Chapter 1

SEMANTICS FOR TEMPORAL ANNOTATED CONSTRAINT
LOGIC PROGRAMMING

Alessandra Raffaat

Dipartimento di Informatica, Universitdi Pisa
Corso ltalia, 40, 1-56125 Pisa, Italy
raffaeta@di.unipi.it

Thom Fithwirth

Institut fur Informatik, Ludwig-Maximilians-Universit (LMU)
Oettingenstrasse 67, D-80538 Munich, Germany
fruehwir@informatik.uni-muenchen.de

Abstract We investigate semantics of a considerable subset of Tahponotated Con-
straint Logic Programming (TACLP), a class of languagetsahaws us to reason
about qualitative and quantitative, definite and indefitét®poral information
using time points and time periods as labels for atoms.

Atfter illustrating the power of TACLP with some non-trivi@xamples,
TACLP is given two different kinds of semantics, an openagioone based
on meta-logic (top-down semantics) and, for the first timéx@oint one based
on an immediate consequence operator (bottom-up semjaniiés prove the
top-down semantics to be sound and complete with respettetdoattom-up
semantics.

Keywords: Temporal reasoning, Constraint Logic Programming, Antectaogics, Seman-
tics.

1. INTRODUCTION

Temporal reasoning is at the heart of human activity and mqirsingly it
has raised a lot of interest in computer science, be it in ohe fof temporal
logics [39, 21, 17], temporal programming languages [32184 1, 8, 11, 15]
or temporal databases [36, 38, 4, 6, 9, 20, 33]. No matterafpngrams with

1

2

temporal information or stores data with temporal inforiogtin most cases
the formal underpinnings will be logic, and often be vargot extensions of
first order logic.

In a logical formulation and formalization of temporal infeation and
reasoning it is quite natural to think of formulae that akeeléed with temporal
information and about proof procedures that take into agtthese labels. In
other words, we separate the temporal from the non-tempgsracts. What
D. Gabbay enthusiastically says in the introduction of toskbon labelled
deductive systems [19], that allow to label a general clddsgics, “This
sounds very simple but it ... makes a serious difference, tlile difference
between using one hand only or allowing for the coordinatsdai two hands”,
can apply to the special case of temporal labels as well.

In our case, the logic and the labels are familiar structur@st-order
logic (FOL) and lattices. The labels are called annotati@ml the overall
class of logics is called annotated logics [26]. Based os filsimework and
on constraint logic programming concepts [24, 25, 29, 30, tbé family of
temporal annotated constraint logic programming (TAClARyuages has been
developed in [14, 13, 15, 35, 28].

The pieces of temporal information are giventegnporal annotationg/hich
say at what time(s) the formula to which they are applied iglva'he anno-
tations of TACLP make time explicit but avoid the prolifécat of temporal
variables and quantifiers of the first order approach. Inwfaig, TACLP sup-
ports qualitative and quantitative (metric) temporal cedésg involving both
time points and time periods (time intervals) and their dara Moreover, it
allows us to represent definite, indefinite and periodic @mjgnformation. In
Figure 1.1, an example from [14] illustrates the express#gs and conceptual
simplicity of TACLP. As shown in [14] by asking the quermyurder(z,y)
we obtain two solutions (i.e., two suspects) of the workshmypder mystery:
2 = Lepov,y = Lepov andz = Maringer,y = Lepov. The first one means
that Prof. Lepov could have committed suicide. This unetguesolution is
found because Prof. Lepov does not have an alibi for the tifiésodeath.
The second answer means that Dr. Maringer could be the nauydercause
his alibi does not hold: The copying would have taken 30 nasuso it cannot
have happened during a talk of 25 minutes.

In [15] TACLP is presented as an instance of annotated ainstiogic
(ACL) for reasoning about time. ACL is a generalization ohgrlized anno-
tated programs [26, 27], and extends first-order languagésavdistinguished
class of predicates, callednstraints and a distinguished class of terms, called
annotations used to label formulae. Moreover ACL provides inferendesu
for annotated formulae and a constraint theory for handdingotations. One
advantage of a language in the ACL framework is that its e@hatragment
can be efficiently implemented: Given a logic in this framekydhere is a

Semantics for Temporal Annotated Constraint Logic Prograng 3

There is a workshop at the Plaza hotel.
(1) In the afternoon session, after the coffee break (3:0@5(8n), there were fou
more talks, 25 minutes eachime periods
Dr. Maringer gave the 3rd talk. The last talk was to be giverPlgf. Lepov.
coffeebreak th[3:00, 3:25].
talk(1, Hunon, AlgebraicSemantics...) th[3:25, 3:50].
talk(2,...,...) th[3:50,4:15].
talk(3, Maringer, ...) th[4:15,4:40].
talk (4, Lepov, P = NP) th[4:40,5:05].

(2) Prof. Lepov was found dead in his hotel room at 5:35gime point
founddead(Lepov) at 5:35.

(3) The doctor said he was dead for one to one and a half howlgration
and indefinite information
murdered (p) in[t; — 1:30,t2 — 1:00] < founddead(p) in [t1, t2]

There are two suspects, Dr. Kosta and Dr. Maringer. They hbbis.
(4) Dr. Kosta took the last shuttle to the airport possiblegtach the 5:10pm plane
time point

boardplane(Kosta) at 5:10.

(5) The shuttle from the hotel leaves every half hour betwrean and 11pm
- recurrent (periodic) data

shuttle at 0:00.

shuttle at t + 30 < 0:00 < ¢,¢t < 11:00, shuttle at t

(6) It takes at least 50 minutes to get to the airpoiuration and indefinite
information
onshuttle(p) th[t1, ta] < to = t1 + 50, shuttle at t,
boardplane(p) in [t2, t2 + 50]

(7) During the 2nd talk Dr. Maringer realized that he had &dtgn to copy

his 30 slides relates time periods

So he picked up the slides from his hotel room and copied tHetakes 5 minutes

to get to the room, another 5 minutes to get to the copy room ftreere, and 5 morg

minutes to get back to the lecture hatlurations

A copy takes half a minuterepeated durations
copying(Maringer) thlt, ta] < to =t +5+ 5+ 30 % 0.5+ 5,

talk(2,p,w) thty, to]

(8) Who murdered Prof. Lepov?The murderer is a person who is involved |i

the case and does not have an alibi during the time of murder.
murder (p1,p2) < murdered (p2) in [t1, o], involved (py), —(alibi(py) tht1,t2])
involved (Kosta). involved(Lepov). involved (Maringer).

A1

5

alibi(p) thti, to] < (onshuttle(p) V copying(p) V talk(n,p, w)) thti, 2]

Figure 1.1 The Workshop Murder Mystery

4

systematic way to make a clausal fragment executable asstraio logic pro-
gram. Both an interpreter and a compiler can be generateihgidmented
in standard constraint logic programming languages.

Constraint logic programmingdLP) [24, 25, 29, 30, 16] is an extension
of logic programming, where in addition to predicates, ahiéce defined by
clauses and reasoned about by resolution (a form of ModusriBpnthere
is a distinguished class of predicates callghstraints Their meaning is
defined by aconstraint theorywhose reasoning capability is implemented
by some efficient algorithm in the so-callednstraint solver In this way,
efficient special-purpose algorithms can be integratedsouad way into logic
programming.

