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hen.de/�fruehwir/We investigate the semanti
s of a 
onsiderable subset of Temporal Annotated Con-straint Logi
 Programming (TACLP), a 
lass of languages that allows us to reasonabout qualitative and quantitative, de�nite and inde�nite temporal information us-ing time points and time periods as labels for atoms. TACLP is given two di�erentkinds of semanti
s, an operational one based on meta-logi
 (top-down semanti
s)and a �xpoint one based on an immediate 
onsequen
e operator (bottom-up se-manti
s).1 Introdu
tionTemporal reasoning is at the heart of human a
tivity and not surprisingly ithas raised a lot of interest in 
omputer s
ien
e, be it in the form of tempo-ral logi
s 1;2;3, temporal programming languages 4;5;6;7;8;9;10;11 or temporaldatabases 12;13;14;15;16;17;18. No matter if one programs with temporal infor-mation or stores data with temporal information, in most 
ases the formalunderpinnings will be logi
, and often be variants or extensions of �rst orderlogi
.In a logi
al formulation and formalization of temporal information andreasoning it is quite natural to think of formulae that are labelled with tem-poral information and about proof pro
edures that take into a

ount theselabels 19. In our 
ase, the logi
 and the labels are familiar stru
tures: First-order logi
 (FOL) and latti
es. The labels are 
alled annotations, and theoverall 
lass of logi
s is 
alled annotated logi
s 20. Based on this frameworkand on 
onstraint logi
 programming 
on
epts 21;22;23;24;25, the family of tem-poral annotated 
onstraint logi
 programming (TACLP) languages has beendeveloped in 26;27;11;28;29.The pie
es of temporal information are given by temporal annotationsislip99-pro
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whi
h say at what time(s) the formula to whi
h they are applied is valid.The annotations of TACLP make time expli
it but avoid the proliferation oftemporal variables and quanti�ers of the �rst order approa
h. In this way,TACLP supports qualitative and quantitative (metri
) temporal reasoning in-volving both time points and time periods (time intervals) and their duration.Moreover, it allows us to represent de�nite, inde�nite and periodi
 temporalinformation.In 11 TACLP is presented as an instan
e of annotated 
onstraint logi
(ACL) for reasoning about time. ACL is a generalization of generalized anno-tated programs 20;30, and extends �rst-order languages with a distinguished
lass of predi
ates, 
alled 
onstraints, and a distinguished 
lass of terms, 
alledannotations, used to label formulae. Moreover ACL provides inferen
e rulesfor annotated formulae and a 
onstraint theory for handling annotations. Oneadvantage of a language in the ACL framework is that its 
lausal fragment
an be eÆ
iently implemented: Given a logi
 in this framework, there is asystemati
 way to make a 
lausal fragment exe
utable as a 
onstraint logi
program. Both an interpreter and a 
ompiler 
an be generated and imple-mented in standard 
onstraint logi
 programming languages.Constraint logi
 programming (CLP ) 21;22;23;24;25 is an extension of logi
programming, where in addition to ordinary predi
ates, whi
h are de�ned by
lauses and reasoned about by resolution (a form of Modus Ponens), thereis a distinguished 
lass of predi
ates 
alled 
onstraints. Their meaning is de-�ned by a 
onstraint theory whose reasoning 
apability is implemented bysome eÆ
ient algorithm in the so-
alled 
onstraint solver. In this way, eÆ-
ient spe
ial-purpose algorithms 
an be integrated in a sound way into logi
programming.Overview of the paper. In this paper, the TACLP language is given twodi�erent kinds of semanti
s, an operational one based on meta-logi
 (top-down semanti
s) using a meta-interpreter and a �xpoint one obtained byextending the de�nition of the immediate 
onsequen
e operator of CLP todeal with annotated atoms (bottom-up semanti
s). The full, revised paperof this arti
le 
ontains soundness and 
ompleteness proofs relating the twosemanti
s presented here 31.The paper is organized as follows. Se
tion 2 introdu
es the TACLP frame-work. Se
tion 3 de�nes the two semanti
s for TACLP. Se
tion 4 presentsrelated work and Se
tion 5 
on
ludes the paper.
