
Logic Programs as Types for LogicPrograms�Preliminary ReportThom Fr�uhwirthyECRC Ehud ShapirozWeizmann InstituteMoshe Y. VardixIBM Research Eyal Yardeni{Weizmann Institute
AbstractType checking can be extremely useful to the program development process.Of particular interest are descriptive type systems, which let the program-mer write programs without having to de�ne or mention types. We considerhere optimistic type systems for logic programs. In such systems types areconservative approximations to the success set of the program predicates.We propose the use of logic programs to describe types. We argue that this�This paper will be presented at the 6th IEEE Symp. on Logic in Computer Science,Amsterdam, July 1991. Part of this work was done while the �rst and third authors werevisiting the Weizmann InstituteyECRC, Arabellastrasse 17, D-8000 Muenchen 81, Germany, email: thom@ecrc.dezDept. of Applied Math., Weizmann Institute of Science, P.O.Box 26, 76 100 Rehovot,Israel, email: udi@wisdom.weizmann.ac.ilxIBM Almaden Research Center K53-802, 650 Harry Rd., San Jose, CA 95120-6099,USA, email: vardi@ibm.com{Dept. of Applied Math., Weizmann Institute of Science, P.O.Box 26, 76 100 Rehovot,Israel, email: eyal@wisdom.weizmann.ac.il 1

approach uni�es the denotational and operational approaches to descriptivetype systems and is simpler and more natural than previous approaches.We focus on the use of unary-predicate programs to describe types. Weidentify a proper class of unary-predicate programs and show that it is ex-pressive enough to express several notions of types. We use an analogy with2-way automata and a correspondence with alternating algorithms to obtaina complexity characterization of type inference and type checking. This char-acterization was facilitated by the use of logic programs to represent types.1 IntroductionIt has long been recognized that type-checking can be extremely use-ful to the program development process. Type checking enables automaticdetection of many programming errors and it increases con�dence in the cor-rectness of programs. Furthermore, type information can be used also bythe compiler for program optimization. Of particular interest are descriptivetype systems, which let the programmer write programs without having tode�ne or mention types; rather, the compiler automatically infers types andchecks for type correctness [Red88].Given that recognition in the bene�t of type checking, the design of typesystems for logic programming languages has been studied extensively (cf.[Klu87, Mis84, MO83, Red88, XW88, Zob87]). The basis for descriptive typesystems for logic programs was proposed by Mishra [Mis84]: a formula thatfails may be considered erroneous. Thus, the type of a predicate describesall the terms for which the predicate may succeed. Such types can be calledoptimistic types [Red88].A type of a predicate in a logic program is therefore a conservative ap-proximation to the meaning of that predicate, i.e., it must be a supersetof the success set of the predicate. There can be, however, more than onesuch superset. In choosing a type, the issues that have to be consideredinvolve the tightness of the approximation, its representation, and its com-putational complexity. Several proposals have been studied in the literature(see [HJ90b] for a survey). All of them share the following basic intuition,which originated in [Mis84] and made explicit in [Red90].First, let us consider a simpli�ed situation. Let p be a binarypredicate. We can consider an atom P (t1; t2) to be meaningful ifthere is a term u1 such that P (u1; t2) is true, and symmetrically,there is a term u2 such that P (t1; u2) is true. The rationale is thatif there is a u1 such that P (u1; t2) is true, then t2 is a legitimateargument to p. However, if there is no such u1, then t2 is not2

covered in the second argument in any of the clauses for p. Hence,the atom is most likely erroneous and it is reasonable to interpretit as \meaningless".Heintze and Ja�ar [HJ90b] study the relationship between two of themajor approaches in the literature to de�ning descriptive types for logicprograms. The �rst approach can be thought of as denotational. It ex-tracts from the program set-theoretical constraints for the types; these set-theoretical constraints are expressed in any of various ad-hoc formalisms (cf.[Mis84, HJ90a]). The type assignment is then a preferred solution of theseconstraints. The second approach can be thought of as operational. It startswith an approximation of the immediate consequence operator TP associatedwith a program P . Types are then de�ned as the �xpoint of the approximateoperators [YS87, YS91b]. The main result in [HJ90b] is that various notionsof type obtained via the denotational approach are equivalent to the variousnotions of type obtained via the operational approach. The main result in[HJ90a] is the use of the denotational approach to develop type inferenceand type checking algorithms. (Type inference is the extraction of a typedescription from the program. Type checking is the determination whethera given goal is well-typed.)In this paper we propose a uni�cation of the denotational and opera-tional approaches. Basically, we advocate using logic programs to representtypes, and, following [YS87], we emphasize the use of unary-predicate pro-grams (unary-predicate programs contain only unary predicates symbols butmay contain nonunary function symbols). Strictly speaking, unary-predicateprograms cannot represent types of nonunary predicates; but, as the intu-ition quoted above shows, our real interest is in types of predicate arguments{ predicate types are essentially the cross product of these simpler types.Since types of predicate arguments are simply sets of terms, we contend thatunary-predicate logic programs ought to be adequate to represent these sets.The argument in favor of our position goes, however, deeper than that. Asexplained above, the denotational approach extracts the set-theoretical con-straints from the program. Our approach does essentially the same but in akinder and gentler way; it simply converts the original program into a pro-gram that expresses the types of predicate arguments in the original program.Alternatively, one can view our unary-predicate programs in an operationalway, as de�nitions of approximate consequence operators. Instead, however,of expressing these approximate operators in some other formal language, weexpress them in the same manner that the original consequence operator TPwas expressed, by logic rules. We contend that this approach is simpler andmore natural than previously studied approaches.Beyond the conceptual argument in favor of our approach, we believe that3