Overview of the paper. In this paper, the TACLP language is given two
different kinds of semantics, an operational one based da-togic (top-down
semantics) using a meta-interpreter and a fixpoint one rddalby extending
the definition of the immediate consequence operato€bP to deal with
annotated atoms (bottom-up semantics). The meta-interpgeproved to be
sound and complete with respect to the bottom-up semamibde top-down
semantics is known from previous work on TACLP [14, 13, 18]s tpaper
presents for the first time a bottom-up semantics and, coesgly, for the first
time soundness and completeness results for TACLP.

The paper is organized as follows. Section 2. introduceJAEL_P frame-
work. Section 3. defines the two semantics for TACLP and m@aindness
and completeness. Section 4. shortly presents related amtkSection 5.
concludes the paper.

2. TEMPORAL ANNOTATED CONSTRAINT LOGIC
PROGRAMMING

This subsection briefly reviews TACLP. In this paper, we ddersthe subset
of TACLP, where time points are totally ordered, sets of tpo@ts are convex
and non-empty, and only atomic formulae can be annotatededer clauses
are free of negation. These restrictions will become cleind this section.
For a more detailed treatment of TACLP and for the generairthef ACL we
refer the reader to [15].

Time can be discrete or dense. Time points are totally oddgyehe relation
<. We call the set of time point® and we suppose that a set of operations
(such as the binary operations —) to manage such points are associated with
it. We assume that the time-line is left-bounded by the nurfland open to
the future, with the symbalo used to denote a time point that is later than any
other. Atime periodis an intervalr, s with 0 <r < s < oco,r € D, s € D

Semantics for Temporal Annotated Constraint Logic Programy 5

that represents the convex, non-empty set of time pdintsr < ¢ < s}
Thus the interval0, co] denotes the whole time line.

An annotated formulas of the formA « whereA is an atomic formula and
« an annotation. In TACLP, there are three kinds of annotatlmased on (sets
of) time points. Let be a time point and let be a time period.

(at) The annotated formuld at ¢t means thatd holds at time point.

(th) The annotated formulal th / means thatd holds throughout i.e., at
everytime point in the time period. The definition of ath-annotated
formula in terms okt is:

Athl & Vi(tel — Aatt).

(in) The annotated formuld in I means thatd holds atsometime point(s)
- but we do not know exactly when - in the time peribdThe definition
of anin-annotated formula in terms at is:

Ainl & 3t (telNAatt).

Thein temporal annotation accounts for indefinite temporal imigtion.

The set of annotations is endowed with a partial order mati which
turns it into a lattice. Given two annotatioms and 3, the intuition is that
a C B if ais “less informative” thans in the sense that for all formulag,
A = Aa. More precisely, being an instance of ACL, in addition to Msd
Ponens, TACLP has two further inference rules: the ruleand the rulel().

Aa Ca Aa Ap y=alp
—A—J— rule () 1y rule (L)

The rule €) states that if a formula holds with some annotation, theatsid
holds with all annotations that are smaller according tol#tice ordering.
The rule (1) says that if a formula holds with some annotation and theesam
formula holds with another annotation then it holds with léeest upper bound
of the annotations.

The lattice operatiof is axiomatized by the following constraint theory.

(at th) att =thlt,t]
(at in) att =inlt,t]
(th C) thlsi,s9] Ethr,m] & 11 <s1, 81 <89, 52 <12
(in ©) infri,ro] Cinfs,s9] & 711 <s1, 51 <89, 52 <1

1The results in this paper naturally extend to time lines #hatbounded or unbounded in other ways and to
time periods that are open on one or both sides.

6

The first two axioms state thah I andin I are equivalent tat ¢t when the
time periodI consists of a single time point?> Next, if a formula holds at
every element of a time period, then it holds at every elermesit sub-periods
of that period (th C) axiom). On the other hand, if a formula holds at some
points of a time period then it holds at some points in all gesithat include
this period (in C) axiom).

To summarize the partial order relation on annotations attiems can be
arranged in the following chain, assuming< s1, s1 < s2, s2 < 19!

in[ry,re) C infsy, s2] C insy, s1] = at sy = thsi, s1] C thsy, so] C thry,ro]

Now we axiomatize the least upper boundf temporal annotations over
time points and time periods. As explained in [15], the laggper bound
exists but sometimes may be “too large”. For instance, aiegito the lattice,
th[1,2] U th[4,5] = th[l,5], but according to the definition ah-annotated
formulae in terms oht, Ath[l,2] A Ath[4,5] does not implyA th(l,5],
since it does not express the validity dfat 3. Also, in[1,2] U in[2,3] =
in[2,2], butAin[1,2] A Ain[2,3] = Aat2is not in general correct, since
e.g. Aat 1andA at 3 may hold. From a theoretical point of view, this problem
can be overcome by enriching the lattice of annotations @sfiressions with
LI. In practice, it suffices to consider the least upper boumdifioe periods
that produce a different meaningful time period. Concyetele can restrict
ourselves tah annotations with overlapping time periods that do not idelu
one another:

(th |_|) th [81, SQ]thh [7“1,7'2] =th [81,’!“2] & 81 <1, < 89,82 < ro.
Finally, the constraint theory also contains an axiom#teaof the total

handled by the constraint solver).

We can now define the clausal fragment of TACLP that can be aseth
efficient temporal programming language. TACLP programis a finite set of
TACLP clauses. ATACLP clausas a TACLP formula of the form:

Aa+ Cy,...,Ch,Braq,... ,Bpay (n,m>0)

whereA is an atom (not a constrainty,andc; are (optional) temporal annota-
tions, theC';'s are the constraints and tli%’s are atomic formulae. Constraints
C; cannot be annotated. As in logic programming syntax, confiyiatenote
conjunctions. The conclusion of the implication is callkdlieadof the clause

2Especially in dense time, one may disallow singleton perimt drop the two axioms. This restriction has
no effects on the results of the paper.

Semantics for Temporal Annotated Constraint Logic Programy 7

and the premise thbody of the clause. Variables in a clause are implicitly
assumed to be universally quantified at the outermost scope.

We conclude the introduction of TACLP with some exampleshénfollow-
ing programs, we adopt the convention of denoting variabli¢is identifiers
starting with a lower-case letter and constant symbols bytitlers starting
with an upper-case letter.

Example 1 In a company, there are managers and a secretary who has to
manage their meetings. A manager is busy if he is in a meetiiidne is out.
busy(p) th[t, t2] ¢ in-meeting(p) tht1, t2]
busy(p) th[ti, t2] < out-of-office(p) th[ti, t2]
Suppose the schedule for today to be the following: SmithJangs have
a meeting at 9am and at 9:30am respectively, each lastinghone In the
afternoon Smith goes out for lunch at 2pm and comes back at 3pm

in-meeting (Smith) th [9am, 10am). out-of -office(Smith) th [2pm, 3pm).
in-meeting(Jones) th[9:30am, 10:30am).

If the secretary wants to know whether Smith is busy betwez®as and
10:30am she can ask féwusy (Smith) in [9:30am, 10:30am|. Since Smith is

in a meeting from 9am till 10am, one can indeed derive thattsisibusy. This
query exploits indefinite information, since if Smith isyousone instant of the
period[9:30am, 10:30am], then the secretary cannot schedule an appointment
for him for that period.

