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Dipartimento di Informatica, Università di Pisa
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Abstract We investigate semantics of a considerable subset of Temporal Annotated Con-
straint Logic Programming (TACLP), a class of languages that allows us to reason
about qualitative and quantitative, definite and indefinitetemporal information
using time points and time periods as labels for atoms.

After illustrating the power of TACLP with some non-trivialexamples,
TACLP is given two different kinds of semantics, an operational one based
on meta-logic (top-down semantics) and, for the first time, afixpoint one based
on an immediate consequence operator (bottom-up semantics). We prove the
top-down semantics to be sound and complete with respect to the bottom-up
semantics.

Keywords: Temporal reasoning, Constraint Logic Programming, Annotated Logics, Seman-
tics.

1. INTRODUCTION

Temporal reasoning is at the heart of human activity and not surprisingly it
has raised a lot of interest in computer science, be it in the form of temporal
logics [39, 21, 17], temporal programming languages [32, 34, 18, 1, 8, 11, 15]
or temporal databases [36, 38, 4, 6, 9, 20, 33]. No matter if one programs with
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temporal information or stores data with temporal information, in most cases
the formal underpinnings will be logic, and often be variants or extensions of
first order logic.

In a logical formulation and formalization of temporal information and
reasoning it is quite natural to think of formulae that are labelled with temporal
information and about proof procedures that take into account these labels. In
other words, we separate the temporal from the non-temporalaspects. What
D. Gabbay enthusiastically says in the introduction of his book on labelled
deductive systems [19], that allow to label a general class of logics, “This
sounds very simple but it ... makes a serious difference, like the difference
between using one hand only or allowing for the coordinated use of two hands”,
can apply to the special case of temporal labels as well.

In our case, the logic and the labels are familiar structures: first-order
logic (FOL) and lattices. The labels are called annotations, and the overall
class of logics is called annotated logics [26]. Based on this framework and
on constraint logic programming concepts [24, 25, 29, 30, 16], the family of
temporal annotated constraint logic programming (TACLP) languages has been
developed in [14, 13, 15, 35, 28].

The pieces of temporal information are given bytemporal annotationswhich
say at what time(s) the formula to which they are applied is valid. The anno-
tations of TACLP make time explicit but avoid the proliferation of temporal
variables and quantifiers of the first order approach. In thisway, TACLP sup-
ports qualitative and quantitative (metric) temporal reasoning involving both
time points and time periods (time intervals) and their duration. Moreover, it
allows us to represent definite, indefinite and periodic temporal information. In
Figure 1.1, an example from [14] illustrates the expressiveness and conceptual
simplicity of TACLP. As shown in [14] by asking the querymurder(x ; y)
we obtain two solutions (i.e., two suspects) of the workshopmurder mystery:x = Lepov ; y = Lepov andx = Maringer ; y = Lepov . The first one means
that Prof. Lepov could have committed suicide. This unexpected solution is
found because Prof. Lepov does not have an alibi for the time of his death.
The second answer means that Dr. Maringer could be the murderer, because
his alibi does not hold: The copying would have taken 30 minutes, so it cannot
have happened during a talk of 25 minutes.

In [15] TACLP is presented as an instance of annotated constraint logic
(ACL) for reasoning about time. ACL is a generalization of generalized anno-
tated programs [26, 27], and extends first-order languages with a distinguished
class of predicates, calledconstraints, and a distinguished class of terms, called
annotations, used to label formulae. Moreover ACL provides inference rules
for annotated formulae and a constraint theory for handlingannotations. One
advantage of a language in the ACL framework is that its clausal fragment
can be efficiently implemented: Given a logic in this framework, there is a
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There is a workshop at the Plaza hotel.
(1) In the afternoon session, after the coffee break (3:00 - 3:25pm), there were four
more talks, 25 minutes each -time periods.
Dr. Maringer gave the 3rd talk. The last talk was to be given byProf. Lepov.
o�eebreak th [3:00; 3:25℄:talk(1 ;Hunon;Algebrai
Semanti
s:::) th [3:25; 3:50℄:talk(2 ; :::; :::) th [3:50; 4:15℄:talk(3 ;Maringer ; :::) th [4:15; 4:40℄:talk(4 ;Lepov ;P = NP) th [4:40; 5:05℄:
(2) Prof. Lepov was found dead in his hotel room at 5:35pm -time point.founddead(Lepov) at 5:35:
(3) The doctor said he was dead for one to one and a half hours -duration
and indefinite information.murdered(p) in [t1 � 1:30; t2 � 1:00℄ founddead(p) in [t1; t2℄
There are two suspects, Dr. Kosta and Dr. Maringer. They havealibis.
(4) Dr. Kosta took the last shuttle to the airport possible toreach the 5:10pm plane -
time point.boardplane(Kosta) at 5:10:
(5) The shuttle from the hotel leaves every half hour betweennoon and 11pm
- recurrent (periodic) data.shuttle at 0:00:shuttle at t+ 30 0:00 � t; t � 11:00; shuttle at t
(6) It takes at least 50 minutes to get to the airport -duration and indefinite
information.onshuttle(p) th [t1; t2℄ t2 = t1 + 50; shuttle at t1;boardplane(p) in [t2; t2 + 50℄
(7) During the 2nd talk Dr. Maringer realized that he had forgotten to copy
his 30 slides -relates time periods.
So he picked up the slides from his hotel room and copied them.It takes 5 minutes
to get to the room, another 5 minutes to get to the copy room from there, and 5 more
minutes to get back to the lecture hall -durations.
A copy takes half a minute -repeated durations.
opying(Maringer) th [t1; t2℄ t2 = t1 + 5 + 5 + 30 � 0:5 + 5;talk(2 ; p;w) th [t1; t2℄
(8) Who murdered Prof. Lepov?The murderer is a person who is involved in
the case and does not have an alibi during the time of murder.murder (p1; p2) murdered (p2) in [t1; t2℄; involved (p1);:(alibi(p1) th [t1; t2℄)involved(Kosta): involved(Lepov): involved(Maringer):alibi(p) th [t1; t2℄ (onshuttle(p) _ 
opying(p) _ talk(n; p;w)) th [t1; t2℄

Figure 1.1 The Workshop Murder Mystery
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systematic way to make a clausal fragment executable as a constraint logic pro-
gram. Both an interpreter and a compiler can be generated andimplemented
in standard constraint logic programming languages.