it also o�ers practical advantages. First, types as logic programs are easierto understand. Being able to represent types in the same formalism of theoriginal program, whether one prefers to think about types denotationally oroperationally, greatly facilitates the exploration of di�erent notions of types.Second, the representation of types as unary-predicate programs is conduciveto studying a critical aspect of type systems, which is their computationalcomplexity.Computational complexity is the raison d'être of descriptive type systemsfor logic programs; the only reason for us to approximate the success set of apredicate is that the success set is typically undecidable. It is crucial, there-fore, for our types to be decidable, and identifying the complexity of typesis of paramount importance. Unfortunately, previous works on descriptivetype systems for logic programs, including [HJ90a, HJ90b], did not addressthe issue of computational complexity. To address this issue, we identify aclass of unary-predicate programs, which we call proper unary-predicate pro-grams. This class of programs is de�ned by a certain syntactic restriction onthe rules that limits their ability to manipulate terms. Nevertheless, it turnsout that several notions of types, e.g., the types de�ned by TP in [HJ90a], aswell as the types de�ned by \path abstraction" in [YS91a] and by \path pro-jection" in [Fr�u89], can be represented by proper unary-predicate programs.We use an analogy between proper unary-predicate logic programs and 2-wayautomata as well as the natural correspondence between logic programs andalternating algorithms (cf. [Sha84]), to study the complexity of type inferenceand type checking for types described by proper unary-predicate programs.The restriction imposed on such programs enables us to use unfolding1 tech-niques, inspired by classical techniques in the theory of 2-way automata, toreduce proper unary-predicate programs to regular programs | these areprograms that de�ne regular sets of terms in the automata-theoretic sense.2This transformation can be viewed as type inference. Using alternating algo-rithms we then provide a precise characterization for the complexity of typechecking. We believe that it is our use of logic programs to represent typesthat facilitated this characterization.2 PreliminariesWe refer the reader to [Llo87] for standard terminology and de�nitions aboutlogic programs. The denotational semantics of a logic program de�nes thesuccess set of a program P as the minimal model of P viewed as a universal1Unfolding is a basic technique of doing compile-time derivations in order to eliminateruntime derivations. It is used in partial evaluation, program transformation, programanalysis, and program specialization; cf. [TS84, Ers88].2A set of terms is regular if it is de�nable by a �nite tree automaton [Tha73].4

Horn theory. The operational semantics of P is de�ned in terms of the imme-diate consequence operator TP associated with P . TP operates on Herbrandinterpretations; its de�nition isTP (I) = fH� jH B 2 P and B� 2 Ig;where � ranges over ground substitutions. It is known that the success set ofP is precisely the least �xpoint of TP .As observed in [HJ90b], the operational de�nition consists of three maincomponents: (i) the collection of uni�ers corresponding to the body atoms ofa rule, (ii) the applications of these uni�ers to the head of a rule, and (iii) thejoining of the resulting sets, one from each rule head. We can approximatethe success set of P by approximating TP . To obtain such an approximation,we replace the above components of TP by approximate ones.We �rst describe in detail the approximation TP de�ned in [HJ90a]; lateron we onsider another approximation. The main feature of the TP approxi-mation is the replacement of substitutions by set substitutions, i.e., substitu-tions that map variables to sets of terms. Set substitution can be naturallyviewed as a mappings from terms to sets of ground terms: if t is a term withvariable occurrences X1; : : : ; Xk (note that we distinguish between multipleoccurrences of the same variable) and � is a set substitution, thent� = ft(X1=t1; : : : ; Xk=tk) j ti 2 �(Xi); 1 � i � kg:If � is a collection of ground substitutions over a set X of variables, thenAX(�) is the set substitution over X that maps each variable X 2 X to theset fX� j � 2 �g. The approximate consequence operator TP is de�ned in[HJ90a] by:TP (I) = na 2 H� jH B 2 P and � = Avar(H)(f� jB� 2 Ig)o ;where � ranges over ground substitutions and var(H) is the set of variablesin the head H. As explained in [HJ90a], TP �rst collects together the groundsubstitutions for a rule that instantiate the body atoms into elements of I.From these substitutions it collects all the possible values that each variablemay be instantiated to, ignoring the relationship between these variables. Aset substitution is then de�ned as the mapping from each variable into thecollected set of values, and �nally, this set substitution is applied to the headof the rule. Since the success set of P is de�ned as the least �xpoint TP , andTP approximates TP , the least �xpoint of TP is a conservative approximationof the success set of P . 5

