TWO SEMANTICS FOR TEMPORAL ANNOTATED
CONSTRAINT LOGIC PROGRAMMING

ALESSANDRA RAFFAETA
Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40, I-56125 Pisa, Italy
raffaeta@di.unipi.it

THOM FRUHWIRTH
Institut fur Informatik, Ludwig-Mazimilians-Universitat (LMU)
Oettingenstrasse 67, D-80538 Munich, Germany
fruehwir@informatik.uni-muenchen.de
www.pst.informatik.uni-muenchen.de/~ fruehwir/

We investigate the semantics of a considerable subset of Temporal Annotated Con-
straint Logic Programming (TACLP), a class of languages that allows us to reason
about qualitative and quantitative, definite and indefinite temporal information us-
ing time points and time periods as labels for atoms. TACLP is given two different
kinds of semantics, an operational one based on meta-logic (top-down semantics)
and a fixpoint one based on an immediate consequence operator (bottom-up se-
mantics).

1 Introduction

Temporal reasoning is at the heart of human activity and not surprisingly it
has raised a lot of interest in computer science, be it in the form of tempo-
ral logics 123, temporal programming languages 45:6:7:8:9:10,11 op temporal
databases '2:13:14:15,16,17,18 ' N matter if one programs with temporal infor-
mation or stores data with temporal information, in most cases the formal
underpinnings will be logic, and often be variants or extensions of first order
logic.

In a logical formulation and formalization of temporal information and
reasoning it is quite natural to think of formulae that are labelled with tem-
poral information and about proof procedures that take into account these
labels 2. In our case, the logic and the labels are familiar structures: First-
order logic (FOL) and lattices. The labels are called annotations, and the
overall class of logics is called annotated logics 2°. Based on this framework
and on constraint logic programming concepts 21:22:23:24:25 the family of tem-
poral annotated constraint logic programming (TACLP) languages has been
developed in 26:27:11,28,29,

The pieces of temporal information are given by temporal annotations

islip99-proc: submitted to World Scientific on September 8, 1999 1

which say at what time(s) the formula to which they are applied is valid.
The annotations of TACLP make time explicit but avoid the proliferation of
temporal variables and quantifiers of the first order approach. In this way,
TACLP supports qualitative and quantitative (metric) temporal reasoning in-
volving both time points and time periods (time intervals) and their duration.
Moreover, it allows us to represent definite, indefinite and periodic temporal
information.

In "' TACLP is presented as an instance of annotated constraint logic
(ACL) for reasoning about time. ACL is a generalization of generalized anno-
tated programs 2%3% and extends first-order languages with a distinguished
class of predicates, called constraints, and a distinguished class of terms, called
annotations, used to label formulae. Moreover ACL provides inference rules
for annotated formulae and a constraint theory for handling annotations. One
advantage of a language in the ACL framework is that its clausal fragment
can be efficiently implemented: Given a logic in this framework, there is a
systematic way to make a clausal fragment executable as a constraint logic
program. Both an interpreter and a compiler can be generated and imple-
mented in standard constraint logic programming languages.

Constraint logic programming (CLP) 21:22:23:24.25 i5 an extension of logic
programming, where in addition to ordinary predicates, which are defined by
clauses and reasoned about by resolution (a form of Modus Ponens), there
is a distinguished class of predicates called constraints. Their meaning is de-
fined by a constraint theory whose reasoning capability is implemented by
some efficient algorithm in the so-called constraint solver. In this way, effi-
cient special-purpose algorithms can be integrated in a sound way into logic
programming.

Overview of the paper. In this paper, the TACLP language is given two
different kinds of semantics, an operational one based on meta-logic (top-
down semantics) using a meta-interpreter and a fixpoint one obtained by
extending the definition of the immediate consequence operator of CLP to
deal with annotated atoms (bottom-up semantics). The full, revised paper
of this article contains soundness and completeness proofs relating the two
semantics presented here 3!.