Constraint logic programming (CLP ) [24, 25, 29, 30, 16] is an extension
of logic programming, where in addition to predicates, which are defined by
clauses and reasoned about by resolution (a form of Modus Ponens), there
is a distinguished class of predicates calledconstraints. Their meaning is
defined by aconstraint theorywhose reasoning capability is implemented
by some efficient algorithm in the so-calledconstraint solver. In this way,
efficient special-purpose algorithms can be integrated in asound way into logic
programming.

Overview of the paper. In this paper, the TACLP language is given two
different kinds of semantics, an operational one based on meta-logic (top-down
semantics) using a meta-interpreter and a fixpoint one obtained by extending
the definition of the immediate consequence operator ofCLP to deal with
annotated atoms (bottom-up semantics). The meta-interpreter is proved to be
sound and complete with respect to the bottom-up semantics.While top-down
semantics is known from previous work on TACLP [14, 13, 15], this paper
presents for the first time a bottom-up semantics and, consequently, for the first
time soundness and completeness results for TACLP.

The paper is organized as follows. Section 2. introduces theTACLP frame-
work. Section 3. defines the two semantics for TACLP and proves soundness
and completeness. Section 4. shortly presents related workand Section 5.
concludes the paper.

2. TEMPORAL ANNOTATED CONSTRAINT LOGIC
PROGRAMMING

This subsection briefly reviews TACLP. In this paper, we consider the subset
of TACLP, where time points are totally ordered, sets of timepoints are convex
and non-empty, and only atomic formulae can be annotated. Moreover clauses
are free of negation. These restrictions will become clear during this section.
For a more detailed treatment of TACLP and for the general theory of ACL we
refer the reader to [15].

Time can be discrete or dense. Time points are totally ordered by the relation�. We call the set of time pointsD and we suppose that a set of operations
(such as the binary operations+,�) to manage such points are associated with
it. We assume that the time-line is left-bounded by the number 0 and open to
the future, with the symbol1 used to denote a time point that is later than any
other. Atime periodis an interval[r; s℄ with 0 � r � s � 1; r 2 D; s 2 D
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that represents the convex, non-empty set of time pointsft j r � t � sg1.
Thus the interval[0;1℄ denotes the whole time line.

An annotated formulais of the formA� whereA is an atomic formula and� an annotation. In TACLP, there are three kinds of annotations based on (sets
of) time points. Lett be a time point and letI be a time period.(at) The annotated formulaA at t means thatA holds at time pointt.(th) The annotated formulaA th I means thatA holds throughout, i.e., at

everytime point in the time periodI. The definition of ath-annotated
formula in terms ofat is:A th I , 8t (t 2 I ! A at t):(in) The annotated formulaA in I means thatA holds atsometime point(s)
- but we do not know exactly when - in the time periodI. The definition
of anin-annotated formula in terms ofat is:A in I , 9t (t 2 I ^A at t):
Thein temporal annotation accounts for indefinite temporal information.

The set of annotations is endowed with a partial order relation v which
turns it into a lattice. Given two annotations� and�, the intuition is that� v � if � is “less informative” than� in the sense that for all formulaeA,A� ) A�. More precisely, being an instance of ACL, in addition to Modus
Ponens, TACLP has two further inference rules: the rule (v) and the rule (t).A� 
 v �A 
 rule (v) A� A� 
 = � t �A
 rule (t)
The rule (v) states that if a formula holds with some annotation, then italso
holds with all annotations that are smaller according to thelattice ordering.
The rule (t) says that if a formula holds with some annotation and the same
formula holds with another annotation then it holds with theleast upper bound
of the annotations.

The lattice operationv is axiomatized by the following constraint theory.(at th) at t = th [t; t℄(at in) at t = in [t; t℄(th v) th [s1; s2℄ v th [r1; r2℄ , r1 � s1; s1 � s2; s2 � r2(in v) in [r1; r2℄ v in [s1; s2℄ , r1 � s1; s1 � s2; s2 � r2
1The results in this paper naturally extend to time lines thatare bounded or unbounded in other ways and to
time periods that are open on one or both sides.



6

The first two axioms state thatth I andin I are equivalent toat t when the
time periodI consists of a single time pointt.2 Next, if a formula holds at
every element of a time period, then it holds at every elementin all sub-periods
of that period ((th v) axiom). On the other hand, if a formula holds at some
points of a time period then it holds at some points in all periods that include
this period ((in v) axiom).

To summarize the partial order relation on annotations, theaxioms can be
arranged in the following chain, assumingr1 � s1; s1 � s2; s2 � r2:in [r1; r2℄ v in [s1; s2℄ v in [s1; s1℄ = at s1 = th [s1; s1℄ v th [s1; s2℄ v th [r1; r2℄

Now we axiomatize the least upper boundt of temporal annotations over
time points and time periods. As explained in [15], the leastupper bound
exists but sometimes may be “too large”. For instance, according to the lattice,th [1; 2℄ t th [4; 5℄ = th [1; 5℄, but according to the definition ofth-annotated
formulae in terms ofat , A th [1; 2℄ ^ A th [4; 5℄ does not implyA th [1; 5℄,
since it does not express the validity ofA at 3. Also, in [1; 2℄ t in [2; 3℄ =in [2; 2℄, butA in [1; 2℄ ^A in [2; 3℄ ) A at 2 is not in general correct, since
e.g.A at 1 andA at 3 may hold. From a theoretical point of view, this problem
can be overcome by enriching the lattice of annotations withexpressions witht. In practice, it suffices to consider the least upper bound for time periods
that produce a different meaningful time period. Concretely, we can restrict
ourselves toth annotations with overlapping time periods that do not include
one another:(tht) th [s1; s2℄tth [r1; r2℄ = th [s1; r2℄ , s1 < r1; r1 � s2; s2 < r2:

Finally, the constraint theory also contains an axiomatization of the total
order relation� on D (!!!!!!! We should explain how these constraints are
handled by the constraint solver).