3 Type ProgramsAs observed in Section 2, TP collects all the possible values that each variablemay be instantiated to, ignoring the relationship between these variables.The idea underlying our approach is that the operator TP should be expressedin the same way that the original operator TP was expressed { by logic rules.To this end we rewrite a program P into a program PT , such that thesuccess set of PT is essentially the least �xpoint of TP . We call PT a typeprogram. We can assume without loss of generality that no two rules in Phave a variable in common. With each variable X in P we associate a unarypredicate x. We refer to these predicates as the unary predicates. Intuitively,the success set of the predicate x approximates the set of instantiations ofthe variable X. We also introduce a new unary predicate type. Finally, witheach k-ary predicate symbol p in P we associate a k-ary function symbol fp.Intuitively, fp(t) will be in the success set of type precisely when t is in thetype of p.Let p(t):{p1(t1); : : : ; pm(tm)be a rule in P , with head variables X1; : : : ; Xk. Since TP decouples multipleoccurrences of variables in the head, we associate a distinct variable X ij withthe ith occurrence of Xj in the head. Let ~t be the \decoupled" version of t.That is, ~t is obtained from t be replacing the ith occurrence of Xj by X ij.Note that ~t does not have repeated variables, i.e., multiple occurrences of thesame variables, even though t may have repeated variables. For the aboverule we put several rules in PT . We �rst put one rule for the head:type(fp(~t)):{x1(X11); : : : ; xk(X lk):The body of this rule contains a literal xj(X ij) for the ith occurrence of Xjin the head of the original rule. We now add a rule for each variable Xi:xi(Xi):{type(fp1(t1)); : : : ; type(fpm(tm)):If the head p(t) contains no variable, then we pretend that it contains a newvariable X. Thus, we put in PT one rule for the head:type(fp(~t)):{x(X);and one rule for the bodyx(X):{type(fp1(t1)); : : : ; type(fpm(tm)):(Thus, if the body fails, then the predicate x is empty, which forces the headto fail.) 6

The basic idea of this construction is to de�ne the type of the head pred-icate in terms of the types of the head variables and to de�ne the types ofthe head variables in terms of the types of the body predicates. Further-more, each occurrence of head variables is typed independently, so multipleoccurrences of the same variable are decoupled.Example 3.1: Let P be the program for list reversal:rev(nil; U; U) :{:rev(X:L1; L2; L3) :{ rev(L1; X:L2; L3):Then PT is the programtype(frev(nil; U1; U2)) :{ u(U1); u(U2):type(frev(X:L1; L2; L3)) :{ x(X); l1(L1); l2(L2); l3(L3):u(U) :{:x(X) :{ type(frev(L1; X:L2; L3)):l1(L1) :{ type(frev(L1; X:L2; L3)):l2(L2) :{ type(frev(L1; X:L2; L3)):l3(L3) :{ type(frev(L1; X:L2; L3)):The following theorem asserts that PT indeed approximate P in the de-sired manner. The proof is actually quite simple; the claim follows almostimmediately from the close correspondence between the program PT and thede�nition of TP . Essentially, TP can be viewed as the immediate consequenceoperator TPT of PT .Theorem 3.2: Let P be a program, let PT be its associated type program,and let p be a predicate of P . Then type(fp(t)) is in the success set of PTprecisely when p(t) is in the least �xpoint of TP .To appreciate the simplicity of our approach we urge the reader to compareour approach with the rather involved set equations of [HJ90a]. We contendthat the natural way to express optimistic type is by means of type programs.The two approaches of approximation that are studied in [HJ90b], the deno-tational and the operational, simply coincide with the two ways of de�ningthe semantics of type programs, denotationally or operationally. Our ap-proach, however, o�ers more than just a unifying notation, as we shall nowsee. 7

The transformation of P into PT yields a representation of types byunary-predicate type programs. Unary-predicate programs, however, canstill describe very complicated types. It is easy to see that unary-predicateprograms can simulate arbitrary programs, by converting tuples of terms tosingle terms (as we did with the type predicate). Thus, it is not clear thatthe use of unary-predicate type programs o�ers any bene�t. Fortunately, thetype programs PT satisfy a certain syntactical restriction that we will be ableto utilize.Let t and t0 be terms. We say that t and t0 are disjoint if they have novariable in common. If t0 is a subterm of t, then we say that t0 is a strongsubterm of t (or, equivalently, t is a strong superterm of t0) if whenever x isa variable of t0 then it occurs in t only as a variable of t0. Intuitively, if wethink in terms of the directed acyclic graph representing t, then there is nopath from t to a variable x of t0 that does not go through t0.It is easy to see that type programs satisfy the following property.Proposition 3.3: Let p(t):{p1(t1); : : : ; pk(tk) be a rule in PT . Then t doesnot contain repeated variables, and each ti is either a subterm of t, a strongsuperterm of t, or disjoint from t.Intuitively, rules in PT are limited in their ability to manipulate terms.We call unary-predicate programs that obey the restrictions in Proposi-tion 3.3 proper. Proper unary predicate programs cannot have rules suchas p(g(f(X); Y)):{q(g(X; f(Y))):With such rules one can easily simulate Turing machines [Sha84]. Thus,improper unary-predicate programs can de�ne all recursively enumerable setsof terms. In contrast, as we shall see, proper unary-predicate programs de�neregular sets of terms. Such sets are often used to describe types, cf. [HJ90a,Mis84, YS87, Zob87], though often only a proper subclass of the class ofregular term sets is used.4 Type Inference and Type CheckingOur goal in this section is to characterize the complexity of type inferenceand type checking for types described by unary-predicate programs. As a�rst step we convert proper unary-predicate programs to uniform unary-predicate programs. A unary-predicate program is uniform if wheneverp(t):{p1(t1); : : : ; pk(tk) is a rule in the program then t does not contain re-peated variables and either each ti is a subterm of t, each ti is a strongsuperterm of t, or each ti is disjoint from t. It is not hard to see that by intro-ducing auxiliary unary-predicates we can transform proper unary-predicate8

