Logic Programs as Types for Logic
Programs™

Preliminary Report

Thom Frithwirth' Ehud Shapiro?
ECRC Weizmann Institute
Moshe Y. Vardi? Eyal Yardeni¥
IBM Research Weizmann Institute
Abstract

Type checking can be extremely useful to the program development process.
Of particular interest are descriptive type systems, which let the program-
mer write programs without having to define or mention types. We consider
here optimistic type systems for logic programs. In such systems types are
conservative approximations to the success set of the program predicates.
We propose the use of logic programs to describe types. We argue that this

*This paper will be presented at the 6th IEEE Symp. on Logic in Computer Science,
Amsterdam, July 1991. Part of this work was done while the first and third authors were
visiting the Weizmann Institute

TECRC, Arabellastrasse 17, D-8000 Muenchen 81, Germany, email: thom@ecrc.de

Dept. of Applied Math., Weizmann Institute of Science, P.O.Box 26, 76 100 Rehovot,
Israel, email: udi@wisdom.weizmann.ac.il

SIBM Almaden Research Center K53-802, 650 Harry Rd., San Jose, CA 95120-6099,
USA, email: vardi@ibm.com

TDept. of Applied Math., Weizmann Institute of Science, P.O.Box 26, 76 100 Rehovot,
Israel, email: eyal@wisdom.weizmann.ac.il

approach unifies the denotational and operational approaches to descriptive
type systems and is simpler and more natural than previous approaches.
We focus on the use of unary-predicate programs to describe types. We
identify a proper class of unary-predicate programs and show that it is ex-
pressive enough to express several notions of types. We use an analogy with
2-way automata and a correspondence with alternating algorithms to obtain
a complexity characterization of type inference and type checking. This char-
acterization was facilitated by the use of logic programs to represent types.

1 Introduction

It has long been recognized that type-checking can be extremely use-
ful to the program development process. Type checking enables automatic
detection of many programming errors and it increases confidence in the cor-
rectness of programs. Furthermore, type information can be used also by
the compiler for program optimization. Of particular interest are descriptive
type systems, which let the programmer write programs without having to
define or mention types; rather, the compiler automatically infers types and
checks for type correctness [Red88].

Given that recognition in the benefit of type checking, the design of type
systems for logic programming languages has been studied extensively (cf.
[K1u87, Mis84, MO83, Red88, XW88, Zob87]). The basis for descriptive type
systems for logic programs was proposed by Mishra [Mis84]: a formula that
fails may be considered erroneous. Thus, the type of a predicate describes
all the terms for which the predicate may succeed. Such types can be called
optimistic types [Red88|.

A type of a predicate in a logic program is therefore a conservative ap-
proximation to the meaning of that predicate, i.e., it must be a superset
of the success set of the predicate. There can be, however, more than one
such superset. In choosing a type, the issues that have to be considered
involve the tightness of the approximation, its representation, and its com-
putational complexity. Several proposals have been studied in the literature
(see [HJ90D] for a survey). All of them share the following basic intuition,
which originated in [Mis84] and made explicit in [Red90].

First, let us consider a simplified situation. Let p be a binary
predicate. We can consider an atom P(t1, ;) to be meaningful if
there is a term wuy such that P(uq,ts) is true, and symmetrically,
there is a term wuy such that P(t1, us) is true. The rationale is that
if there is a u; such that P(u,ts) is true, then £, is a legitimate
argument to p. However, if there is no such wy, then ¢y is not

covered in the second argument in any of the clauses for p. Hence,
the atom is most likely erroneous and it is reasonable to interpret
it as “meaningless”.

Heintze and Jaffar [HJ90b] study the relationship between two of the
major approaches in the literature to defining descriptive types for logic
programs. The first approach can be thought of as denotational. It ex-
tracts from the program set-theoretical constraints for the types; these set-
theoretical constraints are expressed in any of various ad-hoc formalisms (cf.
[Mis84, HJ90a]). The type assignment is then a preferred solution of these
constraints. The second approach can be thought of as operational. It starts
with an approximation of the immediate consequence operator 1’p associated
with a program P. Types are then defined as the fixpoint of the approximate
operators [YS87, YS91b|. The main result in [HJ90b] is that various notions
of type obtained via the denotational approach are equivalent to the various
notions of type obtained via the operational approach. The main result in
[HJ90a] is the use of the denotational approach to develop type inference
and type checking algorithms. (Type inference is the extraction of a type
description from the program. Type checking is the determination whether
a given goal is well-typed.)

