
TWO SEMANTICS FOR TEMPORAL ANNOTATEDCONSTRAINT LOGIC PROGRAMMINGALESSANDRA RAFFAET�ADipartimento di Informatia, Universit�a di PisaCorso Italia, 40, I-56125 Pisa, Italyra�aeta�di.unipi.itTHOM FR�UHWIRTHInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at (LMU)Oettingenstrasse 67, D-80538 Munih, Germanyfruehwir�informatik.uni-muenhen.dewww.pst.informatik.uni-muenhen.de/�fruehwir/We investigate the semantis of a onsiderable subset of Temporal Annotated Con-straint Logi Programming (TACLP), a lass of languages that allows us to reasonabout qualitative and quantitative, de�nite and inde�nite temporal information us-ing time points and time periods as labels for atoms. TACLP is given two di�erentkinds of semantis, an operational one based on meta-logi (top-down semantis)and a �xpoint one based on an immediate onsequene operator (bottom-up se-mantis).1 IntrodutionTemporal reasoning is at the heart of human ativity and not surprisingly ithas raised a lot of interest in omputer siene, be it in the form of tempo-ral logis 1;2;3, temporal programming languages 4;5;6;7;8;9;10;11 or temporaldatabases 12;13;14;15;16;17;18. No matter if one programs with temporal infor-mation or stores data with temporal information, in most ases the formalunderpinnings will be logi, and often be variants or extensions of �rst orderlogi.In a logial formulation and formalization of temporal information andreasoning it is quite natural to think of formulae that are labelled with tem-poral information and about proof proedures that take into aount theselabels 19. In our ase, the logi and the labels are familiar strutures: First-order logi (FOL) and latties. The labels are alled annotations, and theoverall lass of logis is alled annotated logis 20. Based on this frameworkand on onstraint logi programming onepts 21;22;23;24;25, the family of tem-poral annotated onstraint logi programming (TACLP) languages has beendeveloped in 26;27;11;28;29.The piees of temporal information are given by temporal annotationsislip99-pro: submitted to World Sienti� on September 8, 1999 1



whih say at what time(s) the formula to whih they are applied is valid.The annotations of TACLP make time expliit but avoid the proliferation oftemporal variables and quanti�ers of the �rst order approah. In this way,TACLP supports qualitative and quantitative (metri) temporal reasoning in-volving both time points and time periods (time intervals) and their duration.Moreover, it allows us to represent de�nite, inde�nite and periodi temporalinformation.In 11 TACLP is presented as an instane of annotated onstraint logi(ACL) for reasoning about time. ACL is a generalization of generalized anno-tated programs 20;30, and extends �rst-order languages with a distinguishedlass of prediates, alled onstraints, and a distinguished lass of terms, alledannotations, used to label formulae. Moreover ACL provides inferene rulesfor annotated formulae and a onstraint theory for handling annotations. Oneadvantage of a language in the ACL framework is that its lausal fragmentan be eÆiently implemented: Given a logi in this framework, there is asystemati way to make a lausal fragment exeutable as a onstraint logiprogram. Both an interpreter and a ompiler an be generated and imple-mented in standard onstraint logi programming languages.Constraint logi programming (CLP ) 21;22;23;24;25 is an extension of logiprogramming, where in addition to ordinary prediates, whih are de�ned bylauses and reasoned about by resolution (a form of Modus Ponens), thereis a distinguished lass of prediates alled onstraints. Their meaning is de-�ned by a onstraint theory whose reasoning apability is implemented bysome eÆient algorithm in the so-alled onstraint solver. In this way, eÆ-ient speial-purpose algorithms an be integrated in a sound way into logiprogramming.Overview of the paper. In this paper, the TACLP language is given twodi�erent kinds of semantis, an operational one based on meta-logi (top-down semantis) using a meta-interpreter and a �xpoint one obtained byextending the de�nition of the immediate onsequene operator of CLP todeal with annotated atoms (bottom-up semantis). The full, revised paperof this artile ontains soundness and ompleteness proofs relating the twosemantis presented here 31.The paper is organized as follows. Setion 2 introdues the TACLP frame-work. Setion 3 de�nes the two semantis for TACLP. Setion 4 presentsrelated work and Setion 5 onludes the paper.
