
CONSTRAINT SOLVING WITH CONSTRAINT HANDLINGRULESTHOM FR�UHWIRTHInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at (LMU)Oettingenstrasse 67, D-80538 Munih, Germanyfruehwir�informatik.uni-muenhen.dewww.pst.informatik.uni-muenhen.de/�fruehwir/We desribe how onstraints are solved in onstraint logi programming. Todesribe the algorithms at a high, abstrat level, we use Constraint HandlingRules (CHR), a delarative language extension espeially designed for writing user-de�ned onstraints. CHR onsist of multi-headed guarded rules that rewrite on-straints into simpler ones until they are solved. In this artile, we assume somefamiliarity with Prolog.1 IntrodutionThe advent of onstraints in logi programming is one of the rare ases wheretheoretial, pratial and ommerial aspets of a programming language havebeen improved simultaneously. Constraint logi programming1;2;3;4;5 (CLP)ombines the advantages of logi programming and onstraint solving. Inlogi programming languages like Prolog, problems are stated in a delarativeway using rules to de�ne relations (prediates). Problems are solved by thebuilt-in logi programming engine using hronologial baktrak searh toexplore hoies. In onstraint solving, eÆient speial-purpose algorithms areemployed to solve sub-problems involving distinguished relations referred toas onstraints. A onstraint solver an thus be seen as inferene system.The solver supports some if not all of the basi operations on onstraints:solving (satisfation), simpli�ation, propagation, normalization, entailment(deiding impliation) and optimization (omputing \best" solutions).The idea of CLP is to solve problems by stating onstraints (onditions,properties) whih must be satisi�ed by a solution of the problem. For example,onsider a biyle number lok. We forgot the �rst digit, but remember someonstraints about it: The digit was an odd number, greater than 1, and nota prime number. Combining the piees of partial information expressed bythese onstraints (digit, greater than 1, odd, not prime) we are able to derivethat the digit we are looking for is "9".Sine the beginning of the 90ties, onstraint-based programming is om-merially suessful. The world-wide revenue generated by onstraint teh-islip99-hr: submitted to World Sienti� on September 16, 1999 1



nology for 1996 was estimated to be on the order of 100 Million Dollars.Constraint handling rules (CHR)7;6 are a high-level language espeiallydesigned for writing onstraint solvers. CHR are essentially a ommitted-hoie language onsisting of multi-headed guarded rules that rewrite on-straints into simpler ones until they are solved. CHR an be seen of general-ization of the various CHIP onstruts8 for user-de�ned onstraints.CHR de�ne both simpli�ation of and propagation over user-de�ned on-straints. Simpli�ation replaes onstraints by simpler onstraints while pre-serving logial equivalene (e.g. X>Y,Y>X <=> false). Propagation adds newonstraints whih are logially redundant but may ause further simpli�ation(e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying the rules inrementally solvesonstraints (e.g. A>B,B>C,C>A leads to false). With multiple heads and propa-gation rules, CHR provide two features whih are essential for non-trivial on-straint handling. These features are not present in the related general-purposeonurrent logi programming languages9, onurrent onstraint languages10and ALPS languages11.Besides de�ning the behaviour of onstraints, CHR an be and have beenused as� general purpose onurrent onstraint language with ask and tell,� as fairly eÆient prodution rule system,� as a speial kind of theorem prover,� in general as system ombining forward and bakward haining.CHR exist urrently in 7 implementations in several programming lan-guages (Prolog, LISP, OZ, Java). CHR have been used in dozens of projetsworldwide to enode dozens of onstraint solvers, inluding new domains suhas terminologial, spatial and temporal