We can now define the clausal fragment of TACLP that can be usedas an
efficient temporal programming language. ATACLP programis a finite set of
TACLP clauses. ATACLP clauseis a TACLP formula of the form:A� C1; : : : ; Cn; B1 �1; : : : ; Bm �m (n;m � 0)
whereA is an atom (not a constraint),� and�i are (optional) temporal annota-
tions, theCj ’s are the constraints and theBi’s are atomic formulae. ConstraintsCj cannot be annotated. As in logic programming syntax, commas“ ;” denote
conjunctions. The conclusion of the implication is called theheadof the clause

2Especially in dense time, one may disallow singleton periods and drop the two axioms. This restriction has
no effects on the results of the paper.
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and the premise thebodyof the clause. Variables in a clause are implicitly
assumed to be universally quantified at the outermost scope.

We conclude the introduction of TACLP with some examples. Inthe follow-
ing programs, we adopt the convention of denoting variableswith identifiers
starting with a lower-case letter and constant symbols by identifiers starting
with an upper-case letter.

Example 1 In a company, there are managers and a secretary who has to
manage their meetings. A manager is busy if he is in a meeting or if he is out.busy(p) th [t1; t2℄ in-meeting(p) th [t1; t2℄busy(p) th [t1; t2℄ out-of -oÆ
e(p) th [t1; t2℄
Suppose the schedule for today to be the following: Smith andJones have
a meeting at 9am and at 9:30am respectively, each lasting onehour. In the
afternoon Smith goes out for lunch at 2pm and comes back at 3pm:in-meeting(Smith) th [9am; 10am℄: out-of -oÆ
e(Smith) th [2pm; 3pm℄:in-meeting(Jones) th [9:30am; 10:30am℄:
If the secretary wants to know whether Smith is busy between 9:30am and
10:30am she can ask forbusy(Smith) in [9:30am; 10:30am℄. Since Smith is
in a meeting from 9am till 10am, one can indeed derive that Smith is busy. This
query exploits indefinite information, since if Smith is busy in one instant of the
period[9:30am; 10:30am℄, then the secretary cannot schedule an appointment
for him for that period.

On the other hand,busy(Smith) th [9:30am; 10:30am℄ does not hold, be-
cause Smith is not busy between 10am and 10:30am. Alsobusy(Smith) in [10:30am; 1:30pm℄
does not hold, because Smith is not busy in that time period atall.

The query(busy(Smith) th [t1; t2℄; busy(Jones) th [t1; t2℄) reveals that
both managers are busy throughout the time period[9:30am; 10am℄, because
this is the largest interval that is included in the time periods where both
managers are busy.

Now assume that we definebusy th [t1; t2℄ busy(p) th [t1; t2℄
Thenbusy holds when either manager is busy, namely for the intervals[9am; 10:30am℄
(which is the least upper bound of the time periods for the twooverlapping
meetings of Smith and Jones) and[2pm; 3pm℄.
In [35] TACLP is successfully applied to a system for calculating the liquid
flow in a network of water tanks from some events specifying when the taps
were switched on and off. The following example involving continuous change
is also presented.

Example 2 We model information about the growth of trees.

1. Tree 1 sprouts at time3:5 (the middle of year 3).



8 sprouts(Tree1 ) at 3:5:
2. Tree 1 is an oak tree.tree type(Tree1 ;Oak):
3. The growth rate of oak trees is 3 meters per year.growth rate(Oak ; 3 ):
4. If a tree is of a type that has a given growth rate r, and the tree sprouts

at time s then at time t it has a height, whereh = (t� s)� r .height(tree; h) at t h = (t� s)� r ;tree type(tree; type); growth rate(type; r);sprouts(tree) at s
5. If a tree has heighth m at timet, whereh � 6:75, then it is mature.mature(tree) th [t;1℄ h � 6:75; height(tree; h) at t

In the last clause, the maturity of the tree at an instant is implied by a constraint
on the height of the tree at that instant. Height is the continuously changing
quantity. The querymature(Tree1 ) th [6; 7℄
can be proven. This means that Tree1 is mature throughout thetime period
which begins at year6 and ends at year7.

The querymature(Tree1 ) th [t1; t2℄
yieldst1 � 5:75; t2 =1.

3. SEMANTICS OF TACLP

In this section we define the operational (top-down) semantics of the lan-
guage TACLP by presenting a meta-interpreter for it. Then weprovide TACLP
with a fixpoint (bottom-up) semantics, based on the definition of an immedi-
ate consequence operator, and we prove that the meta-interpreter is sound and
complete with respect to the bottom-up semantics.

In the definition of the semantics, without loss of generality, we assume all
atoms to be annotated withth or in labels. at t annotations can be replaced
with th [t; t℄ by exploiting the(atth) axiom. Each atom which is not annotated
in the object level program is intended to be true throughoutthe whole temporal
domain, and thus can be labelled withth [0;1℄. Constraints stay unchanged.
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3.1 OPERATIONAL SEMANTICS VIA
META-INTERPRETER

Thevanillameta-interpreter [37] is the simplest application of meta-programming
in logic. A general formulation of the vanilla meta-interpreter can be given by
means of thedemo predicate used to represent provability.demo(g) means
that the formulag is provable in the object program.demo(Empty):demo((b1; b2))  demo(b1); demo(b2)demo(a)  
lause(a; b); demo(b)
The unit clause states that the empty goal, represented by the constant symbolEmpty , is always solved. The second clause deals with conjunctivegoals. It
states that a conjunction(B1; B2) is solved ifB1 is solved andB2 is solved.
Finally, the third clause deals with the case of atomic goal reduction. To solve
an atomic goalA, a clause from the program is chosen whose head unifies withA and the body of the clause is recursively solved. An object level programP
is represented at the meta-level by a set of axioms of the kind
lause(A;B),
one for each object level clauseA B in P .