In this paper we propose a unification of the denotational and opera-
tional approaches. Basically, we advocate using logic programs to represent
types, and, following [YS87], we emphasize the use of unary-predicate pro-
grams (unary-predicate programs contain only unary predicates symbols but
may contain nonunary function symbols). Strictly speaking, unary-predicate
programs cannot represent types of nonunary predicates; but, as the intu-
ition quoted above shows, our real interest is in types of predicate arguments
— predicate types are essentially the cross product of these simpler types.
Since types of predicate arguments are simply sets of terms, we contend that
unary-predicate logic programs ought to be adequate to represent these sets.
The argument in favor of our position goes, however, deeper than that. As
explained above, the denotational approach extracts the set-theoretical con-
straints from the program. Our approach does essentially the same but in a
kinder and gentler way; it simply converts the original program into a pro-
gram that expresses the types of predicate arguments in the original program.
Alternatively, one can view our unary-predicate programs in an operational
way, as definitions of approximate consequence operators. Instead, however,
of expressing these approximate operators in some other formal language, we
express them in the same manner that the original consequence operator 1p
was expressed, by logic rules. We contend that this approach is simpler and
more natural than previously studied approaches.

Beyond the conceptual argument in favor of our approach, we believe that

it also offers practical advantages. First, types as logic programs are easier
to understand. Being able to represent types in the same formalism of the
original program, whether one prefers to think about types denotationally or
operationally, greatly facilitates the exploration of different notions of types.
Second, the representation of types as unary-predicate programs is conducive
to studying a critical aspect of type systems, which is their computational
complexity.

Computational complexity is the raison d’étre of descriptive type systems
for logic programs; the only reason for us to approximate the success set of a
predicate is that the success set is typically undecidable. It is crucial, there-
fore, for our types to be decidable, and identifying the complexity of types
is of paramount importance. Unfortunately, previous works on descriptive
type systems for logic programs, including [HJ90a, HJ90b], did not address
the issue of computational complexity. To address this issue, we identify a
class of unary-predicate programs, which we call proper unary-predicate pro-
grams. This class of programs is defined by a certain syntactic restriction on
the rules that limits their ability to manipulate terms. Nevertheless, it turns
out that several notions of types, e.g., the types defined by 7p in [HJ90a], as
well as the types defined by “path abstraction” in [YS91a] and by “path pro-
jection” in [Fri89], can be represented by proper unary-predicate programs.
We use an analogy between proper unary-predicate logic programs and 2-way
automata as well as the natural correspondence between logic programs and
alternating algorithms (cf. [Sha84]), to study the complexity of type inference
and type checking for types described by proper unary-predicate programs.
The restriction imposed on such programs enables us to use unfolding® tech-
niques, inspired by classical techniques in the theory of 2-way automata, to
reduce proper unary-predicate programs to regular programs — these are
programs that define regular sets of terms in the automata-theoretic sense.?
This transformation can be viewed as type inference. Using alternating algo-
rithms we then provide a precise characterization for the complexity of type
checking. We believe that it is our use of logic programs to represent types
that facilitated this characterization.

2 Preliminaries

We refer the reader to [L1o87] for standard terminology and definitions about
logic programs. The denotational semantics of a logic program defines the
success set of a program P as the minimal model of P viewed as a universal

! Unfolding is a basic technique of doing compile-time derivations in order to eliminate
runtime derivations. It is used in partial evaluation, program transformation, program
analysis, and program specialization; cf. [TS84, Ers88].

2A set of terms is regular if it is definable by a finite tree automaton [Tha73].

4

Horn theory. The operational semantics of P is defined in terms of the imme-
diate consequence operator Tp associated with P. Tp operates on Herbrand
interpretations; its definition is

Tp(T) = {HO|H + B € P and Bf € T},

where 0 ranges over ground substitutions. It is known that the success set of
P is precisely the least fixpoint of 1Tp.

As observed in [HJ90b], the operational definition consists of three main
components: (i) the collection of unifiers corresponding to the body atoms of
arule, (ii) the applications of these unifiers to the head of a rule, and (iii) the
joining of the resulting sets, one from each rule head. We can approximate
the success set of P by approximating Tp. To obtain such an approximation,
we replace the above components of Tp by approximate ones.

We first describe in detail the approximation 7p defined in [HJ90a]; later
on we onsider another approximation. The main feature of the Tp approxi-
mation is the replacement of substitutions by set substitutions, i.e., substitu-
tions that map variables to sets of terms. Set substitution can be naturally
viewed as a mappings from terms to sets of ground terms: if ¢ is a term with
variable occurrences X7, ..., X (note that we distinguish between multiple
occurrences of the same variable) and « is a set substitution, then

ta = {t(Xl/tl,,Xk/tk) |tl S Oé(Xi),l S 1 S k}

If © is a collection of ground substitutions over a set X of variables, then
Ax(0) is the set substitution over X that maps each variable X € X to the
set {X60]0 € ©}. The approximate consequence operator Tp is defined in
[HJ90a] by:

To(T)={a € Ha|H < B € P and a = Ay, ({0|BO € T})},

where 6 ranges over ground substitutions and var(H) is the set of variables
in the head H. As explained in [HJ90a|, Tp first collects together the ground
substitutions for a rule that instantiate the body atoms into elements of Z.
From these substitutions it collects all the possible values that each variable
may be instantiated to, ignoring the relationship between these variables. A
set substitution is then defined as the mapping from each variable into the
collected set of values, and finally, this set substitution is applied to the head
of the rule. Since the success set of P is defined as the least fixpoint 1, and
Tp approximates Tp, the least fixpoint of 7p is a conservative approximation
of the success set of P.