reasoning.Overview of the Paper. First we introdue CHR by example. Thenwe will give syntax and simple semantis for CHR. We will illustrate how tosolve onstraints by using CHR to implement onstraint solvers for them. Wewill give an overview of several solvers ranging from Boolean and arithmetito terminologial and path-onsistent onstraints.2 CHR by ExampleWe de�ne a user-de�ned onstraint for less-than-or-equal, =<, that an handlevariable arguments. The implementation will rely on syntatial equality, =,whih is assumed to be a prede�ned (built-in) onstraint.islip99-hr: submitted to World Sienti� on September 16, 1999 2



reflexivity � X=<Y <=> X=Y | true.antisymmetry � X=<Y,Y=<X <=> X=Y.transitivity � X=<Y,Y=<Z ==> X=<Z.The CHR speify how =< simpli�es and propagates as a onstraint. Theyimplement reexivity, antisymmetry and transitivity in a straightforward way.CHR reflexivity states that X=<Y is logially true, provided it is the asethat X=Y. This test forms the (optional) guard of a rule, a preondition on theappliability of the rule. Hene, whenever we see the onstraint X=<X we ansimplify it to true. CHR antisymmetry means that if we �nd X=<Y as wellas Y=<X in the urrent onstraint, we an replae it by the logially equivalentX=Y. Note the di�erent use of X=Y in the two rules: In the reflexivity rulethe equality is a preondition (test) on the rule, while in the antisymmetryrule it is enfored when the rule �res.The rules reflexivity and antisymmetry are simpli�ation CHR. Therule transitivity propagates onstraints. It states that the onjuntionX=<Y, Y=<Z implies X=<Z. Operationally, we add logial onsequenes as aredundant onstraint. This kind of CHR is alled propagation CHR.Redundany from propagation CHR is useful, as the queryA=<B,C=<A,B=<C shows: The �rst two onstraints ause CHR transitivityto �re and add C=<B to the query. This new onstraint together with B=<Cmathes the head of CHR antisymmetry, X=<Y,Y=<X. So the two onstraintsare replaed by B=C. In general, mathing takes into aount the syntatialequalities that are implied by built-in onstraints. The equality is appliedto the rest of the query, A=<B,C=<A, resulting in A=<B,B=<A where B=C.Therefore, sine the built-in onstraint B=C was added, CHR antisymmetryapplies to the onstraints A=<B,C=<A, resulting in A=B. The query ontainsno more inequalities, the simpli�ation stops. The onstraint solver we builthas solved A=<B,C=<A,B=<C and produed the answer A=B,B=C.3 Syntax and SemantisIn this setion we give syntax and simple semantis for CHR, for more detailedsemantis see12;6.A onstraint is onsidered to be a distinguished, speial �rst-order predi-ate (atomi formula). We use two disjoint sorts of prediate symbols for twodi�erent lasses of onstraints: One sort for built-in (prede�ned) onstraintsand one sort for CHR (user-de�ned) onstraints. Built-in onstraints are thosehandled by a prede�ned, given onstraint solver. Here we assume that thesyntati equality onstraint = and the trivial onstraints true and false areislip99-hr: submitted to World Sienti� on September 16, 1999 3



built-in. CHR onstraints are those de�ned by a CHR program.3.1 SyntaxThe syntax of CHR is reminisent of Prolog and GHC. It is de�ned by EBNFgrammar rules.De�nition 3.1 A CHR program is a �nite set of CHR. There are two mainkinds of CHR. A simpli�ation CHR is of the form[Name '�'℄ Head '<=>' [Guard '|'℄ Body.a propagation CHR is of the form[Name '�'℄ Head '==>' [Guard '|'℄ Body.where the rule has an optional Name, the multi-head Head is a onjuntionof CHR onstraints. The optional guard Guard is a onjuntion of built-inonstraints. The body Body is a onjuntion of built-in and CHR onstraints.As in Prolog syntax, a onjuntion is a sequene of onjunts separated byommata.3.2 SemantisThe delarative semantis of a CHR program P is a onjuntion of univer-sally quanti�ed logial formulas (one for eah rule) and a onsistent built{inonstraint theory whih determines the meaning of the