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2 Temporal Annotated Constraint Logi
 ProgrammingThis subse
tion brie
y reviews TACLP. In this paper, we 
onsider the subsetof TACLP, where time points are totally ordered, sets of time points are 
onvexand non-empty, and only atomi
 formulae 
an be annotated. Moreover 
lausesare free of negation. These restri
tions will be
ome 
lear during this se
tion.For a more detailed treatment of TACLP and for the general theory of ACLwe refer the reader to 11.An annotated formula is of the form A� where A is a �rst order formulaand � an annotation. In TACLP, there are three kinds of annotations basedon (sets of) time points. Let t be a time point and let I be a set of timepoints.(at) The annotated formula A at t means that A holds at time point t.(th) The annotated formula A th I means that A holds throughout, i.e., atevery time point in the set I . The de�nition of a th-annotated formulain terms of at is: A th I , 8t (t 2 I ! A at t):(in) The annotated formula A in I means that A holds at some time point(s)- but we do not know exa
tly when - in the set I . The de�nition of anin-annotated formula in terms of at is:A in I , 9t (t 2 I ^ A at t):The in temporal annotation a

ounts for inde�nite temporal information.The set of annotations is endowed with a partial order relation v whi
hturns it into a latti
e. Given two annotations � and �, the intuition is that� v � if � is \less informative" than � in the sense that for all formulae A,A � ) A �.More pre
isely, being an instan
e of ACL, in addition to Modus Ponens,TACLP has two further inferen
e rules: The rule (v) and the rule (t). Therule (v) states that if a formula holds with some annotation, then it alsoholds with all annotations that are smaller a

ording to the latti
e ordering.The rule (t) says that if a formula holds with some annotation and the sameformula holds with another annotation then it holds with the least upperbound of the annotations. These three inferen
e rules 
an be merged into asingle rule 
alled A-resolution:A � B (A �  B) 
 v (� t �)A 
 (A-Resolution)islip99-pro
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Time 
an be dis
rete or dense. Time points are totally ordered by therelation �. We 
all the set of time points D. We assume that the time-lineis left-bounded by the number 0 and open to the future, with the symbol 1used to denote a time point that is later than any other. A time period is aninterval [r; s℄ with 0 � r � s � 1; r 2 D; s 2 D that represents the 
onvex,non-empty set of time points ft j r � t � sg. Thus the interval [0;1℄ denotesthe whole time line.The 
onstraint theory for temporal annotations over time points and timeperiods 
ontains an axiomatization of the total order relation � on D and thefollowing axioms de�ning the partial order on temporal annotations:(at th) at t = th [t; t℄(at in) at t = in [t; t℄(th v) th [s1; s2℄ v th [r1; r2℄ , r1 � s1; s1 � s2; s2 � r2(in v) in [r1; r2℄ v in [s1; s2℄ , r1 � s1; s1 � s2; s2 � r2The �rst two axioms state that th I and in I are equivalent to at t when thetime period I 
onsists of a single time point t. Next, if a formula holds at everyelement of a time period, then it holds at every element in all sub-periods ofthat period ((th v) axiom). On the other hand, if a formula holds at somepoints of a time period then it holds at some points in all periods that in
ludethis period ((in v) axiom).To summarize the partial order relation on annotations, the axioms 
anbe arranged in the following 
hain, assuming r1 � s1; s1 � s2; s2 � r2:in [r1; r2℄ v in [s1; s2℄ v in [s1; s1℄ = at s1 == th [s1; s1℄ v th [s1; s2℄ v th [r1; r2℄Now we axiomatize the least upper bound t of temporal annotationsover time points and time periods. As explained in 11, the annotations arenot 
losed under t. From a theoreti
al point of view, this problem 
an beover
ome via a 
losure operation whi
h in
ludes in the latti
e expressions witht. In pra
ti
e, it suÆ
es to 
onsider the least upper bound for time periodsthat produ