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2 Temporal Annotated Constraint Logi ProgrammingThis subsetion briey reviews TACLP. In this paper, we onsider the subsetof TACLP, where time points are totally ordered, sets of time points are onvexand non-empty, and only atomi formulae an be annotated. Moreover lausesare free of negation. These restritions will beome lear during this setion.For a more detailed treatment of TACLP and for the general theory of ACLwe refer the reader to 11.An annotated formula is of the form A� where A is a �rst order formulaand � an annotation. In TACLP, there are three kinds of annotations basedon (sets of) time points. Let t be a time point and let I be a set of timepoints.(at) The annotated formula A at t means that A holds at time point t.(th) The annotated formula A th I means that A holds throughout, i.e., atevery time point in the set I . The de�nition of a th-annotated formulain terms of at is: A th I , 8t (t 2 I ! A at t):(in) The annotated formula A in I means that A holds at some time point(s)- but we do not know exatly when - in the set I . The de�nition of anin-annotated formula in terms of at is:A in I , 9t (t 2 I ^ A at t):The in temporal annotation aounts for inde�nite temporal information.The set of annotations is endowed with a partial order relation v whihturns it into a lattie. Given two annotations � and �, the intuition is that� v � if � is \less informative" than � in the sense that for all formulae A,A � ) A �.More preisely, being an instane of ACL, in addition to Modus Ponens,TACLP has two further inferene rules: The rule (v) and the rule (t). Therule (v) states that if a formula holds with some annotation, then it alsoholds with all annotations that are smaller aording to the lattie ordering.The rule (t) says that if a formula holds with some annotation and the sameformula holds with another annotation then it holds with the least upperbound of the annotations. These three inferene rules an be merged into asingle rule alled A-resolution:A � B (A �  B)  v (� t �)A  (A-Resolution)islip99-pro: submitted to World Sienti� on September 8, 1999 3



Time an be disrete or dense. Time points are totally ordered by therelation �. We all the set of time points D. We assume that the time-lineis left-bounded by the number 0 and open to the future, with the symbol 1used to denote a time point that is later than any other. A time period is aninterval [r; s℄ with 0 � r � s � 1; r 2 D; s 2 D that represents the onvex,non-empty set of time points ft j r � t � sg. Thus the interval [0;1℄ denotesthe whole time line.The onstraint theory for temporal annotations over time points and timeperiods ontains an axiomatization of the total order relation � on D and thefollowing axioms de�ning the partial order on temporal annotations:(at th) at t = th [t; t℄(at in) at t = in [t; t℄(th v) th [s1; s2℄ v th [r1; r2℄ , r1 � s1; s1 � s2; s2 � r2(in v) in [r1; r2℄ v in [s1; s2℄ , r1 � s1; s1 � s2; s2 � r2The �rst two axioms state that th I and in I are equivalent to at t when thetime period I onsists of a single time point t. Next, if a formula holds at everyelement of a time period, then it holds at every element in all sub-periods ofthat period ((th v) axiom). On the other hand, if a formula holds at somepoints of a time period then it holds at some points in all periods that inludethis period ((in v) axiom).To summarize the partial order relation on annotations, the axioms anbe arranged in the following hain, assuming r1 � s1; s1 � s2; s2 � r2:in [r1; r2℄ v in [s1; s2℄ v in [s1; s1℄ = at s1 == th [s1; s1℄ v th [s1; s2℄ v th [r1; r2℄Now we axiomatize the least upper bound t of temporal annotationsover time points and time periods. As explained in 11, the annotations arenot losed under t. From a theoretial point of view, this problem an beoverome