built{in onstraintsappearing in the program. The delarative reading of a rule relates heads andbody provided the guard is true. A simpli�ation rule means that the headsare true if and only if the body is satis�ed. A propagation rule means thatthe body is true if the heads are true.The operational semantis an be desribed by a transition system. Herewe desribe it informally.A CHR onstraint is implemented as both ode and data in the onstraintstore, whih is a data struture holding onstraints. Every time a CHR on-straint is posted (exeuted) or woken (reonsidered, re-exeuted), it heksitself the appliability of the rules it appears in. Suh a onstraint is alled(urrently) ative.Heads. For eah rule, one of its heads is mathed against the onstraint.Mathing sueeds if the onstraint is an instane of the head, i.e. the headserves as a pattern. If mathing sueeded and a rule has more than onehead, the onstraint store is searhed for the onstraints that math the otherheads. If the mathing sueeds, the guard is exeuted. Otherwise the nextrule is tried.islip99-hr: submitted to World Sienti� on September 16, 1999 4



Guard. A guard is a preondition on the appliability of a rule. Theguard either sueeds or fails. A guard sueeds if the exeution sueedswithout ausing an instantiation error and without touhing a variable fromthe heads. A variable is touhed if gets more onstrained by a built-in on-straint. If the guard sueeds, the rule applies, one ommits to it and it �res.Otherwise it fails and the next rule is tried.Body. If the �ring CHR is a simpli�ation rule, the mathed onstraintsare removed from the store and the body of the CHR is exeuted. If the�ring CHR is a propagation rule the body of the CHR is exeuted withoutremoving any onstraints. It is remembered that the propagation rule �red,so it will not �re again with the same onstraints. When the urrently ativeonstraint has not been removed, the next rule is tried.(Re-)Try. If all rules have been tried and the ative onstraint has notbeen removed, it suspends (waits, delays) until a variable ourring in theonstraint is touhed. Here suspension means that the onstraint is insertedinto the onstraint store as data. When a onstraint is woken, all its rules aretried again.We require that the rules are applied fairly, i.e. that every rule that is ap-pliable is applied eventually. Fairness is respeted and trivial non-terminationis avoided by applying a propagation rule at most one to the same on-straints. A more omplex operational semantis that addresses these issuesan be found in12.4 Constraint SolversIn this setion we introdue onstraint solvers for Booleans (propositionallogi), �nite interval domains inremental path onsisteny, temporal rea-soning, for solving linear polynomials and for terminologial reasoning. Fordetails on the onstraint solvers analysed here see7 and the CHR web pages:www.pst.informatik.uni-muenhen.de/�fruehwir/hr-intro.htmlWhile we annot - within the spae limitations - introdue eah onstraintdomain in detail, we still an give an idea how one implements it using CHR.The usual abstrat formalism to desribe a onstraint system, i.e. inferenerules, rewrite rules, sequents, formulas expressing axioms and theorems, anbe written as CHR in a straightforward way. Starting from this exeutablespei�ation, the rules an be re�ned and adapted to the spei�s of theappliation.Note that any solver written with CHR will be determinate, inrementaland onurrent by nature. By \determinate" we mean that the user-de�nedsolver ommits to every onstraint simpli�ation it makes. By \inremen-islip99-hr: submitted to World Sienti� on September 16, 1999 5