e a di�erent time period. Therefore we 
an restri
t ourselves to thannotations with overlapping time periods that do not in
lude one another:(tht) th [s1; s2℄ t th [r1; r2℄ = th [s1; r2℄ , s1 < r1; r1 � s2; s2 < r2:We 
an now de�ne the 
lausal fragment of TACLP that 
an be used asan eÆ
ient temporal programming language. A TACLP program is a �niteset of ACL 
lauses. A TACLP 
lause is a TACLP formula of the form:A� C1; : : : ; Cn; B1 �1; : : : ; Bm �m (n;m � 0)islip99-pro
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where A is an atom (not a 
onstraint), � and �i are (optional) temporalannotations, the Cj 's are the 
onstraints and the Bi's are atomi
 formulae.Constraints Cj 
annot be annotated. As in logi
 programming syntax, 
om-mas \;" denote 
onjun
tions. The 
on
lusion of the impli
ation is 
alled thehead of the 
lause and the premise the body of the 
lause. Variables in a 
lauseare impli
itly assumed to be universally quanti�ed at the outermost s
ope.In 28 TACLP is su

essfully applied to a system for 
al
ulating the liquid
ow in a network of water tanks from some events spe
ifying when the tapswere swit
hed on and o�. The following example involving 
ontinuous 
hangeis also presented.Example 1 We model information about the growth of trees.1. Tree 1 sprouts at time 3:5 (the middle of year 3).sprouts(Tree1 ) at 3:5:2. Tree 1 is an oak tree.tree type(Tree1 ;Oak):3. The growth rate of oak trees is 3 meters per year.growth rate(Oak ; 3 ):4. If a tree is of a type that has a given growth rate r, and the tree sproutsat time s then at time t it has a height, where h = (t� s)� r .height(tree; h) at t h = (t� s)� r ;tree type(tree; type); growth rate(type; r);sprouts(tree)at s5. If a tree has height h m at time t, where h � 6:75, then it is mature.mature(tree)th [t;1℄ h � 6:75; height(tree; h) at tIn the last 
lause, the maturity of the tree at an instant is implied by a 
on-straint on the height of the tree at that instant. Height is the 
ontinuously
hanging quantity. The querymature(Tree1 ) th [6; 7℄
an be proved. This means that Tree1 is mature throughout the time periodwhi
h begins at year 6 and ends at year 7.The query mature(Tree1 ) th [t1; t2℄ yields t1 � 5:75; t2 =1.islip99-pro
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3 Semanti
s of TACLPIn this se
tion we de�ne the operational (top-down) semanti
s of the languageTACLP by presenting a meta-interpreter for it. Then we provide TACLP witha �xpoint (bottom-up) semanti
s, based on the de�nition of an immediate
onsequen
e operator.In the de�nition of the semanti
s, without loss of generality, we assumeall atoms to be annotated with th or in labels. at t annotations 
an berepla
ed with th [t; t℄ by exploiting the (at th) axiom. Ea
h atom whi
h is notannotated in the obje
t level program is intended to be true throughout thewhole temporal domain, and thus 
an be labelled with th [0;1℄. Constraintsstay un
hanged.3.1 Operational Semanti
s via Meta-InterpreterThe vanilla meta-interpreter 32 is the simplest appli
ation of meta-pro-gramming in logi
. A general formulation of the vanilla meta-interpreter
an be given by means of the demo predi
ate used to represent provability.demo(g) means that the formula g is provable in the obje
t program.demo(Empty):demo((b1; b2))  demo(b1); demo(b2)demo(a)  
lause(a; b); demo(b)The unit 
lause states that the empty goal, represented by the 
onstant symbolEmpty , is always solved. The se
ond 
lause deals with 
onjun
tive goals. Itstates that a 
onjun
tion (B1; B2) is solved if B1 is solved and B2 is solved.Finally, the third 
lause deals with the 
ase of atomi
 goal redu
tion. To solvean atomi
 goal A, a 
lause from the program is 
hosen whose head uni�es withA and the body of the 
lause is re
ursively solved. An obje
t level program Pis represented at the meta-level by a set of axioms of the kind 
lause(A;B),one for ea
h obje
t level 
lause A B in P .The extended meta-interpreter for our subset of TACLP is de�ned by thefollowing 
lauses: demo(Empty): (1)demo((b1; b2)) demo(b1); demo(b2) (2)demo(a th [t1; t2℄) s1 � t1; t2 � s2; t1 � t2;