3 Type Programs

As observed in Section 2, Tp collects all the possible values that each variable
may be instantiated to, ignoring the relationship between these variables.
The idea underlying our approach is that the operator 7p should be expressed
in the same way that the original operator T was expressed — by logic rules.

To this end we rewrite a program P into a program Pr, such that the
success set of Py is essentially the least fixpoint of 7p. We call Pr a type
program. We can assume without loss of generality that no two rules in P
have a variable in common. With each variable X in P we associate a unary
predicate x. We refer to these predicates as the unary predicates. Intuitively,
the success set of the predicate x approximates the set of instantiations of
the variable X. We also introduce a new unary predicate type. Finally, with
each k-ary predicate symbol p in P we associate a k-ary function symbol f,.
Intuitively, f,(t) will be in the success set of type precisely when t is in the
type of p.

Let

p(t)=pi(te), .. P (tm)

be a rule in P, with head variables X, ..., X}. Since Tp decouples multiple
occurrences of variables in the head, we associate a distinct variable X JZ with

the ith occurrence of X; in the head. Let t be the “decoupled” version of t.
That is, t is obtained from t be replacing the ith occurrence of X; by X;
Note that t does not have repeated variables, i.e., multiple occurrences of the
same variables, even though t may have repeated variables. For the above
rule we put several rules in Py. We first put one rule for the head:

type(fy ()1 (X1), ... 2 (X).

The body of this rule contains a literal ;(X}) for the ith occurrence of X;
in the head of the original rule. We now add a rule for each variable X;:

wi(Xa)itype(fp, (61)), - - type(fp,, (bn)).

If the head p(t) contains no variable, then we pretend that it contains a new
variable X. Thus, we put in Py one rule for the head:

type(f,(t))—w(X),
and one rule for the body
2(X):type(fp, (1)), - - type(fp,, (tm))-

(Thus, if the body fails, then the predicate x is empty, which forces the head
to fail.)

The basic idea of this construction is to define the type of the head pred-
icate in terms of the types of the head variables and to define the types of
the head variables in terms of the types of the body predicates. Further-
more, each occurrence of head variables is typed independently, so multiple
occurrences of the same variable are decoupled.

Example 3.1: Let P be the program for list reversal:

rev(nil,U,U) i
rev(X.Ly, Ly, L) = rev(Ly, X.La, L3).

Then Py is the program

type(freo(nil, Uy, Us)) = w(Uy), u(Us).
type(frev(X.Ly, Lo, L3)) = x(X),l1(Ly),12(Ls),l3(L3).

uwlU) =

Z‘(X) - type(frev(leX'L27L3))
ll(Ll) - type(frev(LlaX-L27L3))
lQ(LZ) - type(frev(LlaX-L27L3))
lg(Lg) - type(frev(Ll,X.Lg,Lg))

The following theorem asserts that Pr indeed approximate P in the de-
sired manner. The proof is actually quite simple; the claim follows almost
immediately from the close correspondence between the program P7 and the
definition of Tp. Essentially, 7Tp can be viewed as the immediate consequence
operator Tp, of Pr.

Theorem 3.2: Let P be a program, let Py be its associated type program,
and let p be a predicate of P. Then type(f,(t)) is in the success set of Pr
precisely when p(t) is in the least fizpoint of Tp.

To appreciate the simplicity of our approach we urge the reader to compare
our approach with the rather involved set equations of [HJ90a]. We contend
that the natural way to express optimistic type is by means of type programs.
The two approaches of approximation that are studied in [HJ90b], the deno-
tational and the operational, simply coincide with the two ways of defining
the semantics of type programs, denotationally or operationally. Our ap-
proach, however, offers more than just a unifying notation, as we shall now
see.

The transformation of P into Py yields a representation of types by
unary-predicate type programs. Unary-predicate programs, however, can
still describe very complicated types. It is easy to see that unary-predicate
programs can simulate arbitrary programs, by converting tuples of terms to
single terms (as we did with the type predicate). Thus, it is not clear that
the use of unary-predicate type programs offers any benefit. Fortunately, the
type programs Pr satisfy a certain syntactical restriction that we will be able
to utilize.

Let t and t' be terms. We say that ¢ and t' are disjoint if they have no
variable in common. If ¢’ is a subterm of ¢, then we say that t' is a strong
subterm of t (or, equivalently, ¢ is a strong superterm of t') if whenever z is
a variable of ¢’ then it occurs in ¢ only as a variable of ¢'. Intuitively, if we
think in terms of the directed acyclic graph representing ¢, then there is no
path from ¢ to a variable x of ¢’ that does not go through ¢'.

It is easy to see that type programs satisfy the following property.

Proposition 3.3: Let p(t):—pi(t1), ..., pk(tx) be a rule in Pr. Then t does
not contain repeated variables, and each t; is either a subterm of t, a strong
superterm of t, or disjoint from t.

Intuitively, rules in Py are limited in their ability to manipulate terms.
We call unary-predicate programs that obey the restrictions in Proposi-
tion 3.3 proper. Proper unary predicate programs cannot have rules such
as

plg(f(X),Y)):=q(g(X, f(Y))).