programs to uniform unary-predicate programs; the auxiliary predicates areused to separate subterm and superterm goals. Note that the type programsgenerated in the previous section are uniform.Proposition 4.1: If P is a proper unary-predicate program, then there existsa uniform unary-predicate P 0 such that the projection of the success set of P 0on the predicates of P is the success set of P .If all the terms in the body of a rule are strong superterms of the headterm, then we call the rule depth increasing. The second step is to con-vert uniform unary-regular programs to regular unary-predicate programs byeliminating depth-increasing rules. A unary-predicate program is regular ifwhenever p(t):{p1(t1); : : : ; pk(tk) is a rule in the program then t does notcontain repeated variables and each ti is a subterm of t or disjoint from t.The transformation of uniform unary-predicate programs to regular unary-predicate programs is quite involved and is the technical crux of our results.As we show, there is a natural algorithm for determining membership inthe success set of regular unary-predicate programs, which means that regularunary-predicate programs are amenable to type checking. Thus, the trans-formation of uniform unary-predicate programs to regular unary-predicateprograms can be viewed as type inference. Again, we urge the reader to com-pare our approach to type inference and type checking with that of [HJ90a]to appreciate its conceptual and algorithmic simplicity.In what follows we discuss �rst regular unary-predicate programs, andthen show that uniform programs can be converted to regular programs.4.1 Regular ProgramsWe focus here on type checking for regular unary-predicate programs { de-termining whether a given goal p(t) is well-typed, i.e., whether p(t) is in thesuccess set of a given regular unary-predicate program P (note that P neednot be a type program). Consider a derivation tree of the program P for agoal p(t).3 All the terms that occur in the tree are either subterms of t orvariants of terms from P (variants are obtained by variable renaming). Wecall such trees nonincreasing. If there is no variable sharing between nodesof the tree, then the problem would have been easy, and existence of such atree can be determined in polynomial time. Variable sharing among nodesin the tree complicates things considerably.3A derivation tree of the program P for a goal p(t) is a tree labeled by atoms. theroot is labeled by p(t). If an internal node x is labeled by the atom q(s), then there is inP a rule q(s0):{q1(s1); : : : ; qk(sk) and there is a substitution � such that s = s0� and thechildren of x are labeled by the atoms q1(s1)�; : : : ; qk(sk)�.9

Theorem 4.2: Determining membership in the success set of regular unary-predicate programs is EXPTIME-complete.Sketch of Proof: To obtain the exponential time upper bound, we use thenatural correspondence between logic programs and alternating algorithms(cf. [Sha84]). An alternating algorithm ([CKS81]) can branch both existen-tially and universally. The requirement is that at least one branch succeeds ata existential branching point and all branches succeed at a universal branch-ing point.Without loss of generality we assume that the rules are either of the formp(f(X1; : : : ; Xk)) :{ p1(X1); : : : ; pk(Xk);p(X) :{ p1(X); : : : ; pk(X);p(X) :{ p1(t1); : : : ; pk(tk); where X is disjoint from the ti's,or of the formp(c) :{ p1(t1); : : : ; pk(tk):We describe an alternating algorithm that tests whether a goal p(t) isin the success set of a regular unary-predicate program P . The algorithmalways has a set of goals under consideration, initially the set consists ofp(t). The algorithm tries to prove that an instance of the set of goals underconsideration is contained in the success set of P . The algorithm partitionsthe set of goals into the �nest partition such that goals in di�erent blocks donot share variables. Then the algorithm branches universally { each branchconsiders one block of the partition. For each goal q(s), the algorithm nowexistentially selects a rule r from P , uni�es the head of r with q(s), andreplaces q(s) by the instantiated body of r.It can be shown that the number of goals in a single branch is at mostpolynomial in the size of the program. It was shown in [CKS81] that analternating polynomial-space algorithm can be simulated by an exponential-time algorithm. The upper bound follows.To prove the exponential lower bound we �rst prove that the intersectionproblem for tree automata is EXPTIME-complete. This proof also uses alter-nation; it is known that exponential-time algorithms can be simulated by al-ternating polynomial-space algorithms [CKS81]. An alternating polynomial-space Turing machine accepts an input if it has an accepting computationtree. Given a machine M and an input of length n, we construct n treeautomata of size O(n) such that they have a nonempty intersection i� M10