lause(a th [s1; s2℄; b); demo(b) (3)islip99-pro
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demo(a th [t1; t2℄) s1 � t1; t1 < s2; s2 < t2;
lause(a th [s1; s2℄; b); demo(b); demo(a th [s2; t2℄) (4)demo(a in [t1; t2℄) t1 � s2; s1 � t2; t1 � t2;
lause(a th [s1; s2℄; b); demo(b) (5)demo(a in [t1; t2℄) t1 � s1; s2 � t2;
lause(a in [s1; s2℄; b); demo(b) (6)demo(
) 
onstraint(
); 
 (7)A 
lause A�  B of a TACLP program P is represented at the meta-levelby 
lause(A�;B) t1 � t2: (8)where � = th [t1; t2℄ or � = in [t1; t2℄.This meta-interpreter 
an be written in any CLP language that provides asuitable 
onstraint solver for temporal annotations (see Se
tion 2 for the 
on-straint theory). Hen
e the �rst di�eren
e with the vanilla meta-interpreter isthat our meta-interpreter handles 
onstraints whi
h 
an either o

ur expli
-itly in its 
lauses, e.g. s1 � t1; t1 � t2; t2 � s2 in 
lause (3), or 
an 
ome fromthe resolution steps. The latter kind of 
onstraints is managed by 
lause (7)whi
h passes ea
h 
onstraint C to be solved dire
tly to the 
onstraint solver.The se
ond di�eren
e is that our meta-interpreter implements not onlyModus Ponens but the more powerful A-resolution rule, whi
h is the 
ombi-nation of Modus Ponens itself with rule (v) and rule (t). This is the reasonwhy the third demo 
lause of the vanilla meta-interpreter is now split into four
lauses. Clauses (3), (5) and (6) implement the inferen
e rule (v): The atomi
goal to be solved is required to be labelled with an annotation whi
h is smallerthan the one labelling the head of the 
lause used in the resolution step. Forinstan
e, 
lause (3) states that given a 
lause A th [s1; s2℄  B whose bodyB is solvable, we 
an derive the atom A annotated with any th [t1; t2℄ su
hthat th [t1; t2℄ v th [s1; s2℄, i.e., a

ording to axiom (th v), [t1; t2℄ � [s1; s2℄,as expressed by the 
onstraint s1 � t1; t2 � s2; t1 � t2. Clauses (5) and (6)are built in an analogous way by exploiting axioms (in th v) and (in v),respe
tively.Rule (t) is implemented by 
lause (4). A

ording to the dis
ussion in Se
-tion 2, it is appli
able only to th annotations with overlapping time periodswhi
h do not in
lude one another. More pre
isely, 
lause (4) states that if we
an �nd a 
lause A th [s1; s2℄  B su
h that the body B is solvable, and ifmoreover the atom A 
an be proved throughout the time period [s2; t2℄ (i.e.,islip99-pro
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demo(A th [s2; t2℄) is solvable) then we 
an derive the atom A labelled withany annotation th [t1; t2℄ v th [s1; t2℄. The 
onstraints on temporal variablesensure that the time period [t1; t2℄ is a new time period di�erent from [s1; s2℄and [s2; t2℄ and their subintervals.Finally, in the meta-level representation of obje
t 
lauses, 
lause (8), wehave to add the 
onstraint t1 � t2 to ensure that the head of the obje
t 
lausehas a well-formed, namely non-empty, annotation.Example 2 Consider a library database 
ontaining information about loans.Mary �rst borrowed the book Hamlet from May 12, 1995 to June 12, 1995 andthen on June 12, 1995 she extended her loan:borrow(Mary ;Hamlet) th [May 12 1995 ; Jun 12 1995 ℄.borrow(Mary ;Hamlet) th [Jun 12 1995 ;Aug 1 1995 ℄.The period of time in whi
h Mary borrowed Hamlet 
an be obtained by thequerydemo(borrow(Mary ;Hamlet) th [t1; t2℄):By using 
lause (4), we 
an derive the interval [May 12 1995 ;Aug 1 1995 ℄(more pre
isely, the 
onstraints May 12 1995 � t1, t1 < Jun 12 1995 ,Jun 12 1995 < t2, t2 � Aug 1 1995 are derived) that otherwise would benever generated. In fa
t, by applying 
lause (3) alone, it is possible to proveonly that Mary borrowed Hamlet in the intervals [May 12 1995 ; Jun 12 1995 ℄and [Jun 12 1995 ;Aug 1 1995 ℄ separately.In 11 a 
ompiler for TACLP has been de�ned by means of a 
ompilationfun
tion 
omp whi
h translates an annotated formula into its CLP form. Theessential step is the in
lusion of the temporal annotation of an atom in the
orresponding predi
ate as an extra-argument.