With such rules one can easily simulate Turing machines [Sha84]. Thus,
improper unary-predicate programs can define all recursively enumerable sets
of terms. In contrast, as we shall see, proper unary-predicate programs define
regular sets of terms. Such sets are often used to describe types, cf. [HJ90a,
Mis84, YS87, Zob87], though often only a proper subclass of the class of
regular term sets is used.

4 Type Inference and Type Checking

Our goal in this section is to characterize the complexity of type inference
and type checking for types described by unary-predicate programs. As a
first step we convert proper unary-predicate programs to uniform unary-
predicate programs. A unary-predicate program is uniform if whenever
p(t):—pi(t1),...,pe(ty) is a rule in the program then ¢ does not contain re-
peated variables and either each t¢; is a subterm of ¢, each t; is a strong
superterm of £, or each t; is disjoint from ¢. It is not hard to see that by intro-
ducing auxiliary unary-predicates we can transform proper unary-predicate

programs to uniform unary-predicate programs; the auxiliary predicates are
used to separate subterm and superterm goals. Note that the type programs
generated in the previous section are uniform.

Proposition 4.1: If P is a proper unary-predicate program, then there exists
a uniform unary-predicate P' such that the projection of the success set of P’
on the predicates of P is the success set of P.

If all the terms in the body of a rule are strong superterms of the head
term, then we call the rule depth increasing. The second step is to con-
vert uniform unary-regular programs to reqular unary-predicate programs by
eliminating depth-increasing rules. A unary-predicate program is regular if
whenever p(t)=pi(t1),...,pe(tx) is a rule in the program then ¢ does not
contain repeated variables and each t; is a subterm of ¢ or disjoint from ¢.
The transformation of uniform unary-predicate programs to regular unary-
predicate programs is quite involved and is the technical crux of our results.

As we show, there is a natural algorithm for determining membership in
the success set of regular unary-predicate programs, which means that regular
unary-predicate programs are amenable to type checking. Thus, the trans-
formation of uniform unary-predicate programs to regular unary-predicate
programs can be viewed as type inference. Again, we urge the reader to com-
pare our approach to type inference and type checking with that of [HJ90a]
to appreciate its conceptual and algorithmic simplicity.

In what follows we discuss first regular unary-predicate programs, and
then show that uniform programs can be converted to regular programs.

4.1 Regular Programs

We focus here on type checking for regular unary-predicate programs — de-
termining whether a given goal p(t) is well-typed, i.e., whether p(t) is in the
success set of a given regular unary-predicate program P (note that P need
not be a type program). Consider a derivation tree of the program P for a
goal p(t).> All the terms that occur in the tree are either subterms of ¢ or
variants of terms from P (variants are obtained by variable renaming). We
call such trees nonincreasing. If there is no variable sharing between nodes
of the tree, then the problem would have been easy, and existence of such a
tree can be determined in polynomial time. Variable sharing among nodes
in the tree complicates things considerably.

3A derivation tree of the program P for a goal p(t) is a tree labeled by atoms. the
root is labeled by p(t). If an internal node x is labeled by the atom ¢(s), then there is in
P a rule q(s"):=q1(s1),---,qr(sk) and there is a substitution # such that s = s'6 and the
children of x are labeled by the atoms ¢;(s1)0, ..., qr(sk)0.

Theorem 4.2: Determining membership in the success set of reqular unary-
predicate programs is EXPTIME-complete.

Sketch of Proof: To obtain the exponential time upper bound, we use the
natural correspondence between logic programs and alternating algorithms
(cf. [Sha84]). An alternating algorithm ([CKS81]) can branch both existen-
tially and universally. The requirement is that at least one branch succeeds at
a existential branching point and all branches succeed at a universal branch-
ing point.

Without loss of generality we assume that the rules are either of the form
p(f(X1, .., Xe)) — pi(X0), - pe(Xe),
p(X) = pu(X), . pe(X),
p(X) —=pi(t1),...,pe(ty), where X is disjoint from the ¢;’s,
or of the form

ple) = pi(t1),. .., pe(te)-

We describe an alternating algorithm that tests whether a goal p(t) is
in the success set of a regular unary-predicate program P. The algorithm
always has a set of goals under consideration, initially the set consists of
p(t). The algorithm tries to prove that an instance of the set of goals under
consideration is contained in the success set of P. The algorithm partitions
the set of goals into the finest partition such that goals in different blocks do
not share variables. Then the algorithm branches universally — each branch
considers one block of the partition. For each goal ¢(s), the algorithm now
existentially selects a rule r from P, unifies the head of r with ¢(s), and
replaces ¢(s) by the instantiated body of r.

It can be shown that the number of goals in a single branch is at most
polynomial in the size of the program. It was shown in [CKS81] that an
alternating polynomial-space algorithm can be simulated by an exponential-
time algorithm. The upper bound follows.

