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Abstract. The union-find algorithm can be seen as solving simple equa-
tions between variables or constants. With a few lines of code change, we
generalise its implementation in CHR from equality to arbitrary binary
relations. By choosing the appropriate relations, we can derive fast in-
cremental algorithms for solving certain propositional logic (SAT) prob-
lems and polynomial equations in two variables. In general, we prove that
when the relations are bijective functions, our generalisation yields a cor-
rect algorithm. We also show that bijectivity is a necessary condition for
correctness if the relations include the identity function.

The rules of our generic algorithm have additional properties that
make them suitable for incorporation into constraint solvers: from clas-
sical union-find, they inherit a compact solved form and quasi-linear
time and space complexity. By nature of CHR, they are anytime and
online algorithms. They solve and simplify the constraints in the prob-
lem, and can test them for entailment, even when the constraints arrive
incrementally.

1 Introduction

Constraint Handling Rules (CHR) [Frü98, FA03, Frü08] is a logical constraint-
based concurrent committed-choice programming language consisting of guarded
rules that rewrite conjunctions of atomic formulas. The classical optimal union-
find algorithm [TvL84] can be implemented in CHR with best-known quasi-
linear time complexity [SF06, SF05]. This result is not accidental, since the
paper [SSD05] shows that every (RAM machine) algorithm with at least linear
time complexity (an algorithm that at least reads all of its input), can be im-
plemented in CHR with best known time and space complexity. Such a result is
not known to hold in other pure declarative programming languages.

The union-find algorithm maintains disjoint sets under the operation of union.
By definition of set operations, a union operator working on representatives
of sets is an equivalence relation, i.e. we can view sets as equivalence classes.
Especially iff the elements of the set are variables or constants, union can be
seen as equating those elements and giving an efficient way of finding out if two
elements are equivalent (i.e., in the same set).

This paper investigates the question if the union-find algorithm written in
CHR can be generalised so that other relations than simple equations between
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two variables are possible without compromising correctness and efficiency. Our
generalised union-find algorithm then maintains relations between elements un-
der the operation of adding relations.

From classical optimal union-find, our generalised algorithm inherits amor-
tised quasi-linear time and space complexity as well as the possibility to both
assert relations (tell) and test for entailed (implied) relations (ask) as will be
explained below.

CHR is used here as an effective general-purpose programming language for
implementing classical algorithms. Still, by nature of CHR, our implementation
is an anytime (approximation) algorithm and online (incremental) algorithm.
Anytime algorithms can be stopped during their execution and exhibit an in-
termediate result from which to continue computation. In CHR, we can stop
after any rule application and observe the intermediate result in the current
state (store). Online algorithm means that the input (in CHR, the constraints
of a query) can arrive incrementally, one after the other, without the need to
recompute from scratch.

In the context of this paper, the algorithms are used in a classical way, i.e.
with certain input to produce a desired output. We do not make use of the
concurrent constraint programming features of CHR, where execution is also
possible with incomplete and unknown inputs and where constraints - in this
context, operations - are delayed until further information becomes available.

We can interpret the relations that we maintain as non-trivial equations. Un-
der this point of view, our generalisation produces a compact solved normal form
that represents all solutions of the given problem (a set of equations). The solu-
tion has at most the size of the original problem. We can also test the equations
for entailment. All this is possible even when the constraints arrive incremen-
tally. Hence our algorithm and its operation constraints are well-suited to be
used inside constraint solvers.

Overview of the Paper. In the next two sections we quickly introduce CHR
and then the union-find algorithm and its implementation in CHR. In Section 4
we generalise the union-find algorithm. The next section proves optimal time and
space complexity of our generalisation. We then show correctness in Section 6
when the involved relations are bijective functions. We present two instances in
Sections 7 and 8. We end with conclusions. This paper is a revised and extended
version of the extended abstract [Frü06].

2 Constraint Handling Rules (CHR)

CHR [Frü98, FA03, Frü08] manipulates conjunctions of constraints (relations,
predicates, atoms) that reside in a constraint store. In the following, the meta-
variables H , G, B and C denote conjunctions of constraints, denoting head (parts
of the head), guard, body of a rule and constraints from a state, respectively.
In a CHR program, the set of constraints defined in the heads and the set
of the constraints used in the guards are disjoint. The former are called CHR
constraints. The latter are called built-in constraints and their meaning is defined
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by a logical theory named CT . Standard built-in constraints are true, false,
as well as syntactic equality = and arithmetic equality =:=.