The extended meta-interpreter for our subset of TACLP is defined by the
following clauses: demo(Empty): (1.1)demo((b1; b2)) demo(b1); demo(b2) (1.2)demo(a th [t1; t2℄) s1 � t1; t2 � s2; t1 � t2;
lause(a th [s1; s2℄; b); demo(b) (1.3)demo(a th [t1; t2℄) s1 � t1; t1 < s2; s2 < t2;
lause(a th [s1; s2℄; b); demo(b); demo(a th [s2; t2℄) (1.4)demo(a in [t1; t2℄) t1 � s2; s1 � t2; t1 � t2;
lause(a th [s1; s2℄; b); demo(b) (1.5)demo(a in [t1; t2℄) t1 � s1; s2 � t2;
lause(a in [s1; s2℄; b); demo(b) (1.6)demo(
) 
onstraint (
); 
 (1.7)
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A clauseA� B of a TACLP programP is represented at the meta-level by
lause(A�;B) t1 � t2: (1.8)

where� = th [t1; t2℄ or � = in [t1; t2℄.
This meta-interpreter can be written in anyCLP language that provides

a suitable constraint solver for temporal annotations (seeSection 2. for the
constraint theory). Hence the first difference with the vanilla meta-interpreter
is that our meta-interpreter handles constraints which caneither occur explicitly
in its clauses, e.g.s1 � t1; t1 � t2; t2 � s2 in clause (1.3), or can come from
the resolution steps. The latter kind of constraints is managed by clause (1.7)
which passes each constraintC to be solved directly to the constraint solver.

The second difference is that our meta-interpreter implements not only
Modus Ponens but also the rule(v) and the rule(t). This is the reason
why the thirddemo clause of the vanilla meta-interpreter is now split into four
clauses. Clauses (1.3), (1.5) and (1.6) implement the inference rule(v): the
atomic goal to be solved is required to be labelled with an annotation which is
smaller than the one labelling the head of the clause used in the resolution step.
For instance, clause (1.3) states that given a clauseA th [s1; s2℄  B whose
bodyB is solvable, we can derive the atomA annotated with anyth [t1; t2℄ such
thatth [t1; t2℄ v th [s1; s2℄, i.e., according to axiom(th v), [t1; t2℄ � [s1; s2℄,
as expressed by the constraints1 � t1; t2 � s2; t1 � t2. Clauses (1.5) and (1.6)
are built in an analogous way by exploiting axioms(in th v) and (in v),
respectively.
Rule (t) is implemented by clause (1.4). According to the discussionin
Section 2., it is applicable only toth annotations with overlapping time periods
which do not include one another. More precisely, clause (1.4) states that if
we can find a clauseA th [s1; s2℄  B such that the bodyB is solvable, and
if moreover the atomA can be provedthroughoutthe time period[s2; t2℄ (i.e.,demo(A th [s2; t2℄) is solvable) then we can derive the atomA labelled with
any annotationth [t1; t2℄ v th [s1; t2℄. The constraints on temporal variables
ensure that the time period[t1; t2℄ is anewtime period different from[s1; s2℄
and[s2; t2℄ and their subintervals.

Finally, in the meta-level representation of object clauses, clause(1:8), we
have to add the constraintt1 � t2 to ensure that the head of the object clause
has a well-formed, namely non-empty, annotation.

Example 3 Consider a library database containing information about loans.
Mary first borrowed the book Hamlet from May 12, 1995 to June 12, 1995 and
then on June 12, 1995 she extended her loan:borrow(Mary ;Hamlet) th [May 12 1995 ; Jun 12 1995 ℄.borrow(Mary ;Hamlet) th [Jun 12 1995 ;Aug 1 1995 ℄.
The period of time in which Mary borrowed Hamlet can be obtained by the
query
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By using clause (1.4), it is possible to derive the interval[May 12 1995 ;Aug 1 1995 ℄
(more precisely, the constraintsMay 12 1995 � t1, t1 < Jun 12 1995 ,Jun 12 1995 < t2, t2 � Aug 1 1995 are derived) that otherwise would be
never generated. In fact, by applying clause (1.3) alone, itis possible to prove
only that Mary borrowed Hamlet in the intervals[May 12 1995 ; Jun 12 1995 ℄
and [Jun 12 1995 ;Aug 1 1995 ℄ separately.

3.2 FIXPOINT SEMANTICS

There are several ways of defining a bottom-up semantics of TACLP, related
to the different possible choices of the semantic domain where the immediate
consequence operator is defined. The simpler solution consists in using the
powerset}(A-base3�Ann) with set-theoretic inclusion, disregarding the par-
tial order structure of the set of annotationsAnn. Alternative solutions (as for
generalized annotated programs in [26]) may consider a moreabstract domain,
which is obtained by endowingA-base�Ann with the product order (induced
by the discrete order onA-baseand the order onAnn) and then by taking as
elements of power domain only those subsets of annotated atoms which satisfy
some closure properties with respect to such an order. For instance, one can re-
quire “downward-closedness”, which amounts to including subsumption in theTP operator. Another possible property is “limit-closedness”, namely the pres-
ence of the least upper bound of all directed sets which, froma computational
point of view, amounts to consider computations which possibly require more
than! steps. For space limitations, we treat here the first, simpler solution.

The intended interpretation of constraints is defined by fixing a structureA. In our caseA surely contains a structureD (with domainD) in which we
interpret the temporal constants and functions. However, TACLP programs can
have constraints not only on temporal data, hence in generalthe structureA
will be multi-sorted.

Let DomA the domain of the structureA. An A-valuation is a (multi-
sorted) mapping from variables toDomA, and its natural extension maps terms
toDomA and formulae to formulae whose predicates have arguments ranging
overDomA. An A-ground instanceA0 of an atomA (resp. of a constraint or
of a clause) is obtained by applying anA-valuation to the atom (resp. to the
constraint or to the clause), thus producing a construct of the formp(a1 ; : : : ; an)
with a1; : : : ; an elements fromDomA. We denote bygroundA(P ) the set ofA-ground instances of clauses from a programP .