tal" we mean that onstraints an be added to the onstraint store one at atime (without a�eting omputational ost). The rules an be applied onur-rently to di�erent onstraints, beause logially orret CHR an only replaeonstraints by equivalent ones or add redundant onstraints.4.1 Boolean Algebra, Propositional LogiThe domain of Boolean onstraints inludes the onstants 0 for falsity, 1for truth and the usual logial onnetives of propositional logi, e.g. and,or, neg, imp, exor, modeled here as relations instead of funtions. Wean de�ne an and onstraint using value propagation, a speial ase of aronsisteny. For more sophistiated algorithms see13.and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the onstraint and(X,Y,Z), when it isknown that the �rst input argument X is 0, an be redued to asserting thatthe output Z must be 0. Hene the query and(X,Y,Z),X=0 will result in X=0,Z=0.Example 4.1 Consider the prediate add taken from the well-known full-adder iruit. It adds three single digit binary numbers to produe a singlenumber onsisting of two digits:add(I1,I2,I3,O1,O2) <=>xor(I1,I2,X1), and(I1,I2,A1),xor(X1,I3,O2), and(I3,X1,A2),or(A1,A2,O1).The query add(I1,I2,I3,O1,O2),I3=0,O1=1 will redue toI3=0,O1=1,I1=1,I2=1,O2=0. The omputation proeeds as follows:Beause I3=0, the output A2 of the and-gate with input I3 must be 0. AsO1=1 and A2=0, the other input A1 of the or-gate must be 1. Beause A1 isalso the output of an and-gate, its inputs I1 and I2 must be both 1. Henethe output X1 of the �rst xor-gate must be 0, and therefore also the outputO2 of the seond xor-gate must be 0. The query add(1,1,I3,O1,O2) reduesto I3=O2,O1=1.islip99-hr: submitted to World Sienti� on September 16, 1999 6



This example illustrated the power of this simple but inomplete solver.Inompleteness means that the solver is too weak detet unsatis�ability in allases. To ahieve ompleteness, searh must be employed. This is done by try-ing to the values 0 or 1 for a variable, then by employing the onstraint solveragain. This is repeated till a solution onsisting only of syntati equalities isfound or unsatis�ability is deteted due to ontraditing variable bindings.4.2 Terminologial ReasoningTerminologial formalisms (aka desription logis) are used to represent theterminologial knowledge of a partiular problem domain on an abstrat logi-al level. To desribe this kind of knowledge, one starts with atomi oneptsand roles, and then de�nes new onepts and their relationship in terms ofexisting onepts and roles. Conepts an be onsidered as unary relationssimilar to types. Roles orrespond to binary relations over objets. Althoughthere is an established notation for terminologies, we use a more verbose syn-tax to help readers not familiar with the formalism.De�nition 4.1 Conept terms are de�ned indutively: Every onept (name) is a onept term. If s and t are onept terms and r is a role (name), thenthe following expressions are also onept terms:s and t (onjuntion), s or t (disjuntion), nota s (omplement),every r is s (value restrition), some r is s (exists-in restri-tion).Objets are onstants or variables. Let a, b be objets, r a role, and  aonept term. Then a : s is a membership assertion and (a; b) : r is a role-�llerassertion. An A-box is a onjuntion of membership and role-�ller assertions.De�nition 4.2 A terminology (T-box) onsists of a �nite set of onept def-initions isa s,where  is a newly introdued onept name and s is a onept term.Sine the onept  is new, it annot be de�ned in terms of itself, i.e. on-ept de�nitions are ayli (non-reursive). This also implies that there areonepts without de�nition, they are alled primitive.Example 4.2 The domain of a on�guration appliation omprises at leastdevies, interfaes, and on�gurations. The onept de�nitions express thatthese onepts are disjoint:islip99-hr: submitted to World Sienti� on September 16, 1999 7