CHR programs are composed of two main types of rules as given in Fig. 1.
A third, hybrid kind called simpagation rules is not essential for this paper. In
the figure, we also give the declarative, logical reading (meaning) of the rules,
where ȳ are the variables that appear only in the body B of a rule. W.l.o.g. we
assume for simplicity that variables that appear both in the guard and body
also appear in the head of a rule. A simplification rule corresponds to a logical
equivalence provided the guard holds, while a propagation rule corresponds to
an implication.

Simplification rule: H ⇔ G B ∀x̄ (G → (H ↔ ∃ȳ B))
Propagation rule: H ⇒ G B ∀x̄ (G → (H → ∃ȳ B))

Fig. 1. Main Types of CHR Rules and their Logical Reading

The standard (abstract) operational semantics of CHR is given by a transition
system where states are conjunctions of constraints. In Figure 2 we just give the
transition for simplification rules, since we only need this kind of rules in this
paper. For the propagation rules the transition is very similar, the only difference
is that the head is kept. In the transition system, CHR constraints are treated

if H ⇔ G | B is a copy of a rule H ⇔ G | B with new variables X̄
and CT |= ∀(C → ∃X̄(H=H ′ ∧ G))
then (H ′ ∧ C) 	−→ (B ∧ H=H ′ ∧ C)

Fig. 2. State transition for simplification rules

on a syntactic level, while built-in constraints are treated on a semantic level
using logic. A simplification rule replaces instances of the CHR constraints H
by B provided the guard test C holds. A propagation rule instead just adds B
to H without removing anything.

The constraints of the store comprise the state of an execution. Starting from
an arbitrary initial store (called query), CHR rules are applied exhaustively until
a fixpoint is reached. The resulting sequence of state transitions is called a com-
putation. A rule is applicable, if its head constraints are matched by constraints
in the current store one-by-one and if, under this matching, the guard of the rule
is logically implied by the constraints in the store. This applicability condition is
formally defined by the formula CT |= ∀(C → ∃X̄(H=H ′ ∧G)) in the transition
system, where CT is the logical theory for the constraints used in guards of the
rules. Any of the applicable rules can be applied, and the application cannot be
undone, it is committed-choice.

The standard semantics is too abstract to describe the details of CHR im-
plementations. For this purpose, an instance of the standard semantics, called
refined semantics was formalised in [DSdlBH04]. Our complexity proof relies on
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this refined semantics. We will shortly describe this semantics. It is, however,
beyond the scope of the paper to present the details of this semantics.

Queries are executed from left to right and for each new constraint, rules
are applied top-down in the textual reading order of the program. Trivial non-
termination of propagation rule applications is avoided by applying them at most
once to the same constraints. Built-in constraints in the store are simplified and
solved, and that in particular variables that are constrained to take a unique
value are equated with that value.

In this refined semantics of actual implementations, a CHR constraint in a
query can be understood as a procedure that goes efficiently through the rules
of the program in the order they are written, and when it matches a head
constraint of a rule, it will look for the other, partner constraints of the head
in the constraint store and check the guard until an applicable rule is found.
We consider such a constraint to be active. If the active constraint has not been
removed after trying all rules, it will be put into the constraint store. Constraints
from the store will be reconsidered (woken) if newly added built-in constraints
constrain variables of the constraint, because then rules may become applicable
since their guards are now implied. In particular this will be the case if a syntactic
or arithmetic equality binds a variable to a constant or another variable.

3 The Union-Find Algorithm

In this section we follow the exposition of [SF06]. The classical union-find (also
referred to as disjoint-set-union) algorithm was introduced by Tarjan in the
seventies [TvL84]. A classic survey on the topic is [GI91]. The algorithm solves
the problem of maintaining a collection of disjoint sets under the operation of
union. Each set is represented by a rooted tree, whose nodes are the elements of
the set. The root is called the representative of the set. The representative may
change when the set is updated by a union operation. With the algorithm come
three operations on the sets:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained.
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

changing the representative).