The paper is organized as follows. Section 2 introduces the TACLP frame-
work. Section 3 defines the two semantics for TACLP. Section 4 presents
related work and Section 5 concludes the paper.

islip99-proc: submitted to World Scientific on September 8, 1999 2

2 Temporal Annotated Constraint Logic Programming

This subsection briefly reviews TACLP. In this paper, we consider the subset
of TACLP, where time points are totally ordered, sets of time points are convex
and non-empty, and only atomic formulae can be annotated. Moreover clauses
are free of negation. These restrictions will become clear during this section.
For a more detailed treatment of TACLP and for the general theory of ACL
we refer the reader to .

An annotated formula is of the form A « where A is a first order formula
and « an annotation. In TACLP, there are three kinds of annotations based
on (sets of) time points. Let ¢ be a time point and let I be a set of time
points.

(at) The annotated formula A at ¢ means that A holds at time point t.

(th) The annotated formula AthI means that A holds throughout, i.e., at
every time point in the set I. The definition of a th-annotated formula
in terms of at is:

Athl & Vit (tel— Aatt).

(in) The annotated formula A in I means that A holds at some time point(s)
- but we do not know exactly when - in the set /. The definition of an
in-annotated formula in terms of at is:

Ainl & Jt (te€IANAatt).

The in temporal annotation accounts for indefinite temporal information.

The set of annotations is endowed with a partial order relation C which
turns it into a lattice. Given two annotations a and (3, the intuition is that
a C B if a is “less informative” than 3 in the sense that for all formulae A,
A= Aa.

More precisely, being an instance of ACL, in addition to Modus Ponens,
TACLP has two further inference rules: The rule (C) and the rule (LI). The
rule (C) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the lattice ordering.
The rule (U) says that if a formula holds with some annotation and the same
formula holds with another annotation then it holds with the least upper
bound of the annotations. These three inference rules can be merged into a
single rule called A-resolution:

A« B (A ﬂ/;—V B) v C (aUp) (A-Resolution)

islip99-proc: submitted to World Scientific on September 8, 1999 3‘

Time can be discrete or dense. Time points are totally ordered by the
relation <. We call the set of time points D. We assume that the time-line
is left-bounded by the number 0 and open to the future, with the symbol oo
used to denote a time point that is later than any other. A time period is an
interval [r,s] with 0 < r < s < oo, € D, s € D that represents the convex,
non-empty set of time points {¢ | r < ¢ < s}. Thus the interval [0, co] denotes
the whole time line.

The constraint theory for temporal annotations over time points and time
periods contains an axiomatization of the total order relation < on D and the
following axioms defining the partial order on temporal annotations:

(at th) att = thlt,t]
(at in) att = in[t,]
(th ©) th[si,s2] Cthlry,m] © 1 <s1, 51 <82, s2 <7

(in ©) infry,m] Cinfsy, s3] & ry <51, 51 <82, 52 <1y

The first two axioms state that th I and in [are equivalent to at ¢ when the
time period I consists of a single time point ¢. Next, if a formula holds at every
element of a time period, then it holds at every element in all sub-periods of
that period ((th C) axiom). On the other hand, if a formula holds at some
points of a time period then it holds at some points in all periods that include
this period ((in C) axiom).

To summarize the partial order relation on annotations, the axioms can
be arranged in the following chain, assuming r; < s1, s1 < s2, s2 < ro:

in [7'177'2] E in [81782] E in [81781] =ats; =
=th [81, 81] C th [81, 82] C th [7'177'2]

Now we axiomatize the least upper bound LI of temporal annotations
over time points and time periods. As explained in !, the annotations are
not closed under L. From a theoretical point of view, this problem can be
overcome via a closure operation which includes in the lattice expressions with
L. In practice, it suffices to consider the least upper bound for time periods
that produce a different time period. Therefore we can restrict ourselves to th
annotations with overlapping time periods that do not include one another:

(thU) th[sy,sa] Uthlry,ma] = thisi,re] & s1 <71, < S2,82 < ra.