omp(p(t1; : : : ; tn)�) = p(t1; : : : ; tn; �).Now we 
an basi
ally read o� the other rules of the translation fun
tion 
ompdire
tly from the meta-interpreter de�ned in the previous se
tion.A 
onstraint C is 
ompiled into itself, i.e., 
omp(C) = C, and a 
onjun
-tion of formulae is 
ompiled into the 
onjun
tion of the 
ompiled version ofsu
h formulae, i.e. 
omp(B1; B2) = 
omp(B1); 
omp(B2).Finally, the 
ompilation of a program 
lause is de�ned in the followingway:� for ea
h 
lause of the form A th [s1; s2℄ B the 
ompiler generates three
lausesislip99-pro
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{ 
omp(A th [t1; t2℄) s1 � t1; t2 � s2; t1 � t2; 
omp(B){ 
omp(A th [t1; t2℄)  s1 � t1; t1 < s2; s2 < t2; 
omp(B);
omp(A th [s2; t2℄){ 
omp(A in [t1; t2℄) t1 � s2; s1 � t2; t1 � t2; s1 � s2; 
omp(B)� for ea
h 
lause of the form A in [s1; s2℄  B the 
ompiler generates a
lause{ 
omp(A in [t1; t2℄) t1 � s1; s1 � s2; s2 � t2; 
omp(B)The result of the 
ompilation is a standard CLP program.3.2 Fixpoint semanti
sThere are several ways of de�ning a bottom-up semanti
s of TACLP, relatedto the di�erent possible 
hoi
es of the semanti
 domain where the immediate
onsequen
e operator is de�ned. The simpler solution 
onsists in using thepowerset }(A-basea�Ann) with set-theoreti
 in
lusion, disregarding the par-tial order stru
ture of the set of annotations Ann. Alternative solutions (as forgeneralized annotated programs in 20) may 
onsider a more abstra
t domain,whi
h is obtained by endowing A-base�Ann with the produ
t order (indu
edby the dis
rete order on A-base and the order on Ann) and then by taking aselements of power domain only those subsets of annotated atoms whi
h sat-isfy some 
losure properties with respe
t to su
h an order. For instan
e, one
an require \downward-
losedness", whi
h amounts to in
luding subsumptionin the TP operator. Another possible property is \limit-
losedness", namelythe presen
e of the least upper bound of all dire
ted sets whi
h, from a 
om-putational point of view, amounts to 
onsider 
omputations whi
h possiblyrequire more than ! steps. For spa
e limitations, we treat here the �rst,simpler solution.The intended interpretation of 
onstraints is de�ned by �xing a stru
tureA. In our 
ase A surely 
ontains a stru
ture D (with domain D) in whi
h weinterpret the temporal 
onstants and fun
tions. However, TACLP programs
an have 
onstraints not only on temporal data, hen
e in general the stru
tureA will be multi-sorted.Let DomA the domain of the stru
ture A. An A-valuation is a (multi-sorted) mapping from variables to DomA, and its natural extension mapsterms to DomA and formulae to formulae whose predi
ates have argumentsaThe formal de�nition of A-base is given later. Brie
y, it is the natural generalization ofthe notion of Herbrand Base in 
onstraint logi
 programming.islip99-pro
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ranging over DomA. An A-ground instan
e A0 of an atom A (resp. of a
onstraint or of a 
lause) is obtained by applying an A-valuation to the atom(resp. to the 
onstraint or to the 
lause), thus produ
ing a 
onstru
t ofthe form p(a1; : : : ; an) with a1; : : : ; an elements from DomA. We denote bygroundA(P ) the set of A-ground instan
es of 
lauses from a program P .We �rst de�ne the standard �xpoint operator of 
onstraint logi
 pro-gramming and then extend it to deal with TACLP. An A-interpretation for aCLP(A) program P is a subset of the A-base of P , written A-baseP , whi
h isthe set �p(a1; : : : ; an) j p is a n-ary user-de�ned predi
ate in Pand ea
h ai is an element of DomA �Then the standard immediate 