3The formal definition ofA-baseis given later. Briefly, it is the natural generalization of the notion of
Herbrand Base in constraint logic programming.
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We first define the standard fixpoint operator of constraint logic programming
and then extend it to deal with TACLP. AnA-interpretation for a CLP(A)
programP is a subset of theA-baseof P , writtenA-baseP , which is the set�p(a1; : : : ; an) j p is a n-ary user-de�ned predi
ate in Pand ea
h ai is an element of DomA �
Then the standard immediate consequence operator [29] for aCLP (A)programP is a functionTAP : }(A-baseP )! }(A-baseP ) defined as follows:TAP (I) = �A j A  C1; : : : ; Ck; B1; : : : ; Bn;2 groundA(P );fB1; : : : ; Bng � I; A j= C1; : : : ; Ck �
The operatorTAP is continuous [29], and therefore it has least fixpoint whichcan
be computed as the least upper bound of the chainf(TAP )igi�0 of the iterated
applications ofTAP starting from the empty set.4 The fixpoint is denoted by(TAP )!.

To generalize the above operator to deal with temporal annotations we con-
sider a kind of extended interpretations, basically consisting of sets of annotated
elements ofA-base . Formally we define the set of (semantical) annotationsAnn = fth [t1; t2℄; in [t1; t2℄ j t1 2 D; t2 2 D;D j= t1 � t2g
Then given a TACLP programP , the lattice of interpretations is defined as(}(A-baseP � Ann);�) where} is the powerset operator and� is the usual
relation of set-theoretic inclusion.

Definition 4 Let P be a TACLP program, the functionT AP : }(A-baseP �Ann)! }(A-baseP �Ann) is defined as follows.T AP (I) =8>><>>:(A;�) j (� = th [s1; s2℄ _ � = in [s1; s2℄)A � C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 � s2 9>>=>>;[8<:(A; th [s1; r2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I; (A; th [r1; r2℄) 2 I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2; s2 < r2 9=;[8>><>>:(A; in [t1; t2℄) j A th [s1; s2℄ C1; : : : ; Ck; B1�1; : : : ; Bn�n 2 groundA(P );f(B1; �1); : : : ; (Bn; �n)g � I;A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2; t1 � t2;s1 � s2 9>>=>>;
4Formally, for a functionT : }(S)! }(S) we defineT 0 = ; andT i+1 = T (T i).
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This definition properly extends the standard definition of the immediate con-
sequence operator. In fact, in a sense, it captures not only the Modus Ponens
rule, as the standard operator does, but also rule(t) (second set in the above
definition). In addition, rule(v) is used to prove that an annotated atom holds
in an interpretation: To derive the headA� of a clause it is not necessary to
find in the interpretation exactly the atomsB1 �1; : : : ; Bn �n occurring in the
body of the clause, but it suffices to find atomsBi �i which impliesBi �i,
i.e., such that each�i is an annotation stronger than�i (A j= �i v �i). Fi-
nally, notice thatT AP (I) is not downward closed, namely, it is not true that if(A;�) 2 T AP (I) then for all(A; 
) such that
 v �, we have(A; 
) 2 T AP (I).
However such a closure is done at the end of the computation ofthe fixpoint ofT AP . In this way the rule(v) is completely captured.

An important property of theT AP operator, which is at the core of the defi-
nition of the fixpoint semantics, is continuity over the lattice of interpretations.

Theorem 5 (Continuity) Let P be a TACLP program. The functionT AP is
continuous (on(}(A-base �Ann);�)).
Proof. The proof is a direct consequence of the definition ofT AP and of the
partial order� on the interpretations. For more details see the Appendix.ut
The bottom-up semantics for a programP is defined as the downward closure
of the least fixpoint ofT AP which by theorem 5 is the least upper bound of the
chainf(T AP )igi�0.
Definition 6 LetP be a TACLP program. Then the fixpoint semantics ofP is
defined as FA(P ) = f(A;�) j (A; �) 2 (T AP )!; A j= � v �g
where(T AP )! = Si�0(T AP )i.
3.3 SOUNDNESS AND COMPLETENESS

The semantics of meta-logic is a quite debated issue (see e.g[23, 31, 3]).
In the spirit of [7, 31], we define the semantics of the extended vanilla meta-
interpreter by relating the semantics of an object program to the semantics of
the corresponding vanilla meta-program (i.e., including the meta-level repre-
sentation of the object program). When stating the correspondence between the
object program and the meta-program we consider only formulae of interest,
i.e., elements ofA-base annotated with labels fromAnn. We show that given a
TACLP programP (object program) for anyA 2 A-baseP and any� 2 Ann,demo(A�) is provable at the meta-level if and only if(A;�) is provable in the
object program. Formally, we are going to prove thatdemo(A�) 2 (TAmV )! () (A;�) 2 FA(P ) (1.9)
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whereV is the meta-program containing the meta-level representation of the
object programP according to(1:8) and the clauses (1.1)-(1.7), andTAmV is
the standard immediate consequence operator ofCLP . It is worth noting thatV is aCLP(Am) program where the structureAm in which we interpret the
constraints is composed by two structures: the Herbrand structure associated
withV and the structureAwhere the constraints ofP are interpreted. Therefore
it is obvious that ifC is anA-ground instance of a constraint thenAm j= C ,A j= C.

Since the given meta-logical definition axiomatizes a top-down operational
semantics for TACLP programs, the proof of the statement (1.9) corresponds
to showing the equivalence of computing top-down and bottom-up.

In the following for simplicity we drop the reference toA andAm in the
name of the immediate consequence operators. FurthermoreP denotes a
TACLP program,A the structure where the constraints ofP are interpreted,A,B elements ofA-baseP , �, �, 
 elements ofAnn andC anA-ground instance
of a constraint. All symbols may have subscripts. The proof of the next two
subsections are just sketched in the main text. The details can be found in the
Appendix.