We can now define the clausal fragment of TACLP that can be used as
an efficient temporal programming language. A TACLP program is a finite
set of ACL clauses. A TACLP clause is a TACLP formula of the form:

Aa+ Cy,...,C,,B1ay,...,B, a, (n,m>0)

islip99-proc: submitted to World Scientific on September 8, 1999 4

where A is an atom (not a constraint), a and «a; are (optional) temporal
annotations, the C;’s are the constraints and the B;’s are atomic formulae.
Constraints C; cannot be annotated. As in logic programming syntax, com-
mas “,” denote conjunctions. The conclusion of the implication is called the
head of the clause and the premise the body of the clause. Variables in a clause
are implicitly assumed to be universally quantified at the outermost scope.

In 28 TACLP is successfully applied to a system for calculating the liquid
flow in a network of water tanks from some events specifying when the taps
were switched on and off. The following example involving continuous change
is also presented.

Example 1 We model information about the growth of trees.
1. Tree 1 sprouts at time 3.5 (the middle of year 3).
sprouts(Treel) at 3.5.
2. Tree 1 is an oak tree.
tree_type(Treel, Oak).
3. The growth rate of oak trees is 3 meters per year.
growth_rate(Oak, 3).

4. If a tree is of a type that has a given growth rate r, and the tree sprouts
at time s then at time ¢ it has a height, where h = (t — s) X r.

height(tree, h) at t +
h=(t—-s)xr,
tree_type(tree, type), growth_rate(type, r),
sprouts(tree) at s

5. If a tree has height h m at time t, where h > 6.75, then it is mature.
mature(tree) tht, oo] < h > 6.75, height(tree, h) att

In the last clause, the maturity of the tree at an instant is implied by a con-
straint on the height of the tree at that instant. Height is the continuously
changing quantity. The query

mature(Treel) th[6, 7]

can be proved. This means that Treel is mature throughout the time period
which begins at year 6 and ends at year 7.
The query mature(Treel) thty, ta] yields t1 > 5.75,t5 = oo.

islip99-proc: submitted to World Scientific on September 8, 1999 5

3 Semantics of TACLP

In this section we define the operational (top-down) semantics of the language
TACLP by presenting a meta-interpreter for it. Then we provide TACLP with
a fixpoint (bottom-up) semantics, based on the definition of an immediate
consequence operator.

In the definition of the semantics, without loss of generality, we assume
all atoms to be annotated with th or in labels. at ¢ annotations can be
replaced with th [¢, t] by exploiting the (at th) axiom. Each atom which is not
annotated in the object level program is intended to be true throughout the
whole temporal domain, and thus can be labelled with th[0, co]. Constraints
stay unchanged.

3.1 Operational Semantics via Meta-Interpreter

The wvanille meta-interpreter 32 is the simplest application of meta-pro-

gramming in logic. A general formulation of the vanilla meta-interpreter
can be given by means of the demo predicate used to represent provability.
demo(g) means that the formula g is provable in the object program.

demo(Empty).
demo((b1,b2)) < demo(by), demo(b2)
demo(a) < clause(a,b), demo(b)

The unit clause states that the empty goal, represented by the constant symbol
Empty, is always solved. The second clause deals with conjunctive goals. It
states that a conjunction (B, Bs) is solved if B; is solved and Bs is solved.
Finally, the third clause deals with the case of atomic goal reduction. To solve
an atomic goal A, a clause from the program is chosen whose head unifies with
A and the body of the clause is recursively solved. An object level program P
is represented at the meta-level by a set of axioms of the kind clause(4, B),
one for each object level clause A + B in P.

The extended meta-interpreter for our subset of TACLP is defined by the
following clauses:

demo(Empty). (1)
demo((b1,b2)) < demo(byr), demo(b2) (2)

demo(a th [tl,tz]) — S1 S tl,tg S Sz,tl S tz,
clause(a thsi, s2],b), demo(b)

islip99-proc: submitted to World Scientific on September 8, 1999 6‘

demo(a th [tl,tz]) — 51 <t1,t1 < 89,82 < 1o,
clause(a th sy, s2],b), demo(b), demo(a thss,ts])

demo(a in[tl,tz]) —t1 < 89,81 < tg,t1 < to,
clause(a th{sy, s2],b), demo(b)

demo(a in[t1, t2]) t1 < 51,52 < to,
clause(a in sy, s2],b), demo(b)

(6)

demo(c) < constraint(c), c (7)

A clause Aa < B of a TACLP program P is represented at the meta-level
by

clause(Aa, B) + t; < ts. (8)

where o = th[t1,t2] or @ = in[ty, to].