onsequen
e operator 23 for a CLP(A) programP is a fun
tion TAP : }(A-baseP )! }(A-baseP ) de�ned as follows:TAP (I) = �A j A  C1; : : : ; Ck; B1; : : : ; Bn;2 groundA(P );fB1; : : : ; Bng � I; A j= C1; : : : ; Ck �The operator TAP is 
ontinuous 23, and therefore it has least �xpoint whi
h 
anbe 
omputed as the least upper bound of the 
hain f(TAP )igi�0 of the iteratedappli
ations of TAP starting from the empty set.b The �xpoint is denoted by(TAP )!.To generalize the above operator to deal with temporal annotations we
onsider a kind of extended interpretations, basi
ally 
onsisting of sets ofannotated elements of A-base. Formally we de�ne the set of (semanti
al)annotationsAnn = fth [t1; t2℄; in [t1; t2℄ j t1 2 D; t2 2 D;D j= t1 � t2gThen given a TACLP program P , the latti
e of interpretations is de�ned as(}(A-baseP � Ann);�) where } is the powerset operator and � is the usualrelation of set-theoreti
 in
lusion.De�nition 1 Let P be a TACLP program, the fun
tion T AP : }(A-baseP �Ann)! }(A-baseP �Ann) is de�ned as follows.bFormally, for a fun
tion T : }(S)! }(S) we de�ne T 0 = ; and T i+1 = T (T i).islip99-pro
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ienti�
 on September 8, 1999 10



T AP (I) =8>><>>:(A;�) j (� = th [s1; s2℄ _ � = in [s1; s2℄)A � C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck ; �1 v �1; : : : ; �n v �n; s1 � s2 9>>=>>;[8>><>>:(A; th [s1; r2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I; (A; th [r1; r2℄) 2 I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2;s2 < r2 9>>=>>;[8>><>>:(A; in [t1; t2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2;t1 � t2; s1 � s2 9>>=>>;This de�nition properly extends the standard de�nition of the immediate
onsequen
e operator. In fa
t, in a sense, it 
aptures not only the ModusPonens rule, as the standard operator does, but also rule (t) (se
ond set inthe above de�nition). In addition, rule (v) is used to prove that an annotatedatom holds in an interpretation: To derive the head A� of a 
lause it is notne
essary to �nd in the interpretation exa
tly the atoms B1 �1; : : : ; Bn �no

urring in the body of the 
lause, but it suÆ
es to �nd atoms Bi �i whi
himplies Bi �i, i.e., su
h that ea
h �i is an annotation stronger than �i (A j=�i v �i). Finally, noti
e that T AP (I) is not downward 
losed, namely, it isnot true that if (A;�) 2 T AP (I) then for all (A; 
) su
h that 
 v �, we have(A; 
) 2 T AP (I). However su
h a 
losure is done at the end of the 
omputationof the �xpoint of T AP . In this way the A-resolution rule whi
h 
ombines ModusPonens with (t) and (v) rules is 
ompletely 
aptured.An important property of the T AP operator, whi
h is at the 
ore of thede�nition of the �xpoint semanti
s, is 
ontinuity over the latti
e of interpre-tations.Theorem 1 (Continuity) Let P be a TACLP program. The fun
tion T APis 
ontinuous (on (}(A-base �Ann);�)).Proof. The proof is a dire
t 
onsequen
e of the de�nition of T AP and of thepartial order � on the interpretations. For more details see the full version ofthe paper 31. utThe bottom-up semanti
s for a program P is de�ned as the downwardislip99-pro
: submitted to World S
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losure of the least �xpoint of T AP whi
h by Theorem 1 is the least upperbound of the 
hain f(T AP )igi�0.De�nition 2 Let P be a TACLP program. Then the �xpoint semanti
s of Pis de�ned as FA(P ) = f(A;�) j (A; �) 2 (T AP )!; A j= � v �gwhere (T AP )! = Si�0(T AP )i.4 Related WorkIn 20, Templog 8 and an interval based temporal logi
 are translated intoannotated logi
 programs. The annotations used there 