To prove the exponential lower bound we first prove that the intersection
problem for tree automata is EXPTIME-complete. This proof also uses alter-
nation; it is known that exponential-time algorithms can be simulated by al-
ternating polynomial-space algorithms [CKS81]. An alternating polynomial-
space Turing machine accepts an input if it has an accepting computation
tree. Given a machine M and an input of length n, we construct n tree
automata of size O(n) such that they have a nonempty intersection iff M

10

has an accepting computation tree on the input. Finally, we show that the
intersection problem can be reduced to the membership problem. I

It should be noted that the lower bound of Theorem 4.2 holds even for regular
unary programs (i.e., where both predicate and function symbols are unary).
Since for unary programs the approximation 7p is in fact precise, it follows
that Theorem 4.2 implies an exponential-time lower bound on the complexity
of type checking for this approximation.

A regular unary-predicate program is said to be reduced if it does not
contain rules with nonempty bodies of the form:

p(X) —pi(t1),...,pe(ty), where X is disjoint from the ¢;’s,

or of the form

ple) = pi(th), ..., pe(te).

In such rules the body is either true or false. If it is true then we can
eliminate the body, and if it is false we can eliminate the rule. An algorithm
similar to the algorithm described in the proof of Theorem 4.2 can be used
to determine if the body is true or false.

Proposition 4.3: There is an exponential-time algorithm that converts a
reqular unary-predicate program to a reduced program.

The transformation of regular unary-predicate programs to reduced programs
will come handy later on. We note that reduced regular unary-predicate pro-
grams can be viewed as alternating tree automata [Slu85]; such automata are
known to be equivalent in expressive power (though not in succinctness) to
standard tree automata. Thus, the success set of a regular unary-predicate
program is indeed regular, which explains our terminology. The representa-
tion of types as tree automata let us answer many questions about types in
addition to the membership question addressed in Theorem 4.2; we can test
finiteness of types (cf. [Don65]), containment of types (cf. [Sei90]), etc..

4.2 From Uniform Programs to Regular Programs

As we saw in Section 4.1, there is a natural type-checking algorithm for reg-
ular unary-predicate programs. Consequently, our goal for type inference is
the extraction of regular unary-predicate type programs. To understand the
intuition of the transformation from uniform to regular unary-predicate pro-
grams, consider a derivation tree of a uniform unary-predicate program P for
a goal p(t). As we observed earlier, if the program is regular, then the depths

11

of the intermediate terms is bounded. If the program is not regular, then the
depths of the terms in the intermediate goals may increase and decrease and
are potentially unbounded. One can view regular unary-predicate programs
as analogous to 1-way automata, while uniform unary-predicate programs
are analogous to 2-way automata. The critical observation is that the terms
in the leaves of the derivation tree have bounded depth. Thus, whenever
the depth of the terms in the subgoal increases, it must eventually decrease.
By adding new rules we can eliminate increasing trees. This transformation
is analogous to the transformation of 2-way automata into 1-way automata
[RS59, She59]. We now sketch this transformation in more detail.

Without loss of generality we assume that the rules are either of the form
p(X) = pult), - pel(te),
ple) = pi(t1),...,pe(te), or
p(f(Xu, o, Xg)) = pu(Xa), - pe(Xi),

Furthermore, we can assume that the only rules with an empty body are of
the form p(c):—.

Consider now a derivation tree of a ground literal; this tree may be in-
creasing. If x is a node of the tree labeled by a term ¢, then the children of x
are labeled either by immediate subterms of ¢, by strong superterms of ¢, or
by variant terms of P disjoint from ¢. The problematic case is where x is an
increasing node, i.e., the children terms are proper superterms of the parent
term. Suppose indeed that x is an increasing node. We know, however, that
the leaves of the tree are labeled by terms of depth 0. Consider a path from
x towards a leaf. The terms on this path ought to be strong superterms of ¢
until we either reach a node labeled by a variant term from P disjoint from ¢
or we reach a node labeled again by ¢. Thus, there is a finite subtree under-
neath x whose frontier is labeled either by variant terms from P disjoint from
t or by t. We call this subtree a stationary subtree, since, as far as its frontier
is considered, it neither constructs superterms of ¢t nor does it decompose t
into its subterms.

A stationary subtree corresponds to a nonground incomplete (i.e., with
some unexpanded leaves) derivation tree whose root is labeled by X, whose
internal nodes are labeled by terms properly containing X, and whose leaves
are labeled by variant terms from P disjoint from X or by X. We call such
a tree a stationary tree. This tree corresponds to a rule of the form

p(X>:7p1(t1)7 s 7pk(t/€)7

12

where each ¢; is either a variant term from P disjoint from X or is X. This
rule can be obtained from P by an unfolding that starts with an increas-
ing rule. We call such rules stationary rules, since they neither construct
superterms on top of the head term nor do they decompose the head term
into its subterms. Clearly, the number of body literals of the form p;(X)
is at most linear in the size of the program. Thus, to get a bound on the
size of stationary rules we need to bound the number of body literals with
variant terms from P. A careful analysis shows that if p;, (¢;,), ..., p; (t;,) are
literals in the body of a stationary rule and ¢, , ..., t;, have a shared variable,
then ¢;,,...,t;, are variant terms from a single rule in P. Thus, the size of
a stationary rule is at most exponential in the size of P. It follows that the

number of possible stationary rules is at most doubly exponential in the size
of P.