A new element must be introduced exactly once with make before being subject
to union and find operations. To find out if two elements are in the same set
already, i.e. to check entailment, one finds their representatives and checks them
for equality, i.e. checks find(X)=find(Y).

3.1 Implementing Union-Find in CHR

In the naive union-find algorithm without optimisations, the operations are im-
plemented as follows:



80 T. Frühwirth

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree. Return the

root as representative.
– union(X,Y): find the representatives of X and Y, respectively. To join the

two trees, we link them by making one root point to the other root.

The following CHR program implements the operations and data structures of
the naive union-find algorithm. The CHR constraints make/1, union/2, find/2
and auxiliary link/2 define the corresponding operations (functions are written
in relational form), so we call them operation constraints. The constraints root/1
and ->/2 (using infix notation) represent the tree data structure and we call them
data constraints. We use infix notation for ->/2 to evoke the image of a pointer
(directed arc).

make @ make(X) <=> root(X).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> X -> Y, find(Y,R).
findRoot @ root(X), find(X,R) <=> root(X), R=X.

linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> X -> Y, root(Y).

In the rules findNode and findRoot, the data constraints X->Y and root(X),
respectively, occur in the head and body of their rules. In a naive CHR implemen-
tation, when the rule applies, they will be removed and immediately re-added
again. For the programs discussed in this paper, this causes only constant time
overhead. In general, the simpagation rule notation as well as optimising CHR
compilers avoid this overhead by leaving the constraint in the store.

3.2 Optimised Union-Find

The basic algorithm requires O(n) time per find (and union) operation in the
worst case, where n is the number of elements (and thus of make operations).
With two independent optimisations that keep the tree shallow and balanced,
one can achieve logarithmic worst-case and quasi-constant (i.e. almost constant)
amortised running time per operation.

The first optimisation is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimisation is union-by-rank. It keeps the tree shallow and bal-
anced by pointing the root of the smaller tree to the root of the larger tree
without changing its rank. Rank refers to an upper bound of the tree depth (tree
height). If the two trees have the same rank, either direction of pointing is chosen
and the rank is incremented by one. With this optimisation, the height of the
tree can be logarithmically bound.

The following CHR program implements the resulting optimised classical
union-find algorithm with path compression for find and union-by-rank [TvL84].
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make @ make(X) <=> root(X,0).
union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X -> Y, find(X,R) <=> find(Y,R), X -> R.
findRoot @ root(X,N), find(X,R) <=> root(X,N), R=X.

linkEq @ link(X,X) <=> true.
linkLeft @ link(X,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

Y -> X, root(X,max(RX,RY+1)).
linkRight@ link(X,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X -> Y, root(Y,max(RY,RX+1)).

When compared to the naive version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. The
union/2 operation constraint is implemented exactly as for the naive algorithm.
The rule findNode has been extended for path compression. By the help of
the variable R that serves as a place holder for the result of the find operation,
path compression is already achieved during the first pass, i.e. during the find
operation. In the body of the rule, the order of constraints find(Y,R), X->R
optimises execution under the refined semantics of CHR, since under left-to-right
execution, the pointer constraint is only introduced when R has been computed
by find. The link rule has been split into two rules, linkLeft and linkRight,
to reflect the optimisation of union-by-rank.

4 Generalised Union-Find

The idea of generalising union find is to replace equations between variables
by binary relations. Our generalised union-find algorithm then maintains rela-
tions between elements under the operation of adding relations. The operation
constraints union, find, link and the data constraint -> get an additional ar-
gument to hold the relation. The operation union now asserts a given relation
between its two variables, find finds the relation between a given variable and
the root of the tree in which it occurs. The operation link stores the relation in
the tree data constraint. The arcs in the tree are labeled by relations now.

We assume that in queries, all relations are given. While the program in
principle would also compute with unknown relations, we are not interested in
these computations in the context of this paper. Remember that a query contains
only make, union and find operations. A new element must be introduced first
by a single make before subjected to union and find.