via a losure operation whih inludes in the lattie expressions witht. In pratie, it suÆes to onsider the least upper bound for time periodsthat produe a di�erent time period. Therefore we an restrit ourselves to thannotations with overlapping time periods that do not inlude one another:(tht) th [s1; s2℄ t th [r1; r2℄ = th [s1; r2℄ , s1 < r1; r1 � s2; s2 < r2:We an now de�ne the lausal fragment of TACLP that an be used asan eÆient temporal programming language. A TACLP program is a �niteset of ACL lauses. A TACLP lause is a TACLP formula of the form:A� C1; : : : ; Cn; B1 �1; : : : ; Bm �m (n;m � 0)islip99-pro: submitted to World Sienti� on September 8, 1999 4



where A is an atom (not a onstraint), � and �i are (optional) temporalannotations, the Cj 's are the onstraints and the Bi's are atomi formulae.Constraints Cj annot be annotated. As in logi programming syntax, om-mas \;" denote onjuntions. The onlusion of the impliation is alled thehead of the lause and the premise the body of the lause. Variables in a lauseare impliitly assumed to be universally quanti�ed at the outermost sope.In 28 TACLP is suessfully applied to a system for alulating the liquidow in a network of water tanks from some events speifying when the tapswere swithed on and o�. The following example involving ontinuous hangeis also presented.Example 1 We model information about the growth of trees.1. Tree 1 sprouts at time 3:5 (the middle of year 3).sprouts(Tree1 ) at 3:5:2. Tree 1 is an oak tree.tree type(Tree1 ;Oak):3. The growth rate of oak trees is 3 meters per year.growth rate(Oak ; 3 ):4. If a tree is of a type that has a given growth rate r, and the tree sproutsat time s then at time t it has a height, where h = (t� s)� r .height(tree; h) at t h = (t� s)� r ;tree type(tree; type); growth rate(type; r);sprouts(tree)at s5. If a tree has height h m at time t, where h � 6:75, then it is mature.mature(tree)th [t;1℄ h � 6:75; height(tree; h) at tIn the last lause, the maturity of the tree at an instant is implied by a on-straint on the height of the tree at that instant. Height is the ontinuouslyhanging quantity. The querymature(Tree1 ) th [6; 7℄an be proved. This means that Tree1 is mature throughout the time periodwhih begins at year 6 and ends at year 7.The query mature(Tree1 ) th [t1; t2℄ yields t1 � 5:75; t2 =1.islip99-pro: submitted to World Sienti� on September 8, 1999 5



3 Semantis of TACLPIn this setion we de�ne the operational (top-down) semantis of the languageTACLP by presenting a meta-interpreter for it. Then we provide TACLP witha �xpoint (bottom-up) semantis, based on the de�nition of an immediateonsequene operator.In the de�nition of the semantis, without loss of generality, we assumeall atoms to be annotated with th or in labels. at t annotations an bereplaed with th [t; t℄ by exploiting the (at th) axiom. Eah atom whih is notannotated in the objet level program is intended to be true throughout thewhole temporal domain, and thus an be labelled with th [0;1℄. Constraintsstay unhanged.3.1 Operational Semantis via Meta-InterpreterThe vanilla meta-interpreter 32 is the simplest appliation of meta-pro-gramming in logi. A general formulation of the vanilla meta-interpreteran be given by means of the demo prediate used to represent provability.demo(g) means that the formula g is provable in the objet program.demo(Empty):demo((b1; b2))  demo(b1); demo(b2)demo(a)  lause(a; b); demo(b)The unit lause states that the empty goal, represented by the onstant symbolEmpty , is always solved. The seond lause deals with onjuntive goals. Itstates that a onjuntion (B1; B2) is solved if B1 is solved and B2 is solved.Finally, the third lause deals with the ase of atomi goal redution. To solvean atomi goal A, a lause from the program is hosen whose head uni�es withA and the body of the lause is reursively solved. An objet level program Pis represented at the meta-level by a set of axioms of the kind lause(A;B),one for eah objet level lause A B in P .The extended meta-interpreter for our subset of TACLP is de�ned by thefollowing lauses: demo(Empty): (1)demo((b1; b2)) demo(b1); demo(b2) (2)demo(a th [t1; t2℄) s1 � t1; t2 � s2; t1 � t2;lause(a th [s1; s2℄; b); demo(b) (3)islip99-pro: submitted to World Sienti� on September 8, 1999 6