has an accepting computation tree on the input. Finally, we show that theintersection problem can be reduced to the membership problem.It should be noted that the lower bound of Theorem 4.2 holds even for regularunary programs (i.e., where both predicate and function symbols are unary).Since for unary programs the approximation TP is in fact precise, it followsthat Theorem 4.2 implies an exponential-time lower bound on the complexityof type checking for this approximation.A regular unary-predicate program is said to be reduced if it does notcontain rules with nonempty bodies of the form:p(X) :{ p1(t1); : : : ; pk(tk); where X is disjoint from the ti's,or of the formp(c) :{ p1(t1); : : : ; pk(tk):In such rules the body is either true or false. If it is true then we caneliminate the body, and if it is false we can eliminate the rule. An algorithmsimilar to the algorithm described in the proof of Theorem 4.2 can be usedto determine if the body is true or false.Proposition 4.3: There is an exponential-time algorithm that converts aregular unary-predicate program to a reduced program.The transformation of regular unary-predicate programs to reduced programswill come handy later on. We note that reduced regular unary-predicate pro-grams can be viewed as alternating tree automata [Slu85]; such automata areknown to be equivalent in expressive power (though not in succinctness) tostandard tree automata. Thus, the success set of a regular unary-predicateprogram is indeed regular, which explains our terminology. The representa-tion of types as tree automata let us answer many questions about types inaddition to the membership question addressed in Theorem 4.2; we can test�niteness of types (cf. [Don65]), containment of types (cf. [Sei90]), etc..4.2 From Uniform Programs to Regular ProgramsAs we saw in Section 4.1, there is a natural type-checking algorithm for reg-ular unary-predicate programs. Consequently, our goal for type inference isthe extraction of regular unary-predicate type programs. To understand theintuition of the transformation from uniform to regular unary-predicate pro-grams, consider a derivation tree of a uniform unary-predicate program P fora goal p(t). As we observed earlier, if the program is regular, then the depths11

of the intermediate terms is bounded. If the program is not regular, then thedepths of the terms in the intermediate goals may increase and decrease andare potentially unbounded. One can view regular unary-predicate programsas analogous to 1-way automata, while uniform unary-predicate programsare analogous to 2-way automata. The critical observation is that the termsin the leaves of the derivation tree have bounded depth. Thus, wheneverthe depth of the terms in the subgoal increases, it must eventually decrease.By adding new rules we can eliminate increasing trees. This transformationis analogous to the transformation of 2-way automata into 1-way automata[RS59, She59]. We now sketch this transformation in more detail.Without loss of generality we assume that the rules are either of the formp(X) :{ p1(t1); : : : ; pk(tk);p(c) :{ p1(t1); : : : ; pk(tk); orp(f(X1; : : : ; Xk)) :{ p1(X1); : : : ; pk(Xk);Furthermore, we can assume that the only rules with an empty body are ofthe form p(c):{.Consider now a derivation tree of a ground literal; this tree may be in-creasing. If x is a node of the tree labeled by a term t, then the children of xare labeled either by immediate subterms of t, by strong superterms of t, orby variant terms of P disjoint from t. The problematic case is where x is anincreasing node, i.e., the children terms are proper superterms of the parentterm. Suppose indeed that x is an increasing node. We know, however, thatthe leaves of the tree are labeled by terms of depth 0. Consider a path fromx towards a leaf. The terms on this path ought to be strong superterms of tuntil we either reach a node labeled by a variant term from P disjoint from tor we reach a node labeled again by t. Thus, there is a �nite subtree under-neath x whose frontier is labeled either by variant terms from P disjoint fromt or by t. We call this subtree a stationary subtree, since, as far as its frontieris considered, it neither constructs superterms of t nor does it decompose tinto its subterms.A stationary subtree corresponds to a nonground incomplete (i.e., withsome unexpanded leaves) derivation tree whose root is labeled by X, whoseinternal nodes are labeled by terms properly containing X, and whose leavesare labeled by variant terms from P disjoint from X or by X. We call sucha tree a stationary tree. This tree corresponds to a rule of the formp(X):{p1(t1); : : : ; pk(tk);12