interfae isa nota devie.onfiguration isa nota (interfae or devie).Assume that a simple devie has at least one interfae. We introdue a roleonnetor whih relates devies to interfaes and employ the exists-in restri-tion.simple devie isa devie and some onnetor isinterfae.We introdue instanes of devies and interfaes as onstraints:p:devie, rs231:interfae, (p,rs231):onnetorThe CHR onstraint solver for terminologies enodes the T-box by rulesand the A-box as CHR onstraints, sine we want to solve problems over agiven terminology (T-box). A similar solver is desribed in14. The unfoldingand ompletion rules16 and the propagation rules15 for the onsisteny testtranslate almost diretly to CHR _However, the former work does not providean inremental algorithm and the latter does not simplify onstraints.The onsisteny test of A-boxes simpli�es and propagates the assertionsin the A-box to make the knowledge more expliit and looks for obviousontraditions (\lashes") suh as X : devie, X : nota devie. This isexpressed by the rule:I : nota S, I : S <=> false:The following simpli�ation CHR show how the omplement operator notaan be pushed towards to the leaves of a onept term:I : nota nota S <=> I : S.I : nota (S or T) <=> I : nota S and nota T.I : nota (S and T) <=> I : (nota S or nota T).I : nota (every R is S) <=> I : some R is nota S.I : nota some R is S <=> I : every R is nota S.An exists-in restrition generates a new variable that serves as a \witness" forthe restrition:I : some R is S <=> (I,J) : R, J : S.A value restrition has to be propagated to all role �llers:I : every R is S, (I,J) : R ==> J : S.islip99-hr: submitted to World Sienti� on September 16, 1999 8



The unfolding rules replae onept names by their de�nitions. For eahonept de�nition C isa S two rules are introdued:I : C <=> I : S.I : nota C <=> I : nota S.The onjuntion rule generates two new, smaller assertions:I : S and T <=> I : S, I : T.The rules simplify terminologial onstraints until a normal form isreahed. The normal form is either false (inonsistent) or ontains on-straints of the form I : C, I : nota C, I : S or T, I : every R is Sand (I,J) : R, where C is a primitive onept name. There are no lashesand the value restrition has been propagated to every objet. To ahieveompleteness, searh must be employed. This is done by splitting I : S orT into two ases, I : S and I: T.4.3 Linear Polynomial EquationsThe initial motivation for introduing onstraints in logi programming lan-guages (Prolog) was the non-delarative nature of the built-in prediates forarithmeti omputations. Therefore, from the very beginning, CLP languagesinluded onstraint solving for linear polynomial equations and inequationsover reals (CLP(R)17) or rationals (Prolog-III18, CHIP8) adopting variantsof variable elimination alogrithms like Gaussian elimination and the Simplexalgorithm19. The theory underlying this onstraint system is that of reallosed �elds, whih overs linear and non-linear polynomials and was shownto be deidable by Tarski.De�nition 4.3 A linear polynomial equation is of the form p+ b = 0 whereb is a onstant and the polynomial p is the sum of monomials of the formai � xi with oeÆient ai 6= 0 and xi is a variable. Constants and oeÆientsare numbers. Variables are totally ordered. In an equation a1 �x1+ : : :+an �xn + b = 0, variables appear in stritly desending order.In onstraint logi programming, onstraints are added inrementally.Therefore we annot eliminate a variable in all other equations at one, butrather onsider the other equations one by one. A simple solved form anexhibit unsatis�ability: It is enough if the left-most variable of eah equationis the only left-most ourrene of this variable. Therefore the two rules be-low implement a omplete and eÆient solver for linear equations over bothoating point numbers (to approximate real numbers) and rational numbers.islip99-hr: submitted to World Sienti� on September 16, 1999 9