demo(a th [t1; t2℄) s1 � t1; t1 < s2; s2 < t2;lause(a th [s1; s2℄; b); demo(b); demo(a th [s2; t2℄) (4)demo(a in [t1; t2℄) t1 � s2; s1 � t2; t1 � t2;lause(a th [s1; s2℄; b); demo(b) (5)demo(a in [t1; t2℄) t1 � s1; s2 � t2;lause(a in [s1; s2℄; b); demo(b) (6)demo() onstraint();  (7)A lause A�  B of a TACLP program P is represented at the meta-levelby lause(A�;B) t1 � t2: (8)where � = th [t1; t2℄ or � = in [t1; t2℄.This meta-interpreter an be written in any CLP language that provides asuitable onstraint solver for temporal annotations (see Setion 2 for the on-straint theory). Hene the �rst di�erene with the vanilla meta-interpreter isthat our meta-interpreter handles onstraints whih an either our expli-itly in its lauses, e.g. s1 � t1; t1 � t2; t2 � s2 in lause (3), or an ome fromthe resolution steps. The latter kind of onstraints is managed by lause (7)whih passes eah onstraint C to be solved diretly to the onstraint solver.The seond di�erene is that our meta-interpreter implements not onlyModus Ponens but the more powerful A-resolution rule, whih is the ombi-nation of Modus Ponens itself with rule (v) and rule (t). This is the reasonwhy the third demo lause of the vanilla meta-interpreter is now split into fourlauses. Clauses (3), (5) and (6) implement the inferene rule (v): The atomigoal to be solved is required to be labelled with an annotation whih is smallerthan the one labelling the head of the lause used in the resolution step. Forinstane, lause (3) states that given a lause A th [s1; s2℄  B whose bodyB is solvable, we an derive the atom A annotated with any th [t1; t2℄ suhthat th [t1; t2℄ v th [s1; s2℄, i.e., aording to axiom (th v), [t1; t2℄ � [s1; s2℄,as expressed by the onstraint s1 � t1; t2 � s2; t1 � t2. Clauses (5) and (6)are built in an analogous way by exploiting axioms (in th v) and (in v),respetively.Rule (t) is implemented by lause (4). Aording to the disussion in Se-tion 2, it is appliable only to th annotations with overlapping time periodswhih do not inlude one another. More preisely, lause (4) states that if wean �nd a lause A th [s1; s2℄  B suh that the body B is solvable, and ifmoreover the atom A an be proved throughout the time period [s2; t2℄ (i.e.,islip99-pro: submitted to World Sienti� on September 8, 1999 7



demo(A th [s2; t2℄) is solvable) then we an derive the atom A labelled withany annotation th [t1; t2℄ v th [s1; t2℄. The onstraints on temporal variablesensure that the time period [t1; t2℄ is a new time period di�erent from [s1; s2℄and [s2; t2℄ and their subintervals.Finally, in the meta-level representation of objet lauses, lause (8), wehave to add the onstraint t1 � t2 to ensure that the head of the objet lausehas a well-formed, namely non-empty, annotation.Example 2 Consider a library database ontaining information about loans.Mary �rst borrowed the book Hamlet from May 12, 1995 to June 12, 1995 andthen on June 12, 1995 she extended her loan:borrow(Mary ;Hamlet) th [May 12 1995 ; Jun 12 1995 ℄.borrow(Mary ;Hamlet) th [Jun 12 1995 ;Aug 1 1995 ℄.The period of time in whih Mary borrowed Hamlet an be obtained by thequerydemo(borrow(Mary ;Hamlet) th [t1; t2℄):By using lause (4), we an derive the interval [May 12 1995 ;Aug 1 1995 ℄(more preisely, the onstraints May 12 1995 � t1, t1 < Jun 12 1995 ,Jun 12 1995 < t2, t2 � Aug 1 1995 are derived) that otherwise would benever generated. In fat, by applying lause (3) alone, it is possible to proveonly that Mary borrowed Hamlet in the intervals [May 12 1995 ; Jun 12 1995 ℄and [Jun 12 1995 ;Aug 1 1995 ℄ separately.In 11 a ompiler for TACLP has been de�ned by means of a ompilationfuntion omp whih translates an annotated formula into its CLP form. Theessential step is the inlusion of the temporal annotation of an atom in theorresponding prediate as an extra-argument.omp(p(t1; : : : ; tn)�) = p(t1; : : : ; tn; �).Now we an basially read o� the other rules of the translation funtion ompdiretly from the meta-interpreter de�ned in the previous setion.A onstraint C is ompiled into itself, i.e., omp(C) = C, and a onjun-tion of formulae is ompiled into the onjuntion of the ompiled version ofsuh formulae, i.e. omp(B1; B2) = omp(B1); omp(B2).Finally, the ompilation of a program lause is de�ned in the followingway:� for eah lause of the form A th [s1; s2℄ B the ompiler generates threelausesislip99-pro: submitted to World Sienti� on September 8, 1999 8



{ omp(A th [t1; t2℄) s1 � t1; t2 � s2; t1 � t2; omp(B){ omp(A th [t1; t2℄)  s1 � t1; t1 < s2; s2 < t2; omp(B);omp(A th [s2; t2℄){ omp(A in [t1; t2℄) t1 � s2; s1 � t2; t1 � t2; s1 � s2; omp(B)� for eah lause of the form A in [s1; s2℄  B the ompiler generates alause{ omp(A in [t1; t2℄) t1 � s1; s1 � s2; s2 � t2; omp(B)The result of the ompilation is a standard CLP program.3.2 Fixpoint semantisThere are several ways of de�ning a bottom-up semantis of TACLP, relatedto the di�erent possible hoies of the semanti domain where the immediateonsequene operator is de�ned. The simpler solution onsists in using thepowerset }(A-basea�Ann) with set-theoreti inlusion, disregarding the par-tial order struture of the set of annotations Ann. Alternative solutions (as forgeneralized annotated programs in 20) may onsider a more abstrat domain,whih is obtained by endowing A-base�Ann with the produt order (induedby the disrete order on A-base and the order on Ann) and then by taking aselements of power domain only those subsets of annotated atoms whih sat-isfy some losure properties with respet to suh an order. For instane, onean require \downward-losedness", whih amounts to inluding subsumptionin the TP operator. Another possible property is \limit-losedness", namelythe presene of the least upper bound of all direted sets whih, from a om-putational point of view, amounts to onsider omputations whih possiblyrequire more than ! steps. For spae limitations, we treat here the �rst,simpler solution.The intended interpretation of onstraints is de�ned by �xing a strutureA. In our ase A surely ontains a struture D (with domain D) in whih weinterpret the temporal onstants and funtions. However, TACLP programsan have onstraints not only on temporal data, hene in general the strutureA will be multi-sorted.Let DomA the domain of the struture A. An A-valuation is a (multi-sorted) mapping from variables to DomA, and its natural extension mapsterms to DomA and formulae to formulae whose prediates have argumentsaThe formal de�nition of A-base is given later. Briey, it is the natural generalization ofthe notion of Herbrand Base in onstraint logi programming.islip99-pro: submitted to World Sienti� on September 8, 1999 9



ranging over DomA. An A-ground instane A0 of an atom A (resp. of aonstraint or of a lause) is obtained by applying an A-valuation to the atom(resp. to the onstraint or to the lause), thus produing a onstrut ofthe form p(a1; : : : ; an) with a1; : : : ; an elements from DomA. We denote bygroundA(P ) the set of A-ground instanes of lauses from a program P .We �rst de�ne the standard �xpoint operator of onstraint logi pro-gramming and then extend it to deal with TACLP. An A-interpretation for aCLP(A) program P is a subset of the A-base of P , written A-baseP , whih isthe set �p(a1; : : : ; an) j p is a n-ary user-de�ned