On the other handpusy (Smith) th[9:30am, 10:30am]| does not hold, be-
cause Smithis not busy between 10am and 10:30am.bAdg0Smith) in[10:30am, 1:30pm]
does not hold, because Smith is not busy in that time periadl.at

The query(busy(Smith) thti,t2], busy(Jones) tht,t2]) reveals that
both managers are busy throughout the time pefibd0am, 10am], because
this is the largest interval that is included in the time jpeis where both
managers are busy.

Now assume that we define

busy th[t1,t2] < busy(p) tht1,ts]

Thenbusy holds when either manager is busy, namely for the intef9als:, 10: 30am]
(which is the least upper bound of the time periods for the cwerlapping
meetings of Smith and Jones) g@gm, 3pm)|.

In [35] TACLP is successfully applied to a system for caltinig the liquid
flow in a network of water tanks from some events specifyingmthe taps
were switched on and off. The following example involvinghtinuous change
is also presented.

Example 2 We model information about the growth of trees.
1. Tree 1 sprouts at tim&5 (the middle of year 3).

sprouts(Treel) at 3.5.

2. Tree 1is an oak tree.
tree_type(Treel, Oak).

3. The growth rate of oak trees is 3 meters per year.
growth_rate(Oak, 3).

4. If atree is of a type that has a given growth rate r, and tlee tsprouts
at time s then at time t it has a height, whére= (¢t — s) x r.

height(tree, h) att <
h=(@—s)xr,
tree_type(tree, type), growth_rate(type, r),
sprouts(tree) at s

5. If atree has height m at timet, whereh > 6.75, then it is mature.
mature(tree) tht,co] «— h > 6.75, height(tree, h) at ¢

In the last clause, the maturity of the tree at an instant iglied by a constraint
on the height of the tree at that instant. Height is the cardirsly changing
quantity. The query

mature(Treel) th[6, 7]

can be proven. This means that Treel is mature throughoutirtiee period

which begins at yea# and ends at year.
The query

mature(Treel) th[ty, t2]

yieldst1 > 5.75,t9 = 0.

3. SEMANTICS OF TACLP

In this section we define the operational (top-down) seroardf the lan-
guage TACLP by presenting a meta-interpreter for it. Thempwgide TACLP
with a fixpoint (bottom-up) semantics, based on the defimitban immedi-
ate consequence operator, and we prove that the metargttars sound and
complete with respect to the bottom-up semantics.

In the definition of the semantics, without loss of geneyalite assume all
atoms to be annotated withh or in labels. at ¢ annotations can be replaced
with th [¢, t] by exploiting the(at th) axiom. Each atom which is not annotated
in the object level program is intended to be true througktoeitvhole temporal
domain, and thus can be labelled with [0, co]. Constraints stay unchanged.

Semantics for Temporal Annotated Constraint Logic Prograng 9

3.1 OPERATIONAL SEMANTICS VIA
META-INTERPRETER

Thevanillameta-interpreter [37] is the simplest application of mgtagramming
in logic. A general formulation of the vanilla meta-integger can be given by
means of thelemo predicate used to represent provabilifemo(g) means
that the formulgy is provable in the object program.

demo(Empty).
demo((by,b2)) < demo(by), demo(bs)
demo(a) < clause(a,b), demo(b)

The unit clause states that the empty goal, representecelpotistant symbol
Empty, is always solved. The second clause deals with conjungtrads. It
states that a conjunctiofB;, Bs) is solved if B, is solved andB; is solved.
Finally, the third clause deals with the case of atomic gedlction. To solve
an atomic goal, a clause from the program is chosen whose head unifies with
A and the body of the clause is recursively solved. An objeallprogrampP
is represented at the meta-level by a set of axioms of the Kinthe(A, B),
one for each object level clauge+ B in P.

The extended meta-interpreter for our subset of TACLP isnddfiby the
following clauses:

demo(Empty). (1.1

demo((b1,b2)) < demo(by), demo(bs) (1.2)

demo(ath[tl,tg]) — 81 Stl,tg SSQ,tl StQa (1 3)
clause(a thlsi, s2],b), demo(b) '

demo(ath[tl,tg]) — 51 < t1,t; < 892,82 < 1o, (1 4)
clause(a thsy, s2],b), demo(b), demo(a thsa,t2]) '

demo(a in[ty, to]) + t1 < 89,81 < to,t; < to, (1.5)
clause(a thsy, s3], b), demo(b) '

demo(a in[t1,t2]) < t1 < 81,52 < to, (1.6)

clause(a in[s1, s2],b), demo(b)

demo(c) « constraint(c),c 1.7)

10

A clauseA a < B of a TACLP programP is represented at the meta-level by
clause(A a, B) « t1 < to. (1.8)

wherea = th[t), ta] Or @ = in[tq, to].

This meta-interpreter can be written in a®{. P language that provides
a suitable constraint solver for temporal annotations Geetion 2. for the
constraint theory). Hence the first difference with the Wanheta-interpreter
is that our meta-interpreter handles constraints whicleither occur explicitly
in its clauses, e.gs; < t1,t1 < to,to < s9in clause (1.3), or can come from
the resolution steps. The latter kind of constraints is rgadeby clause (1.7)
which passes each constrafrito be solved directly to the constraint solver.

The second difference is that our meta-interpreter impigsn@ot only
Modus Ponens but also the ru(€) and the rule(ll). This is the reason
why the thirddemo clause of the vanilla meta-interpreter is now split intorfou
clauses. Clauses (1.3), (1.5) and (1.6) implement theenter rule(C): the
atomic goal to be solved is required to be labelled with arotation which is
smaller than the one labelling the head of the clause usée iresolution step.
For instance, clause (1.3) states that given a clauske[s;, s2] < B whose
body B is solvable, we can derive the atofrannotated with anyh [t , t] such
thatth [tq, t2] C thsy, o, i.e., according to axiortth C), [t1,t2] C [s1, s2],
as expressed by the constraint< 1, ty < s9,t; < to. Clauses (1.5) and (1.6)
are built in an analogous way by exploiting axiofisith C) and(in C),
respectively.
Rule (U) is implemented by clause (1.4). According to the discussion
Section 2., itis applicable only tch annotations with overlapping time periods
which do not include one another. More precisely, clausé) (dtates that if
we can find a clausé th [s1, s3] < B such that the body3 is solvable, and
if moreover the atonA can be provedhroughoutthe time periodss, t2] (i.e.,
demo(Ath sy, t2]) is solvable) then we can derive the atotrlabelled with
any annotatiorth [¢1,t2] C th[sy,t2]. The constraints on temporal variables
ensure that the time peridé,, ¢2] is anewtime period different fromjsy, so]
and[ss, t2] and their subintervals.

Finally, in the meta-level representation of object claustause1.8), we
have to add the constraint < ¢, to ensure that the head of the object clause
has a well-formed, namely non-empty, annotation.

Example 3 Consider a library database containing information aboogrs.
Mary first borrowed the book Hamlet from May 12, 1995 to Jungl®®5 and
then on June 12, 1995 she extended her loan:

borrow(Mary, Hamlet) th[May 12 1995, Jun 12 1995].
borrow(Mary, Hamlet) th[Jun 12 1995, Aug 1 1995].

The period of time in which Mary borrowed Hamlet can be oledimby the
query

Semantics for Temporal Annotated Constraint Logic Prograng 11

demo(borrow(Mary, Hamlet) th[ty, t2]).