Since the stationary rules obtained by unfolding do follow from the rules
of P, we can add them to the program without changing its semantics. The
advantage of adding the stationary rules to the program is that they corre-
spond to stationary subtrees in an increasing derivation tree. If a stationary
rule r that corresponds to a stationary subtree 7 at a node x has been added
to P, then we can eliminate 7 from the derivation tree by deleting all the
internal nodes of 7 and connecting the leaves of 7 to x. Note that after this
operation, x is not an increasing node anymore. Thus, if P is augmented
with all its stationary rules, then there is no need to use its increasing rules
any more and they can be eliminated. But if all the increasing rules are
eliminated, then we are left with a regular program.

We have essentially shown the following:

Theorem 4.4: Let P be a uniform unary-predicate program. Then there is
a reqular unary-predicate program P’ that is equivalent to P.

Example 4.5: The program Pr of Example 3.1 is equivalent to the regular
program

pe rev(X.Ll,Lg,Lg)) — ll(Ll)

) L(Ly).

13

Theorem 4.4 tells us that uniform unary-predicate programs define regular
sets of terms, but it does not tell us how to find the stationary rules that
need to be added to the program. We know that these rules can be obtained
by unfolding, but because of the increasing rules in the program, there is no
a priori bound on the size of the necessary unfolding. We now prove such a
bound.

Let P be a uniform program. The depth of P is the maximum depth of
a term in an increasing rule of P. Let « be a stationary tree. The depth of
« is the maximum depth of a term in « containing the root variable X.

Proposition 4.6: Let P be a uniform unary-predicate program, and let r be
a stationary rule of P. Then r can be obtained from a stationary tree whose
depth is at most doubly exponential in the size of P.

Sketch of Proof: Let d be the depth of P. Let R; be the set of all stationary
rules that can be obtained from stationary trees of depth at most ¢. Clearly
R; C Riyy for all 7 > 1. We claim that if R; = R;44, then R; = R; for all
j > i+ d. Suppose that R; = R;. 4. Consider now a stationary rule that is
obtained from a stationary tree a of depth i+ d+ 1. That is, there is a node
x in the tree labeled by a term ¢(X) of depth i + d + 1. Consider the path
from the root to x. There must be a node y on that path that is labeled with
a term t'(X) of depth at most d such that all nodes between y and x are
labeled with superterms of #'(X). Thus, y is a root of subtree whose internal
nodes are labeled by superterms of #'(X) and whose leaves are labeled by
variant terms of P disjoint from ¢'(X) or by #/(X). If we replace #'(X) by
X, then this subtree is actually a stationary tree of depth between 7 4+ 1 and
it + d. Since we assumed that R; = R;, 4, we can replace this stationary tree
by a tree of depth at most ¢. The maximum term depth in the new subtree
is now 7 + d. By repeating this process we can replace o by a stationary tree
of depth at most i + d.

Let m be the number of stationary rules; as we observed earlier, m is at
most doubly exponential in the size of the given program. We showed that
if R; = Ri;q4, then R; = R; for all j > i+ d. Thus, the sequence R, Ry, -
must converge in at most dm steps, i.e., R; = Ry, for all j > dm. 1

Proposition 4.6 provides a doubly-exponential time upper bound on the
conversion of uniform unary-predicate programs to regular unary-predicate
programs. Combining this with the bound of Theorem 4.2, we get a triply-
exponential time upper bound for determining membership in the success
set of proper unary-predicate programs. It turns out that using the ideas
of Proposition 4.3 we can provide exponential upper bounds for both type
inference and type checking.

14

Theorem 4.7:

1. There s an exponential-time algorithm that converts proper unary-
predicate programs to equivalent reduced reqular unary-predicate pro-
grams.

2. Determining membership in the success set of proper unary-predicate
programs can be done in exponential time.

We note that decidability for unary programs, i.e., programs where both
the predicates and the functions are unary, was given as a corollary of the
main results in [AH84|. That result, however, follows easily from Rabin’s
decidability result for SwS [Rab69], since the set of unary terms can be
viewed as an infinite tree. The main difficulty in our work is in dealing with
nonunary functions. It may seem that result of Theorem 4.7 is orthogonal
to the decidability result of [AH84], since we require that the program be
proper. It is not, however, hard to see that all unary programs can be
expressed as proper unary programs by adding some auxiliary predicates.
Thus, Theores 4.2 and 4.7 provide precise bounds for the complexity of unary
programs.

5 Types by Paths*

So far we focused on the approximation 7p. Our approach, however, applies
to other approximations as well. In this section we introduce another ap-
proximation, which is looser than 7p. We show that this approximation can
also be described by proper unary-predicate programs.

The essence of the approximation 7p is the decoupling between types of
variables. The approximation we describe now goes much further; it com-
pletely decouples paths.