where each ti is either a variant term from P disjoint from X or is X. Thisrule can be obtained from P by an unfolding that starts with an increas-ing rule. We call such rules stationary rules, since they neither constructsuperterms on top of the head term nor do they decompose the head terminto its subterms. Clearly, the number of body literals of the form pi(X)is at most linear in the size of the program. Thus, to get a bound on thesize of stationary rules we need to bound the number of body literals withvariant terms from P . A careful analysis shows that if pi1(ti1); : : : ; pil(til) areliterals in the body of a stationary rule and ti1 ; : : : ; til have a shared variable,then ti1 ; : : : ; til are variant terms from a single rule in P . Thus, the size ofa stationary rule is at most exponential in the size of P . It follows that thenumber of possible stationary rules is at most doubly exponential in the sizeof P .Since the stationary rules obtained by unfolding do follow from the rulesof P , we can add them to the program without changing its semantics. Theadvantage of adding the stationary rules to the program is that they corre-spond to stationary subtrees in an increasing derivation tree. If a stationaryrule r that corresponds to a stationary subtree � at a node x has been addedto P , then we can eliminate � from the derivation tree by deleting all theinternal nodes of � and connecting the leaves of � to x. Note that after thisoperation, x is not an increasing node anymore. Thus, if P is augmentedwith all its stationary rules, then there is no need to use its increasing rulesany more and they can be eliminated. But if all the increasing rules areeliminated, then we are left with a regular program.We have essentially shown the following:Theorem 4.4: Let P be a uniform unary-predicate program. Then there isa regular unary-predicate program P 0 that is equivalent to P .Example 4.5: The program PT of Example 3.1 is equivalent to the regularprogramtype(frev(nil; U1; U2)) :{:type(frev(X:L1; L2; L3)) :{ l1(L1):u(U) :{:x(X) :{:l1(nil) :{:l1(X:L1) :{ l1(L1):l2(L2) :{:l3(L3) :{:
13

Theorem 4.4 tells us that uniform unary-predicate programs de�ne regularsets of terms, but it does not tell us how to �nd the stationary rules thatneed to be added to the program. We know that these rules can be obtainedby unfolding, but because of the increasing rules in the program, there is noa priori bound on the size of the necessary unfolding. We now prove such abound.Let P be a uniform program. The depth of P is the maximum depth ofa term in an increasing rule of P . Let � be a stationary tree. The depth of� is the maximum depth of a term in � containing the root variable X.Proposition 4.6: Let P be a uniform unary-predicate program, and let r bea stationary rule of P . Then r can be obtained from a stationary tree whosedepth is at most doubly exponential in the size of P .Sketch of Proof: Let d be the depth of P . Let Ri be the set of all stationaryrules that can be obtained from stationary trees of depth at most i. ClearlyRi � Ri+1 for all i � 1. We claim that if Ri = Ri+d, then Ri = Rj for allj � i + d. Suppose that Ri = Ri+d. Consider now a stationary rule that isobtained from a stationary tree � of depth i+ d+1. That is, there is a nodex in the tree labeled by a term t(X) of depth i + d + 1. Consider the pathfrom the root to x. There must be a node y on that path that is labeled witha term t0(X) of depth at most d such that all nodes between y and x arelabeled with superterms of t0(X). Thus, y is a root of subtree whose internalnodes are labeled by superterms of t0(X) and whose leaves are labeled byvariant terms of P disjoint from t0(X) or by t0(X). If we replace t0(X) byX, then this subtree is actually a stationary tree of depth between i+1 andi + d. Since we assumed that Ri = Ri+d, we can replace this stationary treeby a tree of depth at most i. The maximum term depth in the new subtreeis now i+ d. By repeating this process we can replace � by a stationary treeof depth at most i+ d.Let m be the number of stationary rules; as we observed earlier, m is atmost doubly exponential in the size of the given program. We showed thatif Ri = Ri+d, then Ri = Rj for all j � i + d. Thus, the sequence R1; R2; � � �must converge in at most dm steps, i.e., Rj = Rdm for all j � dm.Proposition 4.6 provides a doubly-exponential time upper bound on theconversion of uniform unary-predicate programs to regular unary-predicateprograms. Combining this with the bound of Theorem 4.2, we get a triply-exponential time upper bound for determining membership in the successset of proper unary-predicate programs. It turns out that using the ideasof Proposition 4.3 we can provide exponential upper bounds for both typeinference and type checking. 14

Theorem 4.7:1. There is an exponential-time algorithm that converts proper unary-predicate programs to equivalent reduced regular unary-predicate pro-grams.2. Determining membership in the success set of proper unary-predicateprograms can be done in exponential time.We note that decidability for unary programs, i.e., programs where boththe predicates and the functions are unary, was given as a corollary of themain results in [AH84]. That result, however, follows easily from Rabin'sdecidability result for S!S [Rab69], since the set of unary terms can beviewed as an in�nite tree. The main di�culty in our work is in dealing withnonunary functions. It may seem that result of Theorem 4.7 is orthogonalto the decidability result of [AH84], since we require that the program beproper. It is not, however, hard to see that all unary programs can beexpressed as proper unary programs by adding some auxiliary predicates.Thus, Theores 4.2 and 4.7 provide precise bounds for the complexity of unaryprograms.5 Types by Paths4So far we focused on the approximation TP . Our approach, however, appliesto other approximations as well. In this section we introduce another ap-proximation, which is looser than TP . We show that this approximation canalso be described by proper unary-predicate programs.The essence of the approximation TP is the decoupling between types ofvariables. The approximation we describe now goes much further; it com-pletely decouples paths.Intuitively, a path is a branch in the parse tree of a term or an atom. Forexample, consider the term f(g(a; a); b); its paths are the strings f1(g1(a)),f1(g2(a)), and f2(b). Formally, the set of paths of a term (atom) t is a setof unary terms (atoms). These terms are built from the constant symbolsand variables in t by means of new unary function and predicate symbols:for each k-ary function (predicate) symbol f (p) we introduce unary function(predicate) symbols f1; : : : ; fk (p1; : : : ; pk). The set of paths of a term or anatom t, denoted paths(t), is de�ned as follows, where c denotes a constantsymbol, X denotes a variable, and h denotes a function or predicate symbol:4The corresponding section in the conference version of the paper contains some seriouserrors, which are corrected here. 15