empty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.The empty rule says that if the polynomial ontains no more variables, theonstant B must be zero. The eliminate rule performs variable elimination.It takes two equations that start with the same variable. The �rst equation isleft unhanged, it is used to eliminate the ourrene of the ommon variablein the seond equation. The auxiliary built-in onstraint ompute simpli�esa polynomial arithmeti expression into a new polynomial. Note that novariable is made expliit, i.e. no pivoting is performed. Any two equationswith the same �rst variable an reat with eah other. Therefore, the solveris highly onurrent and distributed.The solver an be extended by a few rules to reate expliit variablebindings, to make impliit equalities between variables expliit, to deal withinequations using slak variables as in the Simplex algorithm or fouriers algo-rithm.Non-linear polynomial onstraints appear e.g. in modelling physial pro-esses and in geometri reasoning for spatial databases and robot motionplanning. To takle non-linear polynomials, tehniques like Groebner Basesover omplex numbers (CAL20) and Partial Cylindrial Algebrai Deomposi-tion (RISC-CLP(Real)21) have been used. Another approah is to use intervalarithmeti as in CLP(BNR)22, Numeria23. This approah an basially beseen as a sophistiated extension of �nite interval domains (desribed below)to the reals and to non-linear polynomials.4.4 Path ConsistenyIn this setion we introdue onstraint solvers that implement instanes ofthe lassial arti�ial intelligene algorithm of path onsisteny to simplifyonstraint satisfation problems24.De�nition 4.4 A binary onstraint network onsists of a set of variables anda set of (disjuntive) binary onstraints between them. The network an berepresented by a direted onstraint graph, where the nodes denote variablesand the ars are labeled by binary onstraints. Logially, a network is aonjuntion of binary onstraints.De�nition 4.5 A disjuntive binary onstraint xy between two variables Xand Y , also written X fr1; : : : ; rng Y , is a �nite disjuntion (X r1 Y ) _ : : : _islip99-hr: submitted to World Sienti� on September 16, 1999 10



(X rn Y ), where eah ri is a relation that is appliable to X and Y . Theri are alled primitive onstraints. The onverse of a primitive onstraint rbetween X and Y is the primitive onstraint s that holds between Y and Xas a onsequene.For example, A f<g B;A f<;>g B;A f<;=; >g B are disjuntive binaryonstraints AB between A and B. A f<gB is the same as A < B, A f<;>gBis the same as A 6= B. Finally, A f<;=; >g B does not impose any restritionson A and B, the onstraint is redundant. Usually, the number of primitiveonstraints is �nite and they are pairwise disjoint. We will asume this in thefollowing.De�nition 4.6 A network is path onsistent if for pairs of nodes (i; j) andall paths i� i1� i2 : : : in� j between them, the diret onstraint ij is at leastas tight than the indiret onstraint along the path, i.e. the omposition ofonstraints ii1 
 : : :
 inj along the path.It follows from the de�nition of path onsisteny that we an intersetthe diret and indiret onstraint to arrive at a tighter diret onstraint. Letintersetion be denoted by the operator �. A graph is omplete if there is apair of ars, one in eah diretion, between every pair of nodes. If the graphunderlying the network is omplete it suÆes to repeatedly onsider pathsof length 2 at most: For eah triple of nodes (i; k; j) we repeatedly omputeij := ij � (ik 
 kj) until a �xpoint is reahed. This is the basi pathonsisteny algorithm.Example 4.3 Given I � K ^ K � J ^ I � J and taking the triple (i; j; k),ik 
 kj results in I � J and the result of interseting it with ij is I = J .From (j; i; k) we get J = K (we an ompute ji as the onverse of ij). From(k; j; i) we get K = I . Another round of omputation auses no more hange,so the �xpoint is reahed with J = K ^ K = I .Sine path onsisteny is an inomplete algorithm, searh must be em-ployed by hoosing a primitive onstraint from a set of disjuntive onstraints.Let the onstraint ij be represented by the CHR onstraint (I,J,C)where I and J are the variables and C is a set of primitive onstraints repre-senting . The basi operation of path onsisteny, ij := ij � (ik