Intuitively, a path is a branch in the parse tree of a term or an atom. For
example, consider the term f(g(a,a),b); its paths are the strings fi(gi(a)),
fi(g2(a)), and fo(b). Formally, the set of paths of a term (atom) ¢ is a set
of unary terms (atoms). These terms are built from the constant symbols
and variables in ¢ by means of new unary function and predicate symbols:
for each k-ary function (predicate) symbol f (p) we introduce unary function
(predicate) symbols f1,..., fc (p1,...,pk). The set of paths of a term or an
atom ¢, denoted paths(t), is defined as follows, where ¢ denotes a constant
symbol, X denotes a variable, and h denotes a function or predicate symbol:

4The corresponding section in the conference version of the paper contains some serious
errors, which are corrected here.

15

e paths(c) is the set {c},
e paths(X) is the set {X},
e paths(h(ty, ..., tg)) is the set
{hi(t'") |t € paths(t;),1 <i < k}.

A substitution that maps variables to paths is call a path substitutions.

For a set T of terms, we define paths(T) = Uierpaths(t). The operator
paths maps sets of terms to sets of paths. The operator terms gives the
reverse mapping. If S is a set of paths, then

terms(S) = {a|paths(a) C S}.

It is easy to see that if S is a set of paths, and T is a set of terms, then
S D paths(terms(S)), and T C terms(paths(T)).

The path approximation operator 7wp is defined in [YS91a| by:
mp(Z) ={a|H < B € P,a € paths(H)#, and paths(B)0 C T},

where ¢ ranges over ground paths substitutions. Intuitively, paths breaks
all terms and atoms into their constituents paths, and 7p operates over the
“path base” rather than over the Herbrand base. Since [fp(mp), the least
fixpoint of mp, is a set of paths, the intended approximation for the success
set of P is the set terms(lfp(np)).

We now describe the type program P, associated with a program P that
corresponds to the approximation 7p. Let

p(t)=p1(t1), .. P (tin)

be a rule in P. For each atom a in paths(p(t)) we put a rule
a:—paths(py(t1)), .. ., paths(p,(t.,)).

Example 5.1: Let P be the program:

p(f(X,Y)) —q(X),r(Y)
p(f(U V) =s(U),t(V)
q(a) -
r(b) -
s(c) -
t(d) -

16

Then P; is the program

pi(fi(X)) =@ (X),r(Y)
pi(f2(Y)) q(X),r(Y)
pi(fi(U)) =s1(U),t(V)
pi(f2(V)) =s1(U),t1(V)
q1(a) -
r1(b) -
s1(c) -
t1(d) -

The success set of the predicate p in P consists of the atoms p(f(a,b)) and
p(f(c,d)) The success set of the predicate p in P, consists of the terms

p1(fi(a)), pr(fi(e)), pi(f2(b)), and py(fa(d)). B

We leave it to the reader to verify that the success set of P, is precisely
the least fixpoint of wp. The observant reader probably noticed that Py is
not proper. It is, however, unary (both predicate and function symbols are
unary), and therefore, as observed in Section 4, can be rewritten as proper
and therefore can be rewritten as a regular program.

This, however, is not completely satisfactory. After all, the intended
approximation of 7p is not [fp(mwp) but rather terms(lfp(mp)). In order to
obtain a programs that capture the intended approximation, we first have to
rewrite P, as a deterministic program. A reduced regular unary-predicate
program is deterministic if it contains only rules of the form

p(f(X1, .., Xe)) — pi(X0), - pe(Xe),

and for each predicate p and function f there is at most one rule of the
above form. Not every regular unary-predicate program has an equivalent
deterministic regular unary-predicate program (cf. [Tha73]). In contrast, it
can be shown that every regular unary program has an equivalent determin-
istic regular unary program, since regular unary-programs can be viewed as
alternating word automata and alternating word automata have the same
expressive power as deterministic word automata (cf. [CKS81]). Thus, P,
can be rewritten as a deterministic regular unary program.

Example 5.2: The program P, of Example 5.1 is not deterministic. It is,
however, equivalent to the following deterministic program, which has two

17

added auxiliary predicates (¢s and rt):

pi(fi(X)) gsi(X)
pi(f2(Y)) rti(Y)
qs1(a) -
gs1(c) -
Ttl

(b)
Ttl (d)

q1(a)
r1(b)
s1(c) =
tl()

Assume now that P, is a deterministic regular unary program. We de-
scribe now a program P whose success set is equal to terms(lfp(rp)). With
each predicate symbol p in P, we associate a new unary predicate symbol p'.
Let g be a k-ary function symbol, and suppose that P, includes the rules

p(f1(X)) —qu(X)
p(fe(X)) (X)),

then we put in P, the rule
Pf(X o Xg)) =i (X)), g (X).

Finally, for each [-ary head predicate ¢ in P we add to P. the rule
p(X1, .., X)) (X)), P (Xk),

where p! is the predicate symbol associated with p;.

Example 5.3: The program P, was rewritten in Example 5.2 as a deter-

18

ministic program. The program P! contains the rules:

p'll(f(X,Y)) sy (X), iy (Y)

The success set of the predicate p in P, consists of the atoms p(f(a,b)),
p(f(e, b)), p(f(a,d)), and p(f(c,d)).