By using clause (1.4), itis possible to derive the intef¥&dy 12 1995, Aug 1 1995]
(more precisely, the constraint&ay 12 1995 < t1, t1 < Jun 12 1995,

Jun 12 1995 < to, to < Aug 1 1995 are derived) that otherwise would be
never generated. In fact, by applying clause (1.3) alonis,pbssible to prove
only that Mary borrowed Hamletinthe intervd®ay 12 1995, Jun 12 1995]
and[Jun 12 1995, Aug 1 1995] separately.

3.2 FIXPOINT SEMANTICS

There are several ways of defining a bottom-up semantics GLPArelated
to the different possible choices of the semantic domairnrevtiee immediate
consequence operator is defined. The simpler solution sisnisi using the
powersetp(A-basé x Ann) with set-theoretic inclusion, disregarding the par-
tial order structure of the set of annotatiaAsn. Alternative solutions (as for
generalized annotated programs in [26]) may consider a almstact domain,
which is obtained by endowing-basex Ann with the product order (induced
by the discrete order od-baseand the order oninn) and then by taking as
elements of power domain only those subsets of annotatetsathich satisfy
some closure properties with respect to such an order. Btarioe, one canre-
quire “downward-closedness”, which amounts to includinigssimption in the
Tp operator. Another possible property is “limit-closedriesamely the pres-
ence of the least upper bound of all directed sets which, &a@omputational
point of view, amounts to consider computations which gamgsiequire more
thanw steps. For space limitations, we treat here the first, singuoleition.

The intended interpretation of constraints is defined bynfjxa structure
A. In our cased surely contains a structuf® (with domainD) in which we
interpret the temporal constants and functions. HoweveZ,'P programs can
have constraints not only on temporal data, hence in getfegatructure4
will be multi-sorted.

Let Dom 4 the domain of the structurgl. An A-valuationis a (multi-
sorted) mapping from variables 1dom 4, and its natural extension maps terms
to Dom 4 and formulae to formulae whose predicates have argumengsiga
over Dom_4. An A-ground instanced’ of an atomA (resp. of a constraint or
of a clause) is obtained by applying alzvaluation to the atom (resp. to the
constraint or to the clause), thus producing a construbedrmp(a , . .. , ay,)
with aq, ... ,a, elements fromDom 4. We denote byround 4(P) the set of
A-ground instances of clauses from a progrBm

3The formal definition ofA-baseis given later. Briefly, it is the natural generalization bétnotion of
Herbrand Base in constraint logic programming.

12

We first define the standard fixpoint operator of constragiitiprogramming
and then extend it to deal with TACLP. Ad-interpretationfor a CLP(.A)
programP is a subset of thel-baseof P, written .A-base>, which is the set

{p(al,... ,an) |

Thenthe standard immediate consequence operator [29{fbPg.A) program
P is afunctionT?' : p(A-base) — p(A-base>) defined as follows:

TAI) = 44| A+ Cy,...,CkBy,...,By, € ground 4(P),
pAS {Bi1,...,B,} CI, AECy,... ,Cy

The operatoifls4 is continuous [29], and therefore it has least fixpoint witigh
be computed as the least upper bound of the ch@iig!)'};>o of the iterated
apalications 01’1‘134 starting from the empty sét.The fixpoint is denoted by
(Tp)“.

To generalize the above operator to deal with temporal atinos we con-
sider a kind of extended interpretations, basically caimgjof sets of annotated
elements of4-base. Formally we define the set of (semantical) annotations

Ann = {th [tlth]v in [tlth] | tve D,t, € D, D |: 1 < t2}
Then given a TACLP progran®, the lattice of interpretations is defined as

(p(A-base x Ann), C) wherep is the powerset operator andis the usual
relation of set-theoretic inclusion.

Definition 4 Let P be a TACLP program, the functidﬁls4 : p(A-basep X
Ann) — p(A-basep x Ann) is defined as follows.

TpH(I) =

(a =th[s1,s2] V a=in[sy,s2])

Aa+ Cy,...,Cy, Biay,... ,Byay, € ground 4(P),
{(Blaﬁl)a- .. a(Bna/gn)} g [7

A):Ch"' aOkaal E/ﬁla"' , O Eﬁnasl SSQ

p is a n-ary user-defined predicate in P
and each a; is an element of Dom 4

(4,a) |

U
Athl[sy,s2] < Ci,... ,Ck, Biay,. .. ,Broy € ground 4(P),
(Avth [517T2]) | {(Bla/gl)a"' 7(Bn7ﬁn)} - [7 (Aath [TlaTQ]) € Ia
A): Cla"' aOkaal Eﬁla"' » On Eﬁnasl <7171 < 82,52 < T3
U
Athl[sy,se] < Ci,...,Ck, Biau,. .. ,Broy € ground 4(P),
. {(Bla/gl)a--- 7(Bn7ﬁn)}g[7
(Ajln[thtﬂ) | A): Cla"' aOkaal Eﬁla"' , O Eﬁnatl S 52,81 StQatl StQa
s1 < 82

4Formally, for a functioril” : p(S) — (S) we defineT® = andT+! = T(T%).

Semantics for Temporal Annotated Constraint Logic Prograng 13

This definition properly extends the standard definitionhef immediate con-
sequence operator. In fact, in a sense, it captures not balibdus Ponens
rule, as the standard operator does, but also(tujgsecond set in the above
definition). In addition, ruléC) is used to prove that an annotated atom holds
in an interpretation: To derive the headn of a clause it is not necessary to
find in the interpretation exactly the atoms o4, ... , B, «;, occurring in the
body of the clause, but it suffices to find atom@s5; which implies B; «;,
i.e., such that each; is an annotation stronger than (A = «; C ;). Fi-
nally, notice that7z'(I) is not downward closed, namely, it is not true that if
(A,a) € TA(I) then for all(A, ~) such thaty C «, we have(4, v) € TA(I).
However such a closure is done at the end of the computatitire dixpoint of
T;f‘. In this way the rulgC) is completely captured.

An important property of théﬁs4 operator, which is at the core of the defi-
nition of the fixpoint semantics, is continuity over theilzgtof interpretations.

Theorem 5 (Continuity) Let P be a TACLP program. The functiofiz' is
continuous (or{p(A-base x Ann), Q)).

Proof. The proof is a direct consequence of the definitionTp‘\‘ and of the
partial orderC on the interpretations. For more details see the Appendix.

The bottom-up semantics for a progrdmris defined as the downward closure
of the least fixpoint of7z* which by theorem 5 is the least upper bound of the
chain{(Tls“)Z}iZO.