This meta-interpreter can be written in any CLP language that provides a
suitable constraint solver for temporal annotations (see Section 2 for the con-
straint theory). Hence the first difference with the vanilla meta-interpreter is
that our meta-interpreter handles constraints which can either occur explic-
itly in its clauses, e.g. s1 < t1,t1 < ta,t2 < s2 in clause (3), or can come from
the resolution steps. The latter kind of constraints is managed by clause (7)
which passes each constraint C' to be solved directly to the constraint solver.

The second difference is that our meta-interpreter implements not only
Modus Ponens but the more powerful A-resolution rule, which is the combi-
nation of Modus Ponens itself with rule (C) and rule (U). This is the reason
why the third demo clause of the vanilla meta-interpreter is now split into four
clauses. Clauses (3), (5) and (6) implement the inference rule (C): The atomic
goal to be solved is required to be labelled with an annotation which is smaller
than the one labelling the head of the clause used in the resolution step. For
instance, clause (3) states that given a clause Ath[sy, s2] < B whose body
B is solvable, we can derive the atom A annotated with any th[t1,¢2] such
that th[t1,t2] C thsy, s2], i.e., according to axiom (th C), [t1,t2] C [s1, s2],
as expressed by the constraint sy < t1,te < s9,t1 < to. Clauses (5) and (6)
are built in an analogous way by exploiting axioms (inth C) and (in C),
respectively.

Rule (U) is implemented by clause (4). According to the discussion in Sec-
tion 2, it is applicable only to th annotations with overlapping time periods
which do not include one another. More precisely, clause (4) states that if we
can find a clause Ath[s;,s2] « B such that the body B is solvable, and if
moreover the atom A can be proved throughout the time period [ss,t2] (i.e.,

islip99-proc: submitted to World Scientific on September 8, 1999 7‘

demo(Ath[ss,ts]) is solvable) then we can derive the atom A labelled with
any annotation th[ty,t2] C th[si,t2]. The constraints on temporal variables
ensure that the time period [t1, t2] is a new time period different from [sq, s2]
and [s2, 2] and their subintervals.

Finally, in the meta-level representation of object clauses, clause (8), we
have to add the constraint t; < 5 to ensure that the head of the object clause
has a well-formed, namely non-empty, annotation.

Example 2 Consider a library database containing information about loans.
Mary first borrowed the book Hamlet from May 12, 1995 to June 12, 1995 and
then on June 12, 1995 she extended her loan:

borrow(Mary, Hamlet) th [May 12 1995, Jun 12 1995].
borrow(Mary, Hamlet) th[Jun 12 1995, Aug 1 1995].

The period of time in which Mary borrowed Hamlet can be obtained by the
query

demo(borrow(Mary, Hamlet) th[ty, t2]).

By using clause (4), we can derive the interval [May 12 1995, Aug 1 1995]
(more precisely, the constraints May 12 1995 < t1, t1 < Jun 12 1995,
Jun 12 1995 < to, to < Aug 1 1995 are derived) that otherwise would be
never generated. In fact, by applying clause (3) alone, it is possible to prove
only that Mary borrowed Hamlet in the intervals [May 12 1995, Jun 12 1995]
and [Jun 12 1995, Aug 1 1995] separately.

In ' a compiler for TACLP has been defined by means of a compilation

function comp which translates an annotated formula into its CLP form. The
essential step is the inclusion of the temporal annotation of an atom in the
corresponding predicate as an extra-argument.

comp(p(t, ..., tn) @) =p(t,-..,tn, Q).

Now we can basically read off the other rules of the translation function comp
directly from the meta-interpreter defined in the previous section.