Soundness In order to show the soundness of the meta-interpreter (restricted
to the atoms of interest), we first prove the following lemma stating that a
conjunctive goal is provable at the meta-level if its atomicconjuncts are provable
at the meta-level.

Lemma 7 LetP be a program and letV be the corresponding meta-interpreter.
For anyB1 �1; : : : ; Bn �n with Bi 2 A-baseP and�i 2 Ann and for anyC1; : : : ; Ck, withCi anA-ground instance of a constraint, the following state-
ment holds:

for all h demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T hV=) fdemo(B1 �1); : : : ; demo(Bn �n)g � T hV ^ A j= C1; : : : ; Ck
Proof. The proof easily follows from the definition ofTV and clauses (1.2) and
(1.7) of the meta-interpreter. ut
The soundness of the meta-interpreter is an easy corollary of the following
theorem stating that ifdemo(A�) is provable at the meta-level then(A; 
) is
a consequence of the programP , andA
 ) A�, i.e., the annotation� is less
or equal to
.

Theorem 8 LetP be a program and letV be the corresponding meta-program.
For anyA 2 A-baseP and� 2 Ann, the following statement holds:demo(A�) 2 T!V =) 9
 2 Ann : (A; 
) 2 T !P ^ A j= � v 
:



Semantics for Temporal Annotated Constraint Logic Programming 15

Proof. We first show that for allhdemo(A�) 2 T hV =) 9
 2 Ann : (A; 
) 2 T !P ^ A j= � v 
:(1.10)

The proof is by induction onh.

(Base case). Trivial sinceT 0V = ;.
(Inductive case). Assume thatdemo(A�) 2 T hV =) 9
 2 Ann : (A; 
) 2 T !P ^ A j= � v 
:
Then:demo(A�) 2 T h+1V() fdefinition ofT ÆVgdemo(A�) 2 TV(T hV )
We have four cases corresponding to clauses (1.3), (1.4), (1.5) and (1.6) of the meta-interpreter.
We only show the first two cases since the others are proved like for clause (1.3).

(clause (1.3))f� = th [t1; t2℄, definition ofTV and clause (1.3)gf
lause(A th [s1; s2℄; G); demo(G)g � T hV ^ A j= s1 � t1; t2 � s2; t1 � t2=) fmeta-level representation of clauses ofP , according to clause (1.8)g9(B1 �1); : : : ; (Bn �n); C1; : : : ; Ck :A th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T hV ^ A j= s1 � t1; t2 � s2; t1 � t2=) fLemma 7gA th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T hV ^A j= C1; : : : ; Ck ^ A j= s1 � t1; t2 � s2; t1 � t2=) finductive hypothesisg9�1; : : : ; �n : A th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^f(B1; �1); : : : ; (Bn; �n)g � T !P ^ A j= �1 v �1; : : : ; �n v �n ^A j= C1; : : : ; Ck ^ A j= s1 � t1; t2 � s2; t1 � t2=) fdefinition ofTP sinceA j= s1 � s2g(A; th [s1; s2℄) 2 TP (T !P ) ^ A j= s1 � t1; t2 � s2; t1 � t2=) fT !P is a fixpoint ofTP andA j= s1 � t1; t2 � s2; t1 � t2g(A; th [s1; s2℄) 2 T !P ^ A j= th [t1; t2℄ v th [s1; s2℄
(clause (1.4))f� = th [t1; t2℄, definition ofTV and clause (1.4)gf
lause(A th [s1; s2℄; G); demo(G); demo(A th [s2; t2℄)g � T hV ^A j= s1 � t1; t1 < s2; s2 < t2=) fmeta-level representation of clauses ofP , according to clause (1.8)g9(B1 �1); : : : ; (Bn �n); C1; : : : ; Ck :



16 A th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T hV ^ demo(A th [s2; t2℄) 2 T hV ^A j= s1 � t1; t1 < s2; s2 < t2=) fLemma 7gA th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T hV ^ A j= C1; : : : ; Ck ^demo(A th [s2; t2℄) 2 T hV ^ A j= s1 � t1; t1 < s2; s2 < t2=) finductive hypothesisg9�; �1; : : : ; �n : A th [s1; s2℄ C1; : : : ; Ck; B1 �1; : : : ; Bn �n 2 groundA(P ) ^f(B1; �1); : : : ; (Bn; �n); (A; �)g � T !P ^A j= �1 v �1; : : : ; �n v �n; th [s2; t2℄ v � ^ A j= C1; : : : ; Ck ^A j= s1 � t1; t1 < s2; s2 < t2.
SinceA j= th [s2; t2℄ v � then� = th [w1; w2℄ with A j= w1 � s2; t2 � w2.
According to the relation betweenw1 ands1 we can distinguish(a) A j= w1 � s1. ThenA j= w1 � s1; s1 � t1; t1 < s2; s2 < t2; t2 � w2

which allows us to conclude that(A; th [w1; w2℄) 2 T !P ^ A j= th [t1; t2℄ v th [w1; w2℄(b) A j= s1 < w1. ThenA j= s1 < w1; w1 � s2; s2 < t2; t2 � w2 then by
definition ofTP(A; th [s1; w2℄) 2 TP (T !P ) ^ A j= s1 � t1; t1 < s2; s2 < t2; t2 � w2=) fT !P is a fixpoint ofTP andA j= s1 � t1; t1 < t2; t2 � w2g(A; th [s1; w2℄) 2 T !P ^ A j= th [t1; t2℄ v th [s1; w2℄

We are now able to conclude the proof.demo(A�) 2 T!V=) fT!V = Si�0 T iVg9h : demo(A�) 2 T hV=) fStatement (1.10)g9� : (A; �) 2 T !P ^ A j= � v � ut
Theorem 9 (Soundness)LetP be a TACLP program and letV be the corre-
sponding meta-program. For anyA 2 A-baseP and� 2 Ann, the following
statement holds:demo(A�) 2 T!V =) (A;�) 2 FA(P )
Proof. By Theorem 8 there exists
 2 Ann such that(A; 
) 2 T !P andA j= � v 
. Hence by definition(A;�) 2 FA(P ). ut
Completeness In order to show the completeness of the meta-interpreter we
first prove two lemmata. Lemma 10 states that if an annotated atom A� is
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provable at the meta-level then allA labelled with a weaker annotation (
 v �)
are provable at the meta-level, too. Lemma 11 is a very technical lemma
regarding theTP operator, which is used in the proof of the main result.