prediate in Pand eah ai is an element of DomA �Then the standard immediate onsequene operator 23 for a CLP(A) programP is a funtion TAP : }(A-baseP )! }(A-baseP ) de�ned as follows:TAP (I) = �A j A  C1; : : : ; Ck; B1; : : : ; Bn;2 groundA(P );fB1; : : : ; Bng � I; A j= C1; : : : ; Ck �The operator TAP is ontinuous 23, and therefore it has least �xpoint whih anbe omputed as the least upper bound of the hain f(TAP )igi�0 of the iteratedappliations of TAP starting from the empty set.b The �xpoint is denoted by(TAP )!.To generalize the above operator to deal with temporal annotations weonsider a kind of extended interpretations, basially onsisting of sets ofannotated elements of A-base. Formally we de�ne the set of (semantial)annotationsAnn = fth [t1; t2℄; in [t1; t2℄ j t1 2 D; t2 2 D;D j= t1 � t2gThen given a TACLP program P , the lattie of interpretations is de�ned as(}(A-baseP � Ann);�) where } is the powerset operator and � is the usualrelation of set-theoreti inlusion.De�nition 1 Let P be a TACLP program, the funtion T AP : }(A-baseP �Ann)! }(A-baseP �Ann) is de�ned as follows.bFormally, for a funtion T : }(S)! }(S) we de�ne T 0 = ; and T i+1 = T (T i).islip99-pro: submitted to World Sienti� on September 8, 1999 10



T AP (I) =8>><>>:(A;�) j (� = th [s1; s2℄ _ � = in [s1; s2℄)A � C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck ; �1 v �1; : : : ; �n v �n; s1 � s2 9>>=>>;[8>><>>:(A; th [s1; r2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I; (A; th [r1; r2℄) 2 I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2;s2 < r2 9>>=>>;[8>><>>:(A; in [t1; t2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2;t1 � t2; s1 � s2 9>>=>>;This de�nition properly extends the standard de�nition of the immediateonsequene operator. In fat, in a sense, it aptures not only the ModusPonens rule, as the standard operator does, but also rule (t) (seond set inthe above de�nition). In addition, rule (v) is used to prove that an annotatedatom holds in an interpretation: To derive the head A� of a lause it is notneessary to �nd in the interpretation exatly the atoms B1 �1; : : : ; Bn �nourring in the body of the lause, but it suÆes to �nd atoms Bi �i whihimplies Bi �i, i.e., suh that eah �i is an annotation stronger than �i (A j=�i v �i). Finally, notie that T AP (I) is not downward losed, namely, it isnot true that if (A;�) 2 T AP (I) then for all (A; ) suh that  v �, we have(A; ) 2 T AP (I). However suh a losure is done at the end of the omputationof the �xpoint of T AP . In this way the A-resolution rule whih ombines ModusPonens with (t) and (v) rules is ompletely aptured.An important property of the T AP operator, whih is at the ore of thede�nition of the �xpoint semantis, is ontinuity over the lattie of interpre-tations.Theorem 1 (Continuity) Let P be a TACLP program. The funtion T APis ontinuous (on (}(A-base �Ann);�)).Proof. The proof is a diret onsequene of the de�nition of T AP and of thepartial order � on the interpretations. For more details see the full version ofthe paper 31. utThe bottom-up semantis for a program P is de�ned as the downwardislip99-pro: submitted to World Sienti� on September 8, 1999 11



losure of the least �xpoint of T AP whih by Theorem 1 is the least upperbound of the hain f(T AP )igi�0.De�nition 2 Let P be a TACLP program. Then the �xpoint semantis of Pis de�ned as FA(P ) = f(A;�) j (A; �) 2 (T AP )!; A j= � v �gwhere (T AP )! = Si�0(T AP )i.4 Related WorkIn 20, Templog 8 and an interval based temporal logi are translated intoannotated logi programs. The annotations used there orrespond to theth annotations of TACLP. To implement the annotated logi language, thepaper proposed to use \redutants", additional lauses whih are derived fromexisting lauses to express all possible least upper bounds. The problem wasthat a �nite program may generate