� paths(c) is the set fcg,� paths(X) is the set fXg,� paths(h(t1; : : : ; tk)) is the setfhi(t0) j t0 2 paths(ti); 1 � i � kg:A substitution that maps variables to paths is call a path substitutions.For a set T of terms, we de�ne paths(T) = [t2T paths(t). The operatorpaths maps sets of terms to sets of paths. The operator terms gives thereverse mapping. If S is a set of paths, thenterms(S) = fa j paths(a) � Sg:It is easy to see that if S is a set of paths, and T is a set of terms, thenS � paths(terms(S)), and T � terms(paths(T)).The path approximation operator �P is de�ned in [YS91a] by:�P (I) = fa jH B 2 P; a 2 paths(H)�; and paths(B)� � Ig ;where � ranges over ground paths substitutions. Intuitively, paths breaksall terms and atoms into their constituents paths, and �P operates over the\path base" rather than over the Herbrand base. Since lfp(�P), the least�xpoint of �P , is a set of paths, the intended approximation for the successset of P is the set terms(lfp(�P)).We now describe the type program P� associated with a program P thatcorresponds to the approximation �P . Letp(t):{p1(t1); : : : ; pm(tm)be a rule in P . For each atom a in paths(p(t)) we put a rulea:{paths(p1(t1)); : : : ; paths(pm(tm)):Example 5.1: Let P be the program:p(f(X; Y)) :{q(X); r(Y)p(f(U; V)) :{s(U); t(V)q(a) :{r(b) :{s(c) :{t(d) :{ 16

Then P� is the programp1(f1(X)) :{q1(X); r1(Y)p1(f2(Y)) :{q1(X); r1(Y)p1(f1(U)) :{s1(U); t1(V)p1(f2(V)) :{s1(U); t1(V)q1(a) :{r1(b) :{s1(c) :{t1(d) :{The success set of the predicate p in P consists of the atoms p(f(a; b)) andp(f(c; d)) The success set of the predicate p in P� consists of the termsp1(f1(a)), p1(f1(c)), p1(f2(b)), and p1(f2(d)).We leave it to the reader to verify that the success set of P� is preciselythe least �xpoint of �P . The observant reader probably noticed that P� isnot proper. It is, however, unary (both predicate and function symbols areunary), and therefore, as observed in Section 4, can be rewritten as properand therefore can be rewritten as a regular program.This, however, is not completely satisfactory. After all, the intendedapproximation of �P is not lfp(�P) but rather terms(lfp(�P)). In order toobtain a programs that capture the intended approximation, we �rst have torewrite P� as a deterministic program. A reduced regular unary-predicateprogram is deterministic if it contains only rules of the formp(f(X1; : : : ; Xk)) :{ p1(X1); : : : ; pk(Xk);and for each predicate p and function f there is at most one rule of theabove form. Not every regular unary-predicate program has an equivalentdeterministic regular unary-predicate program (cf. [Tha73]). In contrast, itcan be shown that every regular unary program has an equivalent determin-istic regular unary program, since regular unary-programs can be viewed asalternating word automata and alternating word automata have the sameexpressive power as deterministic word automata (cf. [CKS81]). Thus, P�can be rewritten as a deterministic regular unary program.Example 5.2: The program P� of Example 5.1 is not deterministic. It is,however, equivalent to the following deterministic program, which has two
17

added auxiliary predicates (qs and rt):p1(f1(X)) :{qs1(X)p1(f2(Y)) :{rt1(Y)qs1(a) :{qs1(c) :{rt1(b) :{rt1(d) :{q1(a) :{r1(b) :{s1(c) :{t1(d) :{Assume now that P� is a deterministic regular unary program. We de-scribe now a program P 0� whose success set is equal to terms(lfp(�P)). Witheach predicate symbol p in P� we associate a new unary predicate symbol p0.Let g be a k-ary function symbol, and suppose that P� includes the rulesp(f1(X)) :{q1(X): : :p(fk(X)) :{qk(X);then we put in P 0� the rulep0(f(X1; : : : ; Xk)) :{q01(X1); : : : ; q0k(Xk):Finally, for each l-ary head predicate q in P we add to P 0� the rulep(X1; : : : ; Xl) :{p01(X1); : : : ; p0k(Xk);where p0i is the predicate symbol associated with pi.Example 5.3: The program P� was rewritten in Example 5.2 as a deter-