Lemma 10 LetP be a program and letV be the corresponding meta-program.
For anyA 2 A-baseP and� 2 Ann, the following statement holds:demo(A�) 2 T!V =) 8
 v �: demo(A
) 2 T!V
Proof. The proof is carried out by induction on the number of iteration ofTV
and by considering the different cases coming from clauses (1.3), (1.4), (1.5)
and (1.6) of the meta-interpreter. ut
Lemma 11 LetP be a program and letV be the corresponding meta-program.
For anyA 2 A-baseP and� 2 Ann and any interpretationI � A-baseP �Ann, the following statement holds:(A;�) 2 TP (I)=) (9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n :
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1); : : : ; (Bn; �n)g � I ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n) _(9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n; th [s1; r2℄; s2; r1 :� = th [s1; r2℄ ^
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1); : : : ; (Bn; �n)g � I ^ (A; th [r1; r2℄) 2 I ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2; s2 < r2)(9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n; in [t1; t2℄; th [s1; s2℄ :� = in [t1; t2℄ ^
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1); : : : ; (Bn; �n)g � I ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2; t1 � t2)
Now we can prove the completeness of the meta-interpreter with respect to the
bottom-up semantics.

Theorem 12 (Completeness)Let P be a program and letV be the corre-
sponding meta-program. For anyA 2 A-baseP and� 2 Ann, the following
statement holds:(A;�) 2 FA(P ) =) demo(A�) 2 T!V :
Proof. We first show that for allh(A;�) 2 T hP =) demo(A�) 2 T!V : (1.11)
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The proof is by induction onh.

(Base case). Trivial sinceT 0P = ;.
(Inductive case). Assume that(A;�) 2 T hP =) demo(A�) 2 T!V
Then:(A;�) 2 T h+1P() fdefinition ofT ÆP g(A;�) 2 TP (T hP )=) fLemma 11g(9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n :
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1) : : : ; (Bn; �n)g � T hP ^ A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n) _(9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n; th [s1; r2℄; s2; r1 :� = th [s1; r2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1); : : : ; (Bn; �n)g � T hP ^ (A; th [r1; r2℄) 2 T hP ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2; s2 < r2) _(9(B1; �1); : : : ; (Bn; �n); C1; : : : ; Ck; �1; : : : ; �n; in [t1; t2℄; th [s1; s2℄ :� = in [t1; t2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^f(B1; �1); : : : ; (Bn; �n)g � T hP ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2; t1 � t2)=) finductive hypothesisg(
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n) _(� = th [s1; r2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^ demo(A th [r1; r2℄) 2 T!V ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; s1 < r1; r1 � s2; s2 < r2) _(� = in [t1; t2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^A j= C1; : : : ; Ck; �1 v �1; : : : ; �n v �n; t1 � s2; s1 � t2; t1 � t2)=) fLemma 10 andA j= �1 v �1; : : : ; �n v �ng(
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^ A j= C1; : : : ; Ck) _(� = th [s1; r2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^ demo(A th [r1; r2℄) 2 T!V ^A j= C1; : : : ; Ck; s1 < r1; r1 � s2; s2 < r2) _(� = in [t1; t2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n)g � T!V ^A j= C1; : : : ; Ck; t1 � s2; s1 � t2; t1 � t2)



Semantics for Temporal Annotated Constraint Logic Programming 19=) fdefinition ofTV and clause (1.7) usedk times andT!V is a fixpoint ofTVg(
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n); demo(C1); : : : ; demo(Ck)g � T!V ) _(� = th [s1; r2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n); demo(C1); : : : ; demo(Ck)g � T!V ^demo(A th [r1; r2℄) 2 T!V ^ A j= s1 < r1; r1 � s2; s2 < r2) _(� = in [t1; t2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^fdemo(B1 �1); : : : ; demo(Bn �n); demo(C1); : : : ; demo(Ck)g � T!V ^A j= t1 � s2; s1 � t2; t1 � t2)=) fdefinition ofTV and clause (1.2) usedn+ k � 1 times andT!V is a
fixpoint of TVg(
lause(A�; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ) _(� = th [s1; r2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^ demo(A th [r1; r2℄) 2 T!V ^A j= s1 < r1; r1 � s2; s2 < r2) _(� = in [t1; t2℄ ^ 
lause(A th [s1; s2℄; (C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^demo((C1; : : : ; Ck; B1 �1; : : : ; Bn �n)) 2 T!V ^ A j= t1 � s2; s1 � t2; t1 � t2)

Now by exploiting the fact thatT!V is a fixpoint ofTV we have:

by the first disjunct of the formula we concludedemo(A�) 2 T!V using
respectively clause (1.3) if� is ath annotation and clause (1.6) if� is
anin annotation.

By the second disjunct of the formula and Lemma 10, sinceA j=th [s2; r2℄ v th [r1; r2℄ we havedemo(A th [s2; r2℄) 2 T!V . NowA j= s1 � s1; s1 < s2; s2 < r2 then by using clause (1.4) we havedemo(A th [s1; r2℄) 2 T!V .

By the third disjunct of the formula, by using clause (1.5) wecan conclude
thatdemo(A in [t1; t2℄) 2 T!V .

Hencedemo(A�) 2 T!V .