A constraint C' is compiled into itself, i.e., comp(C) = C, and a conjunc-
tion of formulae is compiled into the conjunction of the compiled version of
such formulae, i.e. comp(By, Bs) = comp(By), comp(Bs).

Finally, the compilation of a program clause is defined in the following
way:

e for each clause of the form Ath[sy, s2] < B the compiler generates three
clauses

islip99-proc: submitted to World Scientific on September 8, 1999 8

— comp(Ath[t,t2]) < 51 < ty,ty < 89,1 <ty, comp(B)

— comp(Athlt;,ta]) « s1 < t1,t1 < 2,82 < ta, comp(B),
comp(A thss,ta])

— comp(Ain[ty,ta]) « t1 < 82,51 <oty <ty,51 < 53, comp(B)

e for each clause of the form Ain[sy,ss] < B the compiler generates a
clause

- comp(A in [tl,tz]) — 11 <s1,81 < 89,82 < 1o, comp(B)

The result of the compilation is a standard CLP program.

3.2 Fixpoint semantics

There are several ways of defining a bottom-up semantics of TACLP, related
to the different possible choices of the semantic domain where the immediate
consequence operator is defined. The simpler solution consists in using the
powerset p(A-base® X Ann) with set-theoretic inclusion, disregarding the par-
tial order structure of the set of annotations Ann. Alternative solutions (as for
generalized annotated programs in 2°) may consider a more abstract domain,
which is obtained by endowing A-basex Ann with the product order (induced
by the discrete order on A-base and the order on Ann) and then by taking as
elements of power domain only those subsets of annotated atoms which sat-
isfy some closure properties with respect to such an order. For instance, one
can require “downward-closedness”, which amounts to including subsumption
in the Tp operator. Another possible property is “limit-closedness”, namely
the presence of the least upper bound of all directed sets which, from a com-
putational point of view, amounts to consider computations which possibly
require more than w steps. For space limitations, we treat here the first,
simpler solution.

The intended interpretation of constraints is defined by fixing a structure
A. In our case A surely contains a structure D (with domain D) in which we
interpret the temporal constants and functions. However, TACLP programs
can have constraints not only on temporal data, hence in general the structure
A will be multi-sorted.

Let Dom 4 the domain of the structure A. An A-veluation is a (multi-
sorted) mapping from variables to Dom 4, and its natural extension maps
terms to Dom 4 and formulae to formulae whose predicates have arguments

@The formal definition of A-base is given later. Briefly, it is the natural generalization of
the notion of Herbrand Base in constraint logic programming.

islip99-proc: submitted to World Scientific on September 8, 1999 9

ranging over Dom 4. An A-ground instance A’ of an atom A (resp. of a
constraint or of a clause) is obtained by applying an A-valuation to the atom
(resp. to the constraint or to the clause), thus producing a construct of
the form p(as,...,a,) with a1, ...,a, elements from Dom 4. We denote by
ground 4(P) the set of A-ground instances of clauses from a program P.

We first define the standard fixpoint operator of constraint logic pro-
gramming and then extend it to deal with TACLP. An A-interpretation for a
CLP(A) program P is a subset of the A-base of P, written A-basep, which is
the set

(a an) | p is a n-ary user-defined predicate in P
PO -5 @) 1 and each a; is an element of Dom 4

Then the standard immediate consequence operator 2 for a CLP(A) program
P is a function 7% : p(A-basep) — p(A-basep) defined as follows:

A« Cy,...,Ck,By,...,Bp, € ground 4(P)
A _ 1 » Uk, P11, y Dn,C ¢ A)
Tp(n) = {A|{Bl,...,Bn}gI,,4|:01,...,0k }

The operator Tjﬁ‘ is continuous 23, and therefore it has least fixpoint which can

be computed as the least upper bound of the chain {(Tjﬁ‘)"},-zo of the iterated
applications of T;ﬁ‘ starting from the empty set.® The fixpoint is denoted by
(TA)-.