 kj), anbe implemented diretly by the rule:path_onsisteny �(I,K,C1), (K,J,C2), (I,J,C3) <=>omposition(C1,C2,C12), intersetion(C12,C3,C123),C123=\=C3 |(I,K,C1), (K,J,C2), (I,J,C123).islip99-hr: submitted to World Sienti� on September 16, 1999 11



The operations 
 and � are implemented by the built-in onstraintsomposition and intersetion. Composition of disjuntive onstraints anbe omputed by pairwise omposition of its primitive onstraints. Intersetionfor disjuntive onstraints an be implemented by set intersetion. C123=�C3ensures that the newly produed onstraint is di�erent to (and thus smallerthan) the previous one.Temporal ReasoningFollowing the framework of Meiri25, temporal reasoning is a onstraint satis-fation problem about the loation of temporal variables along the time lineusing path onsisteny and baktrak searh. The framework integrates mostforms of temporal relations - qualitative and quantitative (metri) over timepoints and intervals - by onsidering them as disjuntive binary onstraints.We quikly introdue the temporal onstraints available.Qualitative Point Constraints26. Variables represent time points andthere are three primitive onstraints<;=; >. Composition of a onstraint withitself or equality yields the onstraint again, any other omposition yields theredundant onstraint.Quantitative Point Constraints27. The primitive onstraints restritthe distane of two time points X and Y to be in an interval a : b, i.e.a � (Y � X) � b, where a and b are signed numbers or 1. Note thatthere is an in�nite number of primitive quantitative onstraints and that theyan overlap. The omposition of the intervals a : b with  : d results in(a+ ) : (b+ d), and the intersetion in max(a; ) : min(b; d).Interval Constraints28. There are 13 primitive onstraints possiblebetween two intervals, equality and 6 other relations with their onverses.These onstraints an be de�ned in terms of the end-points of the intervals.Let I=[X,Y℄, J=[U,V℄. Notationally, we abbreviate hains of (in)equalitiesbetween variables.I equals J if X=U<Y=V. I before J if X<Y<U<V.I during J if U<X<Y<V. I overlaps J if X<U<Y<V.I meets J if X<Y=U<V. I starts J if X=U<Y<V.I finishes J if U<X<Y=V.equals,after,ontains,overlapped by,started by,finished by are theonverses.Point - Interval Constraints25. There are 5 possible primitive on-straints between a point and an interval. Let X be a point, J = [U,V℄ aninterval.islip99-hr: submitted to World Sienti� on September 16, 1999 12



X pbefore J if X<U<V.X pafter J if U<V<X. X pduring J if U<X<V.X pstarts J if X=U<V. X pfinishes J if U<X=V.The onverses express interval-point onstraints.Relating Constraints of Di�erent Types29. Qualitative time pointonstraints an be mapped into quantitative point onstraints, while quanti-tative onstraints an only be approximated by qualitative onstraints. Pointsan be represented by end-points of intervals and interval onstraints an beapproximated by onstraints on their endpoints. These mappings are used tosolve heterogeneous onstraints over the same variables.We an instantiate the generi path onsisteny solver of the previous se-tion by de�ning the intersetion and omposition operations for the temporalonstraints desribed above. The implementation is desribed in detail andwith variations in30.Example 4.4 The onstraints on intervals X, Y, Z(X,Y,fpbefore,pstartsg), (X,Z,fpstarts,pduringg),(Y,Z,fbefore,ontains,afterg)an be tightened by path onsisteny to(X,Y,fbeforeg), (Z,Y,fbeforeg), (X,Z,fstarts,duringg),while the onstraints on points U, V and on intervals Y, Z(V,U,f0-1,3-4g), (U,Y,fpbefore,pstartsg),(Z,V,fpontains,pstarted byg), (Y,Z,fbefore,ontainsg)turn out to be inonsistent.4.5 Finite domainsFinite domains appeared �rst in CHIP31, more reent and more advanedCLP languages are lp(FD)32 and (FD)33. Sine integers are used as do-main, some arithmeti is possible. The theory underlying this onstraint do-main is Presburgers arithmeti. It axiomatizes the linear fragment of integerarithmeti and is deidable. The onstraint X in Dom means that the valuefor the variable X must be in the given �nite domain Dom. More preisely, ifDom is an� enumeration domain, Set, then X is an integer in the set Set,� interval domain, Min:Max, then X is an integer between Min and Max.islip99-hr: submitted to World Sienti� on September 16, 1999 13