We are now able to conclude the proof of completeness.(A;�) 2 F!(P )=) fdefinition ofF!(P )g9
 2 Ann : (A; 
) 2 T !P ^ A j= � v 
=) fdefinition ofT !P g9h : (A; 
) 2 T hP ^ A j= � v 
=) fstatement (1.11)gdemo(A
) 2 T!V ^ A j= � v 
=) fLemma 10g



20 demo(A�) 2 T!V ut
4. RELATED WORK

One of the first temporal logic programming languages was Templog [1]. In
[26], Templog and an interval based temporal logic are translated into annotated
logic programs. The annotations used there correspond to the th annotations
of TACLP. To implement the annotated logic language, the paper proposed to
use “reductants”, additional clauses which are derived from existing clauses
to express all possible least upper bounds. The problem was that a finite
program may generate infinitely many such reductants. Then,“ca-resolution”
for annotated logic programs was proposed [27]. The idea is to compute
dynamically and incrementally the least upper bounds by collecting partial
answers. Operationally this is similar to the meta-interpreter presented here
which relies on recursion to collect the partial answers. However, in [27]
the intermediate stages of the computation are not sound with respect to the
standardCLP semantics.

Moreover, in [26] two fixpoint semantics are presented for generalized an-
notated programs (GAP). The first one, calledTP , is based on interpretations
which associate to each element of the Herbrand Base of the programP a set
of annotations which is an ideal, i.e., a set downward closedand closed with
respect tofinite least upper bounds. The computed ideal is the least one con-
taining the annotations� of annotated atomsA� which are heads of (instances
of) clauses whose body holds in the interpretation. The other oneRP is based
on interpretations which associate to each atom of the Herbrand Base asingle
annotation which is the least upper bound of the set of annotations computed as
in the previous case. Our fixpoint operator for TACLP works similarly to theTP operator: at each step we close with respect to (representable) finite least
upper bounds, and, although we perform the downward closureonly at the end
of the computation, this does not reduce the set of derivableconsequences. The
main difference resides in the language: TACLP is an extension ofCLP , taking
from GAP the handling of annotations, which focuses on the temporal aspects,
whereas GAP is a general language with negation and arbitrary annotations but
without constraints.

Our temporal annotations correspond to some of the predicates proposed by
Galton in [22], which is a critical examination of Allen’s classical work on a
theory of action and time [2]. Galton provides for both time points and time
periods in dense linear time. Assuming that the intervalsI are not singletons,
Galton’s predicateholds-in(A,I)can be mapped into TACLP’sA in I, holds-
on(A,I)intoA th I, andholds-at(A,t)intoA at t, whereA is an atomic formula.
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From this mapping it becomes clear that TACLP can be seen as reified FOL
where annotated formulae, e.g.born(john) at t, correspond to binary meta-
relations between predicates and temporal information, e.g. at(born(john); t).
But also, TACLP can be regarded as a modal logic, where the annotations are
seen as parameterized modal operators, e.g.born(john) (at t).

In [8], a powerful temporal logic named MTL (tense logic extended by pa-
rameterized temporal operators) is translated into first order constraint logic.
The resulting language subsumes Templog, as does TACLP. Theparameter-
ized temporal operators of MTL correspond to the temporal annotations of
TACLP. The constraint theory of MTL is rather complex as it involves quan-
tified variables and implication, whose treatment goes beyond standardCLP
implementations. On the other hand, TACLP inherits an efficient standard
constraint-based implementation of annotations from the ACL framework.

The ACL framework shares ideas with the work in [10]. There, aproof
system for a large class of (propositional and) quantified modal logics is for-
malized. Soundness, completeness, and normalization can be proved uniformly
for every logic in the class. The class is modular both with respect to properties
of the accessibility relation in the Kripke frame and leads to a simple imple-
mentation of a modal logic theorem prover in standard logical frameworks.
Obviously, this approach is motivated by the same ideas thatmotivated ACL,
though on a much wider and thus more abstract class of languages. What [10]
callsbase logic, corresponds to FOL in ACL, what is calledrelational theory,
corresponds to the constraint theory of ACL. The relationaltheory defines the
accessibility relation in the Kripke frame by (Horn) rules,while the constraint
theory can be any FOL theory, as long as there are efficient algorithms to im-
plement it. Already in [12] it has been argued that the accessibility relation can
be regarded as constraint and the associated axioms as constraint theory.

In [5], translations betweensigned logicand FOL are investigated. Anno-
tated logic [26] can be embedded in signed logic. Both formalisms work with
labels whose structure forms a lattice. The two rules of regular unit resolution
for signed logic correspond exactly to the inference rules of constraint anno-
tated logics. In [5], the lattice structure is encoded by giving FOL clauses for
each pair of lattice elements (i.e., labels). This is only feasible for finite lattices.
In ACL, the use of a constraint theory also allows for infinitelattices using a
small number of axioms.

5. CONCLUSIONS

We investigated semantics of a considerable subset of the language TACLP
that allows us to reason about qualitative and quantitative, definite and indefinite
temporal information using time points and time periods. Its expressive power
has been illustrated with some non-trivial examples.
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We defined the operational (top-down) semantics of TACLP by presenting
a meta-interpreter for it. Then we provided TACLP for the first time with a
fixpoint (bottom-up) semantics, based on the definition of animmediate con-
sequence operator. We proved that the meta-interpreter is sound and complete
with respect to the bottom-up semantics. As future work it would be interesting
to investigate operators similar to the functionRP defined in [26], and adapt
our approach to the bottom-up semantics to the general framework of annotated
constraint logic.

Moreover in this paper, we considered the subset of TACLP, where time
points are totally ordered, sets of time points are convex and non-empty, and
only atomic formulae can be annotated. Furthermore clausesare free of nega-
tion. In general, in TACLP arbitrary formulae can be annotated. In some
cases, as shown in [15], the annotations can be pushed insidedisjunctions,
conjunctions and negation. This means that the omission of negation is the
main restriction of the current work. Consequently, we wantto investigate next
if and how the proofs relating the operational and fixpoint semantics can be
adapted to deal with negation.

Finally, there are many applications that need the ability of storing and
manipulating geometric and temporal data, such as geographic information
systems (GIS), geometric modeling systems (CAD), and temporal databases.
In such applications space and time are often closely interconnected: much
information which is referenced to space is also referencedto time. There-
fore another interesting direction for future research is the representation and
handling of spatio-temporal data using annotations.
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