To generalize the above operator to deal with temporal annotations we
consider a kind of extended interpretations, basically consisting of sets of
annotated elements of A-base. Formally we define the set of (semantical)
annotations

Ann = {th[tl,tg],in[tl,tg] | t1 € D,tg c D,D ': t S tg}

Then given a TACLP program P, the lattice of interpretations is defined as
(p(A-basep x Ann),C) where g is the powerset operator and C is the usual
relation of set-theoretic inclusion.

Definition 1 Let P be a TACLP program, the function Tg' : p(A-basep x
Ann) — p(A-basep x Ann) is defined as follows.

bFormally, for a function T : p(S) — p(S) we define T = () and T+ = T(T%).

islip99-proc: submitted to World Scientific on September 8, 1999 10

T D) =

((a = thisy,s2] V a=1in]s,ss])

Aa+ C,...,C,Bioy,...,Byay, € ground 4(P),

A,
(a) | {(Blaﬂl)a"'a(Bnaﬂn)} - I:
\ AE iyl Claan C By fluysy < 52
U
(A th[sy,s2] « C1,...,Ck,Biau,. .., Bya, € ground 4(P),)
{(Bla/gl)a---a(angn)} cl, (Aath [7“1,7‘2]) el
(4, th[s1,72]) |A ECi...,Cra1 C B, a0 C By, 51 <11,11 < 82,
L So < Iy)
U

A th[sy,ss] « Ci,...,Ck, Biay,...,Bya, € ground 4(P),)
: {(Blaﬁl)a"'a(angn)}gla
(A71n[t17t2]) |A ':Cla"'ackaal Eﬂl:---:an Eﬁn:tl S 52,81 St27
1 <ta, 51 <2)

\

This definition properly extends the standard definition of the immediate
consequence operator. In fact, in a sense, it captures not only the Modus
Ponens rule, as the standard operator does, but also rule (L) (second set in
the above definition). In addition, rule (C) is used to prove that an annotated
atom holds in an interpretation: To derive the head A a of a clause it is not
necessary to find in the interpretation exactly the atoms B ay,..., B, a,
occurring in the body of the clause, but it suffices to find atoms B; 3; which
implies B; «;, i.e., such that each f; is an annotation stronger than a; (A |
a; C B;). Finally, notice that Tz4(I) is not downward closed, namely, it is
not true that if (4, a) € Tg4(I) then for all (4,~) such that v C «, we have
(A,v) € Tg'(I). However such a closure is done at the end of the computation
of the fixpoint of 7', In this way the A-resolution rule which combines Modus
Ponens with (L) and (C) rules is completely captured.

An important property of the 7'}54 operator, which is at the core of the
definition of the fixpoint semantics, is continuity over the lattice of interpre-
tations.

Theorem 1 (Continuity) Let P be a TACLP program. The function T3
is continuous (on (p(A-base x Ann),C)).

Proof. The proof is a direct consequence of the definition of 7' and of the
partial order C on the interpretations. For more details see the full version of
the paper 3!. O

The bottom-up semantics for a program P is defined as the downward

islip99-proc: submitted to World Scientific on September 8, 1999 11

closure of the least fixpoint of 7' which by Theorem 1 is the least upper
bound of the chain {(7z") }i>o.

Definition 2 Let P be a TACLP program. Then the fizpoint semantics of P
is defined as

FAP) ={(4,a) | (4,0) € (TEY)*, AFa L}
where (T3')* = Uizo(T8Y)"-

4 Related Work

In 20, Templog ® and an interval based temporal logic are translated into
annotated logic programs. The annotations used there correspond to the
th annotations of TACLP. To implement the annotated logic language, the
paper proposed to use “reductants”, additional clauses which are derived from
existing clauses to express all possible least upper bounds. The problem was
that a finite program may generate infinitely many such reductants. Then,
“ca-resolution” for annotated logic programs was proposed 3°. The idea is to
compute dynamically and incrementally the least upper bounds by collecting
partial answers. Operationally this is similar to the meta-interpreter presented
here which relies on recursion to collect the partial answers. However, in 30
the intermediate stages of the computation are not sound with respect to the
standard CLP semantics.