The di�erene between an interval domain and an enumeration domain isthat in the former onstraint simpli�ation is performed only on the intervalbounds, while in the latter onstraint simpli�ation is performed on eahelement in the enumeration. Thus enumeration domains allow more onstraintsimpli�ation but on the other hand are only tratable for suÆiently smallenumerations.For spae limitations, we only onsider interval domains here. The follow-ing rules implement an ar onsisteny algorithm for interval onstraints. Aronsisteny an be seen as speial ase of path onsisteny, where all but oneonstraint is unary instead of binary. Like path onsisteny, this algorithmis inomplete. Searh an be employed for ompleteness by hoosing valuesfrom the intervals or by splitting them.% Intervalsinonsistent � X in A:B <=> A>B | false.intersetion � X in A:B, X in C:D <=> X in max(A,C):min(B,D).% (In)equalitiesle � X le Y, X in A:B, Y in C:D <=> B>D |X le Y, X in A:D, Y in C:D.le � X le Y, X in A:B, Y in C:D <=> C<A |X le Y, X in A:B, Y in A:D.eq � X eq Y, X in A:B, Y in C:D <=> A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.eq � X eq Y, X in A:B, Y in C:D <=> B=\=D |X eq Y, X in A:min(B,D), Y in C:min(D,B).% Addition X+Y=Zadd � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>not (A>=E-D,B=<F-C, C>=E-B,D=<F-A, E>=A+C,F=<B+D) |add(X,Y,Z), X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).The guards ensure that a rule is only applied if at least one interval getssmaller. For example, givenA in 1:3, B in 2:4, C in 0:4, add(A,B,C)the add rule adds the interval onstraintsA in -1:2, B in 0:3, C in 3:7islip99-hr: submitted to World Sienti� on September 16, 1999 14



and after some intersetion we arrive at:add(A,B,C), A in 1:2, B in 2:3, C in 3:4The rules above an be modi�ed to work for intervals of real numbers: Toavoid non-termination, intervals that are too small are not onsidered by therules anymore.5 ConlusionsWe desribed how onstraints are solved in onstraint logi programming. Todesribe the algorithms at a high, abstrat level, we used Constraint HandlingRules (CHR), a delarative language extension espeially designed for writinguser-de�ned onstraints.While existing solvers are usually about datastrutures and their opera-tions (e.g. �nite domains, Booleans, numbers), CHR open the way for moregeneri (e.g. path onsisteny) and more oneptual onstraint solvers (e.g.temporal, spatial and terminologial reasoning). Indeed, CHR have been usedsuessfully in hallenging appliations, where other existing CLP systemsould not be applied with the same results in terms of simpliity, exibilityand eÆieny.Referenes1. P. van Hentenryk, H. Simonis and M. Dinbas, Constraint SatisfationUsing Constraint Logi Programming, Arti�ial Intelligene, 58(1-3):113{159, Deember 1992.2. T. Fr�uhwirth, A. Herold, V. K�uhenho�, T. Le Provost, P. Lim, E. Mon-froy and M. Wallae. Constraint Logi Programming - An Informal In-trodution, Chapter in Logi Programming in Ation, Springer LNCS636, September 1992.3. J. Ja�ar and M. J. Maher, Constraint Logi Programming: A Survey,Journal of Logi Programming 19,20:503-581, 1994.4. T. Fr�uhwirth and S. Abdennadher, Constraint-Programmierung (in Ger-man), Textbook, Springer Verlag, Heidelberg, Germany, September 1997.5. K. Marriott and P. J. Stukey, Programming with Constraints, MITPress, USA, Marh 1998.6. S. Abdennadher, T. Fr�uhwirth and H. Meuss, Conuene and Semantisof Constraint Simpli�ation Rules, Journal Constraints, Volume 4, Issue2, Kluwer Aademi Publishers, May 1999.islip99-hr: submitted to World Sienti� on September 16, 1999 15
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