr�uhwirth and P. Hans
hke, Terminologi
al Reasoning with ConstraintHandling Rules, Chapter in Prin
iples and Pra
ti
e of Constraint Pro-gramming, (P. van Hentenry
k and V.J. Saraswat, Eds.), MIT Press,Cambridge, Mass., USA, April 1995.15. M. Bu
hheit, F. M. Donini and A. S
haerf, De
idable Reasoning in Ter-minologi
al Knowledge Representation Systems, Journal of Arti�
ial In-telligen
e Resear
h, 1:109-138, 1993.16. M. S
hmidt-S
hau� and G. Smolka, Attributive Con
ept Des
riptionswith Complements, Journal of Arti�
ial Intelligen
e, 47, 1991.17. J. Ja�ar et al., The CLP(R) Language and System, ACM Transa
tionson Programming Languages and Systems, Vol.14:3, July 1992.18. A. Colmerauer, An Introdu
tion to Prolog III, Communi
ations of theACM 33(7):69-90, July 1990.19. J.-L. J. Imbert, Linear Constraint Solving in CLP-Languages, in Con-straint Programming: Basi
s and Trends, (A. Podelski, Ed.), LNCS 910,Mar
h 1995.20. A. Aiba et al, Constraint Logi
 Programming Language CAL, Intl Confon Fifth Generation Computer Systems, Ohmsha Publishers, Tokyo, pp263-276, 1988.21. H. Hong, Non-linear Real Constraints in Constraint Logi
 Programming,Algebrai
 and Logi
 Programming Conf (Volterra, Italy), (H. Kir
hnerislip99-
hr: submitted to World S
ienti�
 on September 16, 1999 16

and G. Levi, Eds.), Springer LNCS 632, 1992.22. F. Benhamou, Interval
onstraint logi
 programming, Chapter in Con-straint Programming: Basi
s and Trends, (A. Podelski, Ed.), SpringerLNCS 910, Mar
h 1995.23. P. van Hentenry
k, L. Mi
hel and Y. Deville, Numeri
a: a ModelingLanguage for Global Optimization, MIT Press, Cambridge, Mass., USA,1997.24. A. K. Ma
kworth and E. C. Freuder, The Complexity of Some PolynomialNetwork Consisten
y Algorithms for Constraint Satisfa
tion Problems,Journal of Arti�
ial Intelligen
e 25:65-74, 1985.25. I. Meiri, Combining Qualitative and Quantitative Constraints in Tempo-ral Reasoning, AAAI 91, pp 260-267, 1991.26. M. Vilain, H. Kautz, Constraint Propagation Algorithms for TemporalReasoning, AAAI 86, pp 377-382, 1986.27. R. De
hter, I. Meiri and J. Pearl, Temporal Constraint Networks, Journalof Arti�
ial Intelligen
e 49:61-95, 1991.28. J. F. Allen, Maintaining Knowledge about Temporal Intervals, Commu-ni
ations of the ACM, Vol. 26, No. 11, 1983.29. H. A. Kautz and P. B. Ladkin, Integrating Metri
 and Qualitative Tem-poral Reasoning, AAAI 91, pp 241-246, 1991.30. T. Fr�uhwirth, Temporal Reasoning with Constraint Handling Rules,Te
hni
al Report ECRC-94-05, ECRCMuni
h, Germany, February 1994.31. P. van Hentenry
k, Constraint Satisfa
tion in Logi
 Programming, MITPress, Cambridge, Mass., USA, 1989.32. P. Codognet and D. Diaz, Compiling
onstraints in
lp(fd), Journal ofLogi
 Programming, 27(3), 1996.33. P. van Hentenry
k, Vijay A. Saraswat, and Y. Deville, Constraint Pro-
essing in

(FD), Chapter in Constraint Programming: Basi
s andTrends, (A. Podelski, Ed.), Springer LNCS 910, 1995.

islip99-
hr: submitted to World S
ienti�
 on September 16, 1999 17