Definition 6 Let P be a TACLP program. Then the fixpoint semantic® o
defined as

FAP) ={(4,0) | (4,8) € (TH)*, A= a LB}
where(T3!)* = UiZO(TPA)i'

3.3 SOUNDNESS AND COMPLETENESS

The semantics of meta-logic is a quite debated issue (s€@2.81, 3]).
In the spirit of [7, 31], we define the semantics of the extendanilla meta-
interpreter by relating the semantics of an object prograné semantics of
the corresponding vanilla meta-program (i.e., including meta-level repre-
sentation of the object program). When stating the cormespace between the
object program and the meta-program we consider only faenof interest,
i.e., elements afl-base annotated with labels fromnn. We show that given a
TACLP programP (object program) for anyl € A-base> and anyx € Ann,
demo(A «) is provable at the meta-level if and only(ifl, «) is provable in the
object program. Formally, we are going to prove that

demo(Aa) € (T{;lm)“’ — (A,a) e FAP) (1.9)

14

whereV is the meta-program containing the meta-level representaff the
object programP according to(1.8) and the clauses (1.1)-(1.7), am‘g“m is
the standard immediate consequence operat6tZd?. It is worth noting that
V is a CLP(.A,,) program where the structuté,, in which we interpret the
constraints is composed by two structures: the Herbrawndtsie associated
with V and the structurgl where the constraints @f are interpreted. Therefore
it is obvious that ifC' is an.4-ground instance of a constraint the), = C <
AEC.

Since the given meta-logical definition axiomatizes a topst operational
semantics for TACLP programs, the proof of the stateme®) [dorresponds
to showing the equivalence of computing top-down and bottpm

In the following for simplicity we drop the reference # and A, in the
name of the immediate consequence operators. Furtheridatenotes a
TACLP program,A the structure where the constraintsfoaire interpreted4,
B elements ofd-base p, a, 3, v elements ofdnn andC an.4-ground instance
of a constraint. All symbols may have subscripts. The prdahe next two
subsections are just sketched in the main text. The detilde found in the
Appendix.

Soundness In order to show the soundness of the meta-interpreterrifriest
to the atoms of interest), we first prove the following lemntatisg that a
conjunctive goal is provable at the meta-level if its atoo@injuncts are provable
at the meta-level.

Lemma 7 LetP be a program and le¥ be the corresponding meta-interpreter.

For any By aq,... , B, a, with B; € A-basep anda; € Ann and for any
Ch, ..., Cy, with C; an A-ground instance of a constraint, the following state-
ment holds:

forall h demo((Cy,...,Cr,Biay,... ,Byay)) € T{j
= {demo(B1),...,demo(By o)} CTE A A= C,...,Cy

Proof. The proof easily follows from the definition @, and clauses (1.2) and
(1.7) of the meta-interpreter. O

The soundness of the meta-interpreter is an easy corolfatyeofollowing
theorem stating that ifemo (A «) is provable at the meta-level th¢d,) is
a consequence of the progrdmandA -~y = Aq, i.e., the annotation is less
or equal toy.

Theorem 8 Let P be a program and leY be the corresponding meta-program.
Forany A € A-basep anda € Ann, the following statement holds:

demo(Aa) € Ty = dyednn:(A,y)eTg N A=Ealry.

Semantics for Temporal Annotated Constraint Logic Programg 15
Proof. We first show that for alh
demo(Aa) € T} = dye Ann: (A7) €e T§ N A= aC A1.10)

The proof is by induction onh.
(Base case). Trivial sinceTB = 0.

(Inductive case). Assume that
demo(A«) € T} = dyeAnn: (A,y)eTp N AEaCy.
Then:

demo(Aa) € T{j"‘l
< {definition of 7}
demo(A) € Ty (Th)
We have four cases corresponding to clauses (1.3), (1.8),d4td (1.6) of the meta-interpreter.
We only show the first two cases since the others are proveddikclause (1.3).

(clause (1.3){« = th[ty, t2], definition of Ty, and clause (1.3)
{clause(Ath[s1,s2],G), demo(G)} C T{} N A sy <t te < sg,t1 <t
= {meta-level representation of clausesiyfaccording to clause (1.B)
I(Brai), ..., (Brag),C1,... ,Cy
Athl[sy,s2] < Ch,...,Cx,Biou,...,Byay € ground 4(P) A
demo((Cl,... ,Cr, By aq,... ,Bnozn)) € T{}l AN A): §1 < t1,te < 89,11 < to
= {Lemma?
Ath[sy,s9] « Ch,... ,Cx,Bray,...,By,ay, € ground 4(P) A
{demo(Bi a1),... ,demo(By, o)} C TH A
AEC ... ,Cy N Al s1 <t,ta <sg,t) <ty
= {inductive hypothesis
A61,...,0n: Ath[sy,sa] < Ch,... ,Ck,Broa,... ,Bya, € ground 4(P) A
{(317/61)7"' 7(Bn7/8n)} - 7'1(3/.1 AN A): Qg Elgl7“‘ y On E/Bn A
AEC ... ,Cy N Al sy <t,ta <sgtp <ty
= {definition of 7Tp sinceA = s; < so}
(A,th [81,82]) € TP(TIg}) N A): §1 < t1,te < 89,11 < to
= {Tp is afixpoint of Tp and A |= s1 < t1,t2 < 59,81 < t2}
(A,th [81,82]) € TI%) AN A |: th [tl,tg] C th [81,82]

(clause (1.4){a = th[ty, t2], definition of 7}, and clause (1.4)
{clause(Ath[s1, s3], G), demo(G), demo (A th[ss, t2])} C TP A
AE 51 <ti,t1 < s2,52 <ty
= {meta-level representation of clausesiyfaccording to clause (1.B)
H(Bl 011),. ey (BnOén),Cl, e ,Ck .

16

Athl[sy,s2] < Ch,...,Cx,Braq,...,Byay € ground 4(P) A
demo((Cy,... ,Cx,Braq,... ,Bpay)) € T{} A demo(Ath[sg,t2]) € T)’} A
A): 51 < t1,t1 < 82,82 < 19
= {Lemma %
Ath[sy,s9] « Ci,... ,Cx,Bray,. .., By oy € ground 4(P) A
{demo(B1 a1),... ,demo(By o)} CTH A A= Cy, ... ,Ck A
demo(Ath [32,t2]) € T{}l AN A |: s1 < t1,t1 < 82,82 < b2
= {inductive hypothesis
36, 61,...,0n : Ath[sy,s2] < C1,...,Ck,Biaq,...,Byay € ground 4(P) A
{(Bla/gl)a"' ,(Bn,ﬁn),(A,ﬁ)} c Tlg] A
AEai Efi,...,an E By, thise,] ES AN ARECy,... ,Cp A
A): §1 < t1,t1 < 82,82 < ta.
SinceA |: th [Sg,tQ] C Gtheng = th [wl,wg] with A |: w1 < 82,1t < wo.

According to the relation betweem ands; we can distinguish

(a) A |: w1 < s1. ThenA |: wy < 81,81 < 11,11 < 89,89 < to,ts < wo
which allows us to conclude that
(A, th [wl, ’wg]) S T}‘;’ ANA |: th [tl, tg] C th [wl, ’U)Q]

(b) A |: s1 < wi. ThenA |: s1 < wy,wy < 89,82 < tg, 1o < wo then by
definition of Tp
(A,th [81,’(1)2]) S TP(T}%)) AN A |: s1 < t1,t1 < 89,82 < 1to,t2 < wo
= {7p isafixpoint of Tp and A |= s; < t,t; < t, 12 < wa}
(A,th(si,wa]) € T A A= thity, 1] T thlsi, wy]
We are now able to conclude the proof.
demo(Aa) € Ty
= {1y =U;>o I}
3h: demo(Aa) € T
— {Statement (1.10)
B: (4,0 €Ty NARFaLp
O

Theorem 9 (Soundness) et P be a TACLP program and I&tf be the corre-
sponding meta-program. For any € A-basep anda € Ann, the following
statement holds:

demo(Aa) € Ty = (A,) € FA(P)
Proof. By Theorem 8 there existy € Ann such that(A4,vy) € 75 and
A = a C 7. Hence by definitior{ A, o) € FA(P). 0

Completeness In order to show the completeness of the meta-interpreter we
first prove two lemmata. Lemma 10 states that if an annotatieu & « is

Semantics for Temporal Annotated Constraint Logic Prograng 17

provable at the meta-level then dlllabelled with a weaker annotatiof C «)
are provable at the meta-level, too. Lemma 11 is a very teahtémma
regarding thefp operator, which is used in the proof of the main result.