in�nitely many suh redutants. Then,\a-resolution" for annotated logi programs was proposed 30. The idea is toompute dynamially and inrementally the least upper bounds by olletingpartial answers. Operationally this is similar to the meta-interpreter presentedhere whih relies on reursion to ollet the partial answers. However, in 30the intermediate stages of the omputation are not sound with respet to thestandard CLP semantis.Moreover, in 20 two �xpoint semantis, de�ned in terms of two di�erentoperators, are presented for generalized annotated programs (GAP). The �rstoperator, alled TP , is based on interpretations whih assoiate to eah ele-ment of the Herbrand Base of the program P a set of annotations whih is anideal, i.e., a set downward losed and losed with respet to �nite least upperbounds. The omputed ideal is the least one ontaining the annotations � ofannotated atoms A� whih are heads of (instanes of) lauses whose bodyholds in the interpretation. The other operator RP is based on interpreta-tions whih assoiate to eah atom of the Herbrand Base a single annotationwhih is the least upper bound of the set of annotations omputed as in theprevious ase. Our �xpoint operator for TACLP works similarly to the TPoperator: at eah step we lose with respet to (representable) �nite least up-per bounds, and, although we perform the downward losure only at the endof the omputation, this does not redue the set of derivable onsequenes.The main di�erene resides in the language: TACLP is an extension of CLP ,taking from GAP the handling of annotations, whih fouses on the tempo-ral aspets, whereas GAP is a general language with negation and arbitraryannotations but without onstraints.islip99-pro: submitted to World Sienti� on September 8, 1999 12



Our temporal annotations orrespond to some of the prediates proposedby Galton in 33, whih is a ritial examination of Allen's lassial work ona theory of ation and time 34. Galton provides for both time points andtime periods in dense linear time. Assuming that the intervals I are notsingletons, Galton's prediate holds-in(A,I) an be mapped into TACLP'sA in I , holds-on(A,I) into A th I , and holds-at(A,t) into A at t, where A is anatomi formula.5 ConlusionsWe investigated semantis of a onsiderable subset of the language TACLPthat allows us to reason about qualitative and quantitative, de�nite and indef-inite temporal information using time points and time periods. We de�ned theoperational (top-down) semantis of TACLP by presenting a meta-interpreterfor it. Then we provided TACLP with a �xpoint (bottom-up) semantis,based on the de�nition of an immediate onsequene operator.Here we onsidered the subset of TACLP, where time points are totallyordered, sets of time points are onvex and non-empty, and only atomi for-mulae an be annotated. Furthermore lauses are free of negation. In general,in TACLP arbitrary formulae an be annotated. In some ases, as shown in 11,the annotations an be pushed inside disjuntions, onjuntions and negation.This means that the omission of negation is the main restrition of the urrentwork. Consequently, we want to investigate next how the semantis an beadapted to deal with negation.AknowledgmentsWe thank Paolo Baldan and Roberta Gori for their useful omments andsuggestions. This work has been partially supported by Esprit Working Group28115 - DeduGIS.Referenes1. J. F. A. K. van Benthem. The logi of time: a model-theoreti inves-tigation into the varieties of temporal ontology and temporal disourse,volume 156 of Synthese Library. Reidel, Dordreht, 1983.2. A. Galton, editor. Temporal Logis and Their Appliations. AademiPress, 1987.3. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logi. ClarendonPress, Oxford, 1994.islip99-pro: submitted to World Sienti� on September 8, 1999 13
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