orrespond to theth annotations of TACLP. To implement the annotated logi
 language, thepaper proposed to use \redu
tants", additional 
lauses whi
h are derived fromexisting 
lauses to express all possible least upper bounds. The problem wasthat a �nite program may generate in�nitely many su
h redu
tants. Then,\
a-resolution" for annotated logi
 programs was proposed 30. The idea is to
ompute dynami
ally and in
rementally the least upper bounds by 
olle
tingpartial answers. Operationally this is similar to the meta-interpreter presentedhere whi
h relies on re
ursion to 
olle
t the partial answers. However, in 30the intermediate stages of the 
omputation are not sound with respe
t to thestandard CLP semanti
s.Moreover, in 20 two �xpoint semanti
s, de�ned in terms of two di�erentoperators, are presented for generalized annotated programs (GAP). The �rstoperator, 
alled TP , is based on interpretations whi
h asso
iate to ea
h ele-ment of the Herbrand Base of the program P a set of annotations whi
h is anideal, i.e., a set downward 
losed and 
losed with respe
t to �nite least upperbounds. The 
omputed ideal is the least one 
ontaining the annotations � ofannotated atoms A� whi
h are heads of (instan
es of) 
lauses whose bodyholds in the interpretation. The other operator RP is based on interpreta-tions whi
h asso
iate to ea
h atom of the Herbrand Base a single annotationwhi
h is the least upper bound of the set of annotations 
omputed as in theprevious 
ase. Our �xpoint operator for TACLP works similarly to the TPoperator: at ea
h step we 
lose with respe
t to (representable) �nite least up-per bounds, and, although we perform the downward 
losure only at the endof the 
omputation, this does not redu
e the set of derivable 
onsequen
es.The main di�eren
e resides in the language: TACLP is an extension of CLP ,taking from GAP the handling of annotations, whi
h fo
uses on the tempo-ral aspe
ts, whereas GAP is a general language with negation and arbitraryannotations but without 
onstraints.islip99-pro
: submitted to World S
ienti�
 on September 8, 1999 12



Our temporal annotations 
orrespond to some of the predi
ates proposedby Galton in 33, whi
h is a 
riti
al examination of Allen's 
lassi
al work ona theory of a
tion and time 34. Galton provides for both time points andtime periods in dense linear time. Assuming that the intervals I are notsingletons, Galton's predi
ate holds-in(A,I) 
an be mapped into TACLP'sA in I , holds-on(A,I) into A th I , and holds-at(A,t) into A at t, where A is anatomi
 formula.5 Con
lusionsWe investigated semanti
s of a 
onsiderable subset of the language TACLPthat allows us to reason about qualitative and quantitative, de�nite and indef-inite temporal information using time points and time periods. We de�ned theoperational (top-down) semanti
s of TACLP by presenting a meta-interpreterfor it. Then we provided TACLP with a �xpoint (bottom-up) semanti
s,based on the de�nition of an immediate 
onsequen
e operator.Here we 
onsidered the subset of TACLP, where time points are totallyordered, sets of time points are 
onvex and non-empty, and only atomi
 for-mulae 
an be annotated. Furthermore 
lauses are free of negation. In general,in TACLP arbitrary formulae 
an be annotated. In some 
ases, as shown in 11,the annotations 
an be pushed inside disjun
tions, 
onjun
tions and negation.This means that the omission of negation is the main restri
tion of the 
urrentwork. Consequently, we want to investigate next how the semanti
s 
an beadapted to deal with negation.A
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