Moreover, in 2° two fixpoint semantics, defined in terms of two different
operators, are presented for generalized annotated programs (GAP). The first
operator, called Tp, is based on interpretations which associate to each ele-
ment of the Herbrand Base of the program P a set of annotations which is an
ideal, i.e., a set downward closed and closed with respect to finite least upper
bounds. The computed ideal is the least one containing the annotations « of
annotated atoms A« which are heads of (instances of) clauses whose body
holds in the interpretation. The other operator Rp is based on interpreta-
tions which associate to each atom of the Herbrand Base a single annotation
which is the least upper bound of the set of annotations computed as in the
previous case. Our fixpoint operator for TACLP works similarly to the Tp
operator: at each step we close with respect to (representable) finite least up-
per bounds, and, although we perform the downward closure only at the end
of the computation, this does not reduce the set of derivable consequences.
The main difference resides in the language: TACLP is an extension of CLP,
taking from GAP the handling of annotations, which focuses on the tempo-
ral aspects, whereas GAP is a general language with negation and arbitrary
annotations but without constraints.

islip99-proc: submitted to World Scientific on September 8, 1999 12

Our temporal annotations correspond to some of the predicates proposed
by Galton in 33, which is a critical examination of Allen’s classical work on
a theory of action and time 3*. Galton provides for both time points and
time periods in dense linear time. Assuming that the intervals I are not
singletons, Galton’s predicate holds-in(A,I) can be mapped into TACLP’s
Ainl, holds-on(A,I) into AthI, and holds-at(A,t) into Aatt, where A is an
atomic formula.

5 Conclusions

We investigated semantics of a considerable subset of the language TACLP
that allows us to reason about qualitative and quantitative, definite and indef-
inite temporal information using time points and time periods. We defined the
operational (top-down) semantics of TACLP by presenting a meta-interpreter
for it. Then we provided TACLP with a fixpoint (bottom-up) semantics,
based on the definition of an immediate consequence operator.

Here we considered the subset of TACLP, where time points are totally
ordered, sets of time points are convex and non-empty, and only atomic for-
mulae can be annotated. Furthermore clauses are free of negation. In general,
in TACLP arbitrary formulae can be annotated. In some cases, as shown in !,
the annotations can be pushed inside disjunctions, conjunctions and negation.
This means that the omission of negation is the main restriction of the current
work. Consequently, we want to investigate next how the semantics can be
adapted to deal with negation.

Acknowledgments

We thank Paolo Baldan and Roberta Gori for their useful comments and
suggestions. This work has been partially supported by Esprit Working Group
28115 - DeduGIS.

References

1. J. F. A. K. van Benthem. The logic of time: a model-theoretic inves-
tigation into the varieties of temporal ontology and temporal discourse,
volume 156 of Synthese Library. Reidel, Dordrecht, 1983.

2. A. Galton, editor. Temporal Logics and Their Applications. Academic
Press, 1987.

3. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic. Clarendon
Press, Oxford, 1994.

islip99-proc: submitted to World Scientific on September 8, 1999 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Moszkowski. Ezecution Temporal Logic Programs. Cambridge Uni-
versity Press, 1986.

M. A. Orgun and W. Ma. An Overview of Temporal and Modal Logic
Programming. In Temporal Logic: Proceedings of the First International
Conference, ICTL’94, volume 827 of Lecture Notes in Artificial Intelli-
gence, pages 445-479, 1994.

D. M. Gabbay. Modal and temporal logic programming. In A. Galton,
editor, Temporal Logics and Their Applications, pages 197-237. Aca-
demic Press, 1987.

W.W. Wadge. Tense Logic Programming: a Respectable Alternative. In
Proceedings of the 1988 International Symposium on Lucid and Inten-
sional Programming, pages 26-32, 1988.