Lemma 10 Let P be a program and leV be the corresponding meta-program.
For any A € A-basep anda € Ann, the following statement holds:

demo(Aa) € Ty} = Vv C a. demo(Avy) € Ty

Proof. The proof is carried out by induction on the number of itenatdf 73,
and by considering the different cases coming from clausé€y,((1.4), (1.5)
and (1.6) of the meta-interpreter. O

Lemma 11 Let P be a program and leV be the corresponding meta-program.
For any A € A-basep anda € Ann and any interpretationl C A-basep X
Ann, the following statement holds:

(A, a) € Tp(I)
— (H(Bl,ﬁl),... ,(Bn,ﬁn),Cl,... ,Ck,al,... , Oy, -

clause(Ac, (Cy,... ,C,Biaq,... ,Bpay)) € T A
{(Blaﬁl)a- .. a(Bna/gn)} g IN
.A|: Cl,... ,Ck,al Eﬁl,... , Oy Eﬁn)\/
(H(Blaﬁl)a"' 7(Bn7ﬁn)a017"' aCkaala"' ,Oén,th[Sl,’f'g],Sg,’f'l :
a =th[sy,re] A
clause(Ath[sy,s5],(C1,... ,Cy,Broy,... ,Byay)) € Ty A
{(Blvﬁl)a"' a(Bnaﬁn)} g I A (A,th[’l“l,’l"g]) S I/\
AECH ... ,Crar T Bi,... ,0n T Bh,s1 < 71,11 < 82,82 < 12)
(H(Blaﬁl)a"' 7(Bnaﬁn)a017"' aCkaala"' ,an,in [t17t2]7th [31732] :
a:in[tl,tg] A
clause(Ath[sy,s5],(C1,... ,Cy,Broy,... ,Byay)) € Ty A
{(317/81)7"' 7(Bn7/6n)} - I'N
AEC ... ,Crar 5 Br,... ,on E Bty < s9,51 <ty < ty)

Now we can prove the completeness of the meta-interpretarrespect to the
bottom-up semantics.

Theorem 12 (Completeness) et P be a program and le¥ be the corre-
sponding meta-program. For any € A-basep anda € Ann, the following
statement holds:

(A,a) € FA(P) = demo(Aa) € TY;.
Proof. We first show that for alk

(A,0) € T = demo(Aa) € Ty, . (1.11)

18

The proof is by induction onh.
(Base case). Trivial since 72 = 0.

(Inductive case). Assume that
(A,0) €T = demo(Aa) € TY
Then:

(4,0) € TAT
<= {definition of 72}
(4,0) € To(T})
= {Lemma 1%}
(E(Bla/gl)a"' 7(Bn7/6n)701a"' 7Ck7a17"' y Op :
clause(Aa, (Cy,... ,C,Bray,... ,Byay)) € Ty A
{(Bla/ﬁl)-" 7(Bna/6n)} - T]£L N A): Cla--- aCkaal Eﬁla"' y Op Eﬁn) \
(H(Blaﬁl)a"' a(Bna/ﬁn)aCh-" aCkaala"' ,Oén,th[81,T2],82,’f'1 :
a =th[si,r2] A clause(Athlsy,sa), (C1,...,Cp Brai,... ,Byay)) €T A
{(Bla/gl)a"' a(Bnaﬁn)} - Tlg A (Aath [TlaTQ]) € T]£L A
AEC, ..., Cra1 B, ... yan E By, 51 <711,7m1 < 82,80 <7T2) V
(E(Bla/gl)a"' 7(Bn7/6n)701a"' 7Ck7a17"' 7an7in[t17t2]7th[51a32] :
a = inlty, o] A clause(Athlsy,ss), (C1,...,Ck, Bray,... ,Byay)) € T A
{(Blwgl)a'" 7(Bna/8n)} C Tlg A
AEC ... ,Crar EBr,... ,an & Bty < 59,51 < tg, 1y < ty)
= {inductive hypothesis
(clause(Ac, (Cy,...,C, Bray,... ,Byay)) € T A
{demo(By 31),... ,demo(B, ,)} C Ty A
AECh,... Cryoy C B, 0 € f) V
(a =th[si,r2] A clause(Athlsy,s2), (C1,...,Cr, Brai,... ,Byay)) €T A
{demo(By 1),... ,demo(B, B,)} C Ty A demo(Ath[ry,r]) € T} A
AEC ... ,Cra1 B, ... yan E By, 51 <711,7m1 < 82,80 <7T2) V
(@ =in[ty,to] A clause(Ath[s,s2], (C1,... ,Ck,Biaq,... ,Bpay)) € T A
{demo(B1 f1),... ,demo(By,)} C Ty A
AECL ... ,Crar EBr,y... yan E Byytr < 59,81 <t by < o)
= {LemmalOandd = «a; C Gi,... ,an C Gy}
(clause(Ac, (Cy,...,Cy,Brai,... ,Byay)) € Ty A
{demo(By a1),... ,demo(By o)} €Ty AN AECy,...,C) V

(@ =th[s1,r2] A clause(Athlsy,s2), (C1,...,Cr,Brai,... ,Byay)) €T A
{demo (B a1),... ,demo(By o)} CTY A demo(Ath[ry,rp]) € T3 A
AEC, ... ,Cys1 <71, < 82,80 <1) V

(@ =in[ty,to] A clause(Ath[sy,s2], (C1,... ,Ck,Biaq,... ,Bpay)) € TY A

{demo (B a1),... ,demo(By, o)} C Ty A
AECL, ... ,Ck ity < 83,81 <ttty <o)

Semantics for Temporal Annotated Constraint Logic Prograng 19

—> {definition of 7}, and clause (1.7) usddtimes andr}; is a fixpoint of 73, }
(clause(Ac, (Cy,...,Cy,Brai,... ,Byay)) €T A
{demo(B1 1), ... ,demo(By ay,), demo(C1), ... ,demo(C)
(a =th[si,r2] A clause(Athlsy,s2), (C1,...,Cr, Brai,... ,Byay)) €T A
{demo(B1 1), ... ,demo(By ay,), demo(C1), ... ,demo(Cl)
demo(Ath[ri,ro]) €T N A=s1 <ri,ry < 82,52 <72)V
(a =1in|t1,t2] A clause(Athlsy,sq],(C1,... ,Ck,Biay,..., By
{demo(B; 1), ... ,demo(By ay,), demo(C1),... ,demo(Cy)} C
AEt <sg,81 <t tp <o)

= {definition of 73, and clause (1.2) used+ k — 1 times andI}; is a

fixpoint of Ty, }
(clause(Ac, (Cy,...,Cy,Bray,... ,Byay)) €T} A
demo((C,... ,Ck,Byay,... ,Byay)) € TY) V
(@ =th[s1,m2] A clause(Athlsy,ss), (C1,...,Cr, Bray,... ,Byay,)) € T3 A
demo((Cy,... ,Cr, Bray,... ,Byay)) €Ty A demo(Ath[ry,ry]) € T3 A
AEsp <r,r < 82,80 <719)V
(@ =1in[ty, 2] A clause(Ath([sy, s2], (C1,... ,Ck,Bray,... ,Byay)) € T A
demo((Cl,... ,Cr,B1ay,...,B, Oln)) S T{}] N A): t1 < 892,81 < ig,t1 < t2)

—
N

<
<

—
N
<E Q
>

Now by exploiting the fact that}; is a fixpoint of 7, we have:

= by the first disjunct of the formula we concludemo (A o) € T35 using
respectively clause (1.3) if is ath annotation and clause (1.6)dfis
anin annotation.