We conclude with the observation that while in general 7p approximates
the sucess set of P better mp, practical experience has shown that 7p is
often an adequate approximation [YS9lal. It remains to be seen whether
in practice the loosening of the approximation yields any reduction in the
complexity of type inference and type checking.

6 Concluding Remarks

We argued that the natural way to express types of logic programs is by
logic programs. We showed that this approach unifies the denotational and
operational approaches to descriptive types. We identified a class of proper
unary-predicate program, showed their adequacy for type description, and
characterized the complexity of type inference and type checking for such
type programs. Our complexity bounds are obtained by means of an unfold-
ing technique inspired by classical techniques in the theory of 2-way automata
and by the use of alternating algorithms. Our exponential-time lower bound
on the complexity of type checking for the 7p approximation raises the in-
triguing research questions of the practical complexity of our algorithms and
of finding descriptive types with polynomial-time algorithms for type infer-
ence and type checking.

19

References

[AHS4]

[CKSS1]

[Don65]

[Ers88]

[Fri89)]

[HJ90a]

[HJ90b)]

[K1u87]

[L1087]

[Mis84]

[MOS3]

[Rab69]

[Red88]

[Red90]

D. Angluin and D. N. Hoover. Regular prefix relations. Mathemat-
wcal System Theory, 17:167-191, 1984.

A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM,
28:114-133, 1981.

J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:819, 1965.

et al. Ershov, Y., editor. Special Issue on Partial Evaluation and
Mixed Computation. New Generation Computing 6:2-3, 1988.

T.W. Frithwirth. Type inference by program transformation and
partial evaluation. In Abramson H. and M. H. Rogers, editors,
Meta-Programming in Logic Programming. MI'T Press, 1989.

N. C. Heintze and Jaffar J. A finite presentation theorem for ap-
proximating logic programs. In Proc. 17th ACM Symp. on Princi-
ples of Programming Languages, pages 197-209, November 1990.

N. C. Heintze and Jaffar J. Semantic types for logic programs. 1990.

F. Kluzniak. Type synthesis for ground Prolog. In Proc. jth Inter-
national Conference on Logic Programming, pages 788-816, Mel-
bourne, Australia, May 1987. MIT Press.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1987.

P. Mishra. Towards a theory of types in Prolog. In International
Symposium on Logic Programming, pages 289-298. IEEE, 1984.

A. Mycroft and R. A. O’Keefe. A polymorphic type system for
Prolog. In Logic Programming Workshop, pages 107-121, 1983.

M. O. Rabin. Decidability of second-order theories and automata
on infinite trees. Trans. AMS, 141:1-35, 1969.

U.S. Reddy. Notions of polymorphism for predicate logic program-
ming. In Proc. 5th International Conf. and Symp. on Logic Pro-
gramming, Seattle, Washington, August 1988. MIT Press.

U.S. Reddy. A perspective on types for logic programs. 1990.

20

[RS59]

[Sei90]

[Shag&4]

[Sheb9]

[S1u85]

[ThaT73]

[TS84]

[XWSS]

[YS87]

[YS91al

[YS91b]

[Zob87]

M. O. Rabin and D. Scott. Finite automata and their decision
problems. IBM J. Res. Dev., 3:114-125, 1959.

H. Seidl. Deciding equivalence of finite tree automata. SIAM J.
Comput., 19:424-437, 1990.

E. Shapiro. Alternation and the computational complexity of logic
programs. J. Logic Programming, 1:19-34, 1984.

J. C. Shepherdson. The reduction of two-way automata to one-way
automata. IBM J. Res. Dewv., 3:199-201, 1959.

G. Slutzki. Alternating tree automata. Theoretical Computer Sci-
ence, 41:305-318, 1985.

J.W. Thatcher. Tree automata: An informal survey. In Alfred
V.Aho, editor, Currents in the Theory of Computing, chapter 4,
pages 143-172. Prentice-Hall, 1973.

H. Tamaki and T. Sato. Unfold/fold transformation of logic pro-
grams. In Proc. of 2nd Int’l Logic Programming Conference, pages
127-138, Uppsalla, 1984.

J. Xu and D. S. Warren. A type inference system for Prolog. In
Proc. 5th International Conf. and symp. on Logic Programminyg,
pages 604-619, Seattle, Washington, August 1988.

E. Yardeni and E. Shapiro. A type system for logic programs. In
Ehud Shapiro, editor, Concurrent Prolog, chapter 28. MIT Press,
1987.

E. Yardeni and E. Shapiro. A polymorphic type system for logic
programs. Technical report, The Weizmann Institute of Science,
1991. Forthcoming Ph.D. dissertation.

E. Yardeni and E. Shapiro. A type system for logic programs.
Journal of Logic Programming, 10:125-153, 1991.

J. Zobel. Derivation of polymorphic types for Prolog programs. In
Proc. 4th International Conference on Logic Programming, pages
817-838, Melbourne, Australia, May 1987. MIT Press.

21