M. Abadi and Z. Manna. Temporal logic programming. In Journal of
Symbolic Computation, volume 8, pages 277-295, 1989.

C. Brzoska. Temporal logic programming with metric and past operators.
In 19, pages 21-39, 1995.

M. Fisher and R. Owens, editors. Ezecutable Modal and Temporal Logics,
volume 897 of Lecture Notes in Artificial Intelligence. Springer, 1995.
T. Frihwirth. Temporal Annotated Constraint Logic Programming.
Journal of Symbolic Computation, 22:555-583, 1996.

R. Snodgrass. Temporal Databases. In Proceedings of the International
Conference on GIS - From Space to Territory: Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space, pages 22-64, 1992.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass
editors. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

M. Baudinet, J. Chomicki, and P. Wolper. Temporal Deductive
Databases. In '3, pages 294-320. 1993.

M. Béhlen and R. Marti. On the Completeness of Temporal Database
Query Languages. In Temporal Logic: Proceedings of the First Interna-
tional Conference, ICTL’94, volume 827 of Lecture Notes in Artificial
Intelligence, pages 283-300, 1994.

J. Chomicki. Temporal Query Languages: A Survey. In Temporal Logic:
Proceedings of the First International Conference, ICTL’9/, volume 827
of Lecture Notes in Artificial Intelligence, pages 506-534. Springer, 1994.
D.M. Gabbay and P. McBrien. Temporal Logic & Historical Databases.
In Proceedings of the Seventeenth International Conference on Very Large
Databases, pages 423-430, September 1991.

M. A. Orgun. On temporal deductive databases. Computational Intelli-
gence, 12(2):235-259, May 1996.

islip99-proc: submitted to World Scientific on September 8, 1999 14

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

D. M. Gabbay. Labelled deductive systems : wvolume 1, volume 33 of
Ozford logic guides. Clarendon Press, Oxford, 1996.

M. Kifer and V.S. Subrahmanian. Theory of generalized annotated
logic programming and its applications. Journal of Logic Programming,
12:335-367, 1992.

J. Jaffar and J. L. Lassez. Constraint Logic Programming. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, pages 111-119, 1987.

J. Jaffar and M.J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19 & 20:503-582, May 1994.

K. Marriott, J. Jaffar, M.J. Maher, and P.J. Stuckey. The Semantics of
Constraint Logic Programs. Journal of Logic Programming, 37(1-3):1-46,
1998.

K. Marriott and P. J. Stuckey. Programming with Constraints. MIT
Press, USA, 1998.

T. Frithwirth and S. Abdennadher. Constraint-Programmierung: Grund-
lagen und Anwendungen. Springer, Berlin, 1997.

T. Frithwirth. Annotated constraint logic programming applied to tem-
poral reasoning. In Programming Language Implementation and Logic
Programming (PLILP), volume 844 of Lecture Notes in Computer Sci-
ence, pages 230—243. Springer Verlag, 1994.

T. Frithwirth. Temporal logic and annotated constraint logic program-
ming. In % pages 58-68, 1995.

J. Singer. Constraint-Based Temporal Logic Programming. BSc. disser-
tation, Department of Artificial Intelligence, Univ. of Edinburgh, 1996.
P. Mancarella, A. Raffaeta, and F. Turini. Temporal Annotated Con-
straint Logic Programming with Multiple Theories. In Proceedings of the
Tenth International Workshop on Database and Expert Systems Applica-
tions, pages 501-508. IEEE Computer Society Press, 1999.

S.M. Leach and J.J. Lu. Computing annotated logic programs. In Pro-
ceedings of the eleventh ICLP, pages 257271, 1994.

A. Raffaeta and T. Frithwirth. Semantics for Temporal Annotated Con-
straint Logic Programming. In D. Basin, M. D’Agostino, D. Gabbay,
S. Matthews and L. Vigano, editors, Labelled Deduction, Applied Logic
Series, Kluwer Academic Publishers. To appear.

L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

A. Galton. A critical examination of allen’s theory of action and time.
Artificial Intelligence, 42:159-188, 1990.

J.F. Allen. Towards a general theory of action and time. In Artificial
Intelligence, volume 23, pages 123—-154, 1984.

islip99-proc: submitted to World Scientific on September 8, 1999 15