= By the second disjunct of the formula and Lemma 10, sinte=
thsy,rp] T thiry,ro] we havedemo(Athl[sy,m]) € Ty. Now
A |= s1 < 51,81 < s9,82 < ro then by using clause (1.4) we have
demo(Ath[si,ro]) € Ty,

m Bythe third disjunct of the formula, by using clause (1.5)ssa conclude
thatdemo(A in [ty,12]) € T35.

Hencedemo(A«a) € Ty,
We are now able to conclude the proof of completeness.

(A,) € F¥(P)
= {definition of 7*(P)}
JyeAnn: (A,y)eTg N AEaly
= {definition of 75’}
Fh: (Ay) ETEANAEQCY
— {statement (1.13)
demo(Ay) €Ty N AEaCy
= {Lemma 10

20

demo(Aca) € Ty}

4. RELATED WORK

One of the first temporal logic programming languages wasplegi1]. In
[26], Templog and an interval based temporal logic are ted@d into annotated
logic programs. The annotations used there corresponcetentinnotations
of TACLP. To implement the annotated logic language, theepgpoposed to
use “reductants”, additional clauses which are derivethfexisting clauses
to express all possible least upper bounds. The problem kasat finite
program may generate infinitely many such reductants. Tioeresolution”
for annotated logic programs was proposed [27]. The idea isompute
dynamically and incrementally the least upper bounds blecitig partial
answers. Operationally this is similar to the meta-intetgr presented here
which relies on recursion to collect the partial answers. weler, in [27]
the intermediate stages of the computation are not souridregipect to the
standardC'LP semantics.

Moreover, in [26] two fixpoint semantics are presented faregalized an-
notated programs (GAP). The first one, callgsl, is based on interpretations
which associate to each element of the Herbrand Base of tlygggm P a set
of annotations which is an ideal, i.e., a set downward cl@seticlosed with
respect tdinite least upper bounds. The computed ideal is the least one con-
taining the annotations of annotated atomd « which are heads of (instances
of) clauses whose body holds in the interpretation. Therathe Rp is based
on interpretations which associate to each atom of the ldecbBase single
annotation which is the least upper bound of the set of atinpotacomputed as
in the previous case. Our fixpoint operator for TACLP worksikrly to the
Tp operator: at each step we close with respect to (repredepfatite least
upper bounds, and, although we perform the downward clasuyeat the end
of the computation, this does not reduce the set of derivadisequences. The
main difference resides in the language: TACLP is an externsi CL P, taking
from GAP the handling of annotations, which focuses on thepteral aspects,
whereas GAP is a general language with negation and agb#rarotations but
without constraints.

Our temporal annotations correspond to some of the predigabposed by
Galton in [22], which is a critical examination of Allen’sadsical work on a
theory of action and time [2]. Galton provides for both tinmnts and time
periods in dense linear time. Assuming that the interyadse not singletons,
Galton’s predicatdolds-in(A,l)can be mapped into TACLP4 in I, holds-
on(A,l)into A th I, andholds-at(A,tinto A at ¢, whereA is an atomic formula.

Semantics for Temporal Annotated Constraint Logic Programy 21

From this mapping it becomes clear that TACLP can be seerifeeirEOL
where annotated formulae, e.tprn(john) at ¢, correspond to binary meta-
relations between predicates and temporal informatign ag.(born(john), t).
But also, TACLP can be regarded as a modal logic, where thetations are
seen as parameterized modal operators,be(john) (att).

In [8], a powerful temporal logic named MTL (tense logic exded by pa-
rameterized temporal operators) is translated into firdéioconstraint logic.
The resulting language subsumes Templog, as does TACLPpdiaeneter-
ized temporal operators of MTL correspond to the temporalotations of
TACLP. The constraint theory of MTL is rather complex as itdlves quan-
tified variables and implication, whose treatment goes bd\siandard’LP
implementations. On the other hand, TACLP inherits an efficistandard
constraint-based implementation of annotations from t6& Aamework.

The ACL framework shares ideas with the work in [10]. Thergraof
system for a large class of (propositional and) quantifiedahtogics is for-
malized. Soundness, completeness, and normalizatioreqanoted uniformly
for every logic in the class. The class is modular both wilpeet to properties
of the accessibility relation in the Kripke frame and leadlsitsimple imple-
mentation of a modal logic theorem prover in standard |dgi@aneworks.
Obviously, this approach is motivated by the same ideasnttmitvated ACL,
though on a much wider and thus more abstract class of lapgua&ihat [10]
callsbase logi¢ corresponds to FOL in ACL, what is calleelational theory
corresponds to the constraint theory of ACL. The relatidhabry defines the
accessibility relation in the Kripke frame by (Horn) rulegile the constraint
theory can be any FOL theory, as long as there are efficientitiighs to im-
plementit. Already in [12] it has been argued that the acb#isg relation can
be regarded as constraint and the associated axioms asaguiristeory.

In [5], translations betweesigned logicand FOL are investigated. Anno-
tated logic [26] can be embedded in signed logic. Both foisnad work with
labels whose structure forms a lattice. The two rules oflergunit resolution
for signed logic correspond exactly to the inference rufesonstraint anno-
tated logics. In [5], the lattice structure is encoded byrgwOL clauses for
each pair of lattice elements (i.e., labels). This is onasfble for finite lattices.
In ACL, the use of a constraint theory also allows for infila#ices using a
small number of axioms.

5. CONCLUSIONS

We investigated semantics of a considerable subset of tigeiéege TACLP
that allows us to reason about qualitative and quantitadiegnite and indefinite
temporal information using time points and time periods.eipressive power
has been illustrated with some non-trivial examples.

22

We defined the operational (top-down) semantics of TACLP f@senting
a meta-interpreter for it. Then we provided TACLP for thetfilmie with a
fixpoint (bottom-up) semantics, based on the definition oinamediate con-
sequence operator. We proved that the meta-interpreteuislsand complete
with respect to the bottom-up semantics. As future work iikddoe interesting
to investigate operators similar to the functi&®p defined in [26], and adapt
our approach to the bottom-up semantics to the general fvarkeof annotated
constraint logic.

Moreover in this paper, we considered the subset of TACLRrevhime
points are totally ordered, sets of time points are convekram-empty, and
only atomic formulae can be annotated. Furthermore claarsekee of nega-
tion. In general, in TACLP arbitrary formulae can be anredat In some
cases, as shown in [15], the annotations can be pushed idsigections,
conjunctions and negation. This means that the omissioregétion is the
main restriction of the current work. Consequently, we wamtvestigate next
if and how the proofs relating the operational and fixpoimhaetics can be
adapted to deal with negation.