18

ministic program. The program P 0� contains the rules:p01(f(X; Y)) :{qs01(X); rt01(Y)qs01(a) :{qs01(c) :{rt01(b) :{rt01(d) :{q01(a) :{r01(b) :{s01(c) :{t01(d) :{p(X) :{p01(X)q(X) :{q01(X)r(X) :{r01(X)s(X) :{s01(X)t(X) :{t01(X)The success set of the predicate p in P 0� consists of the atoms p(f(a; b)),p(f(c; b)), p(f(a; d)), and p(f(c; d)).We conclude with the observation that while in general TP approximatesthe sucess set of P better �P , practical experience has shown that �P isoften an adequate approximation [YS91a]. It remains to be seen whetherin practice the loosening of the approximation yields any reduction in thecomplexity of type inference and type checking.6 Concluding RemarksWe argued that the natural way to express types of logic programs is bylogic programs. We showed that this approach uni�es the denotational andoperational approaches to descriptive types. We identi�ed a class of properunary-predicate program, showed their adequacy for type description, andcharacterized the complexity of type inference and type checking for suchtype programs. Our complexity bounds are obtained by means of an unfold-ing technique inspired by classical techniques in the theory of 2-way automataand by the use of alternating algorithms. Our exponential-time lower boundon the complexity of type checking for the TP approximation raises the in-triguing research questions of the practical complexity of our algorithms andof �nding descriptive types with polynomial-time algorithms for type infer-ence and type checking.
19

References[AH84] D. Angluin and D. N. Hoover. Regular pre�x relations. Mathemat-ical System Theory, 17:167{191, 1984.[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM,28:114{133, 1981.[Don65] J. E. Doner. Decidability of the weak second-order theory of twosuccessors. Notices Amer. Math. Soc., 12:819, 1965.[Ers88] et al. Ershov, Y., editor. Special Issue on Partial Evaluation andMixed Computation. New Generation Computing 6:2-3, 1988.[Fr�u89] T.W. Fr�uhwirth. Type inference by program transformation andpartial evaluation. In Abramson H. and M. H. Rogers, editors,Meta-Programming in Logic Programming. MIT Press, 1989.[HJ90a] N. C. Heintze and Ja�ar J. A �nite presentation theorem for ap-proximating logic programs. In Proc. 17th ACM Symp. on Princi-ples of Programming Languages, pages 197{209, November 1990.[HJ90b] N. C. Heintze and Ja�ar J. Semantic types for logic programs. 1990.[Klu87] F. Kluzniak. Type synthesis for ground Prolog. In Proc. 4th Inter-national Conference on Logic Programming, pages 788{816, Mel-bourne, Australia, May 1987. MIT Press.[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,1987.[Mis84] P. Mishra. Towards a theory of types in Prolog. In InternationalSymposium on Logic Programming, pages 289{298. IEEE, 1984.[MO83] A. Mycroft and R. A. O'Keefe. A polymorphic type system forProlog. In Logic Programming Workshop, pages 107{121, 1983.[Rab69] M. O. Rabin. Decidability of second-order theories and automataon in�nite trees. Trans. AMS, 141:1{35, 1969.[Red88] U.S. Reddy. Notions of polymorphism for predicate logic program-ming. In Proc. 5th International Conf. and Symp. on Logic Pro-gramming, Seattle, Washington, August 1988. MIT Press.[Red90] U.S. Reddy. A perspective on types for logic programs. 1990.20

[RS59] M. O. Rabin and D. Scott. Finite automata and their decisionproblems. IBM J. Res. Dev., 3:114{125, 1959.[Sei90] H. Seidl. Deciding equivalence of �nite tree automata. SIAM J.Comput., 19:424{437, 1990.[Sha84] E. Shapiro. Alternation and the computational complexity of logicprograms. J. Logic Programming, 1:19{34, 1984.[She59] J. C. Shepherdson. The reduction of two-way automata to one-wayautomata. IBM J. Res. Dev., 3:199{201, 1959.[Slu85] G. Slutzki. Alternating tree automata. Theoretical Computer Sci-ence, 41:305{318, 1985.[Tha73] J.W. Thatcher. Tree automata: An informal survey. In AlfredV.Aho, editor, Currents in the Theory of Computing, chapter 4,pages 143{172. Prentice-Hall, 1973.[TS84] H. Tamaki and T. Sato. Unfold/fold transformation of logic pro-grams. In Proc. of 2nd Int'l Logic Programming Conference, pages127{138, Uppsalla, 1984.[XW88] J. Xu and D. S. Warren. A type inference system for Prolog. InProc. 5th International Conf. and symp. on Logic Programming,pages 604{619, Seattle, Washington, August 1988.[YS87] E. Yardeni and E. Shapiro. A type system for logic programs. InEhud Shapiro, editor, Concurrent Prolog, chapter 28. MIT Press,1987.[YS91a] E. Yardeni and E. Shapiro. A polymorphic type system for logicprograms. Technical report, The Weizmann Institute of Science,1991. Forthcoming Ph.D. dissertation.[YS91b] E. Yardeni and E. Shapiro. A type system for logic programs.Journal of Logic Programming, 10:125{153, 1991.[Zob87] J. Zobel. Derivation of polymorphic types for Prolog programs. InProc. 4th International Conference on Logic Programming, pages817{838, Melbourne, Australia, May 1987. MIT Press.
21