Finally, there are many applications that need the abilitystoring and
manipulating geometric and temporal data, such as geograpformation
systems (GIS), geometric modeling systems (CAD), and teatgtatabases.
In such applications space and time are often closely ioterected: much
information which is referenced to space is also refereroeiine. There-
fore another interesting direction for future researcthesrepresentation and
handling of spatio-temporal data using annotations.

Semantics for Temporal Annotated Constraint Logic Prograng 23

Acknowledgments

We thank Paolo Baldan and Roberta Gori for their useful comsand suggestions.

References

[1] M. Abadi and Z. Manna. Temporal logic programming. Journal of
Symbolic Computatigrvolume 8, pages 277—-295, 1989.

[2] J.F. Allen. Towards a general theory of action and tima.Attificial
Intelligence volume 23, pages 123-154, 1984.

[3] K. Aptand F. Turini, editorsMeta-logics and Logic ProgrammindVIT
Press, London, 1995.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Temporal DetiecDatabases.
In [38], pages 294-320.

[5] B.Beckert, R. Hhhnle, and F. Margy. Transformations between signed and
classical clause logic. IbD’98 The First International Workshop on La-
belled DeductionFreiburg, Germany, September 1998. Albert-Ludwigs-
Universitt.

[6] M. Bohlen and R. Marti. On the Completeness of Temporal Database
Query Languages. Ilfemporal Logic: Proceedings of the First Interna-
tional Conference, ICTL'94volume 827 ofLecture Notes in Artificial
Intelligence pages 283-300, 1994.

[7] A.Brogiand F. Turini. Meta-Logic for Program Compositi: Semantics
Issues. In K. Apt and F. Turini, editoreta-Logics and Logic Program-
ming pages 83-109, 1995.

[8] C.Brzoska. Temporal logic programming with metric arsgpoperators.
In[11], pages 21-39.

[9] J. Chomicki. Temporal Query Languages: A SurveyTémporal Logic:
Proceedings of the First International Conference, ICH,'9lume 827
of Lecture Notes in Artificial Intelligencgpages 506-534. Springer Ver-
lag, 1994.

[10] S. Matthews D. Basin and L. ViganLabelled modal logics: Quantifiers.
Journal of Logic, Language, and Information(3), 1998.

[11] M. Fisherand R. Owens, editofsSxecutable Modal and Temporal Logics
volume 897 ofLecture Notes in Artificial IntelligenceSpringer Verlag,
1995.

[12] A.M. Frisch and R. B. Scherl. A general framework for mbdeduction.
In Proceedings 2nd KR '9Jages 196-207. Morgan Kaufmann, 1991.

[13] T.Fruhwirth. Temporallogic and annotated constraint logigpamnming.
In[11], pages 58-68.

24

[14] T. Fruhwirth. Annotated constraint logic programming appliedem-
poral reasoning. IiProgramming Language Implementation and Logic
Programming (PLILP)volume 844 ofLecture Notes in Computer Sci-
ence pages 230-243. Springer Verlag, 1994.

[15] T. Fruhwirth. Temporal Annotated Constraint Logic Programmidaur-
nal of Symbolic ComputatiQ22:555-583, 1996.

[16] T. Fruhwirth and S. AbdennadheConstraint-Programmierung: Grund-
lagen und Anwendunge®pringer, Berlin, 1997.

[17] D. Gabbay, I. Hodkinson, and M. Reynoldeemporal Logic Clarendon
Press, Oxford, 1994.

[18] D. M. Gabbay. Modal and temporal logic programming. IrGalton, ed-
itor, Temporal Logics and Their Applicationgages 197-237. Academic
Press, 1987.

[19] D. M. Gabbay. Labelled deductive systems : volumevitlume 33 of
Oxford logic guides Clarendon Press, Oxford, 1996.

[20] D.M. Gabbay and P. McBrien. Temporal Logic & Histori€ztabases. In
Proceedings of the Seventeenth International Conferencéeoy Large
Databasespages 423430, September 1991.

[21] A. Galton, editor. Temporal Logics and Their ApplicationsA\cademic
Press, 1987.

[22] A. Galton. A critical examination of allen’s theory ot@on and time.
Artificial Intelligence 42:159-188, 1990.

[23] P.Hilland J.W. Lloyd. Analysis of Metaprograms. In H.Bbramson and
M.H. Rogers, editorsMetaprogramming in Logic Programmingages
23-52. The MIT Press, 1989.

[24] J. Jaffar and J. L. Lassez. Constraint Logic PrograngmiimProceedings
of the Fourteenth Annual ACM Symposium on Principles of Riogning
Languagespages 111-119, 1987.

[25] J.Jaffarand M.J. Maher. Constraint logic programmigurvey.Journal
of Logic Programming19 & 20:503-582, May 1994.

[26] M. Kifer and V.S. Subrahmanian. Theory of generalizethaated
logic programming and its applicationdournal of Logic Programming
12:335-367, 1992.

[27] S.M. Leach and J.J. Lu. Computing annotated logic @owy. InPro-
ceedings of the eleventh IC|L.pages 257-271, 1994.

[28] P. Mancarella, A. Raffaat and F. Turini. Knowledge Representation
with Multiple Logical Theories and TimeJournal of Experimental and
Theoretical Artificial Intelligencell1:47—76, 1999.

Semantics for Temporal Annotated Constraint Logic Prograng 25

[29] K. Marriott, J. Jaffar, M.J. Maher, and P.J. Stuckey.eT®emantics of
Constraint Logic Programslournal of Logic Programming37(1-3):1—
46, 1998.

[30] K. Marriott and P. J. Stuckeyrogramming with ConstraintdMIT Press,
USA, 1998.

[31] B. Martens and D. De Schreye. Why untyped nonground pnetgam-
ming is not (much of) A problem. Journal of Logic Programming
22(1):47-99, January 1995.

[32] B. Moszkowski. Execution Temporal Logic Program€&€ambridge Uni-
versity Press, 1986.

[33] M. A. Orgun. On temporal deductive databas€amputational Intelli-
gence 12(2):235-259, May 1996.

[34] M. A. Orgun and W. Ma. An Overview of Temporal and Modaldio
Programming. Infemporal Logic: Proceedings of the First International
Conference, ICTL'94volume 827 ofLecture Notes in Artificial Intelli-
gence pages 445-479, 1994,

[35] J. Singer. Constraint-Based Temporal Logic PrograngmBSc. disserta-
tion, Department of Artificial Intelligence, University &dinburgh, May
1996.

[36] R. Snodgrass. Temporal DatabasesPioceedings of the International
Conference on GIS - From Space to Territory: Theories anchivlig of
Spatio-Temporal Reasoning in Geographic Spaeges 22—64, 1992.

[37] L. Sterling and E. Shapirol'he Art of Prolog The MIT Press, 1986.

[38] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segend &. Snodgrass

editors. Temporal Databases: Theory, Design, and Implementaiam-
jamin/Cummings, 1993.

[39] J.F. A.K.van Benthenlhe logic of time: a model-theoretic investigation
into the varieties of temporal ontology and temporal digseuvolume
156 of Synthese LibraryReidel, Dordrecht, 1983.