We need some standard operations on relations from relational algebra and a
non-standard one, combine. The operations are implemented by constraints as
follows, where id is the identity function:

– compose(r1, r2, r3) iff r3 := r1 ◦ r2
– invert(r1, r2) iff r2 := r−1

1
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– equal(r1) iff r1 = id
– combine(r1, r2, r3, r4) iff r4 := r−1

1 ◦ r3 ◦ r2

The commutative diagram below shows the relations between the four rela-
tions that are arguments of combine. The question mark after AB reminds us that
this relation is the one that combine computes from the other three relations.

X -- R1 -- A
| |
R3 R4?
| |
Y -- R2 -- B

The following code extends the CHR implementation of optimal union-
find by additional arguments (the relations) and by additional constraints on
them (the operations on relations). These additions are in italics for clar-
ity. Our implementation in the Sicstus 3 Prolog CHR library is available
at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
and can be run with CHR online at chr.informatik.uni-ulm.de/∼webchr/
webchr1.

make @ make(X) <=> root(X,0).
union @ union(X,XY,Y) <=> find(X,XA,A), find(Y,YB,B),

combine(XA,YB,XY,AB), link(A,AB,B).

findNode @ X-XY->Y, find(X,XR,R) <=> find(Y,YR,R),
compose(XY,YR,XR), X-XR->R.

findRoot @ root(X,N), find(X,XR,R) <=> root(X,N), equal(XR), X=R.

linkEq @ link(X,XX,X) <=> equal(XX).
linkLeft @ link(X,XY,Y), root(X,RX), root(Y,RY) <=> RX>=RY |

invert(XY,YX), Y-YX->X, root(X,max(RX,RY+1)).
linkRight@ link(X,XY,Y), root(Y,RY), root(X,RX) <=> RY>=RX |

X-XY->Y, root(Y,max(RY,RX+1)).

The operation constraint union(X,XY,Y) now means that we enforce relation
XY between X and Y. The operation find still returns the root for a given node,
but also the relation that holds between the node and the root. In the union,
combine computes the relation AB that must hold between the roots that are to
be linked from the initial relation XY and the relations XA and YB resulting from
the two find operations.

Note that in the linkEq rule, the link operation now tests if the relation XX
given between two identical variables X is the identity relation. If this is not the
case, the overall computation will stop with an inconsistency error. This hap-
pens for example, if we try to union the same two variables twice with different
incompatible relations between them.

The choice of the operations on relations added in the program is justified
by the intended correctness with regard to the logical reading of the program as

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
chr.informatik.uni-ulm.de/~webchr/
webchr1
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discussed in Section 6. Since all relations in a query are given, and since then the
find operation returns a relation, the operations on relations compose, combine
and invert compute a relation (the last argument) from given relations and
equal checks a given relation.

In the body of the rules the sequence of the constraints takes advantage of
the left-to-right execution order of the refined CHR semantics. The order of
constraints is the same as of the corresponding operations in a procedural pro-
gramming language.

Normalisation and Entailment Checking

By using the find operation, the results can be further normalised: for each
variable in the problem, we issue a find operation. It will return the relation to
the root variable and as a side-effect the tree will be compressed to have a direct
pointer between the two variables. So afterwards, the solved form contains data
constraints of the form Xi-XR->Rj, where all Xi are different (and the Rj are root
variables only).

Also we can check for entailment, i.e. ask if a given relation holds between
two given variables. This is the case if their roots are the same (otherwise they
are unrelated) and if asserting the relation using union would not change the
tree. That is, a given relation already holds between two variables if the union
operation leads to a link operation that does not update the tree. This is the
case if the linkEq rule is applicable. Therefore the following special instance of
the union rule suffices for entailment of a relation (X XY Y):

unioned?(X,XY,Y) <=>
find(X,XA,A),find(Y,YB,B), combine(XA,YB,XY,AB), A==B, equal(AB).

A==B checks if A and B are identical and equal(AB) checks if AB is the identity
relation. These checks are inherited from the linkEq rule.

The query associated with the entailment test can also be modified to find
out what relation between two given variables X and Y holds. In that case we
replace combine(XA,YB,XY,AB) according to its definition so that it computes
XY from XA, YB and AB (which must be identity). We get the rule:

related?(X,XY,Y) <=>
find(X,XA,A),find(Y,YB,B), A==B, invert(YB,BY),compose(XA,BY,XY).

where just X and Y are given.

5 Complexity

Our algorithm is a canonical extension (proper generalisation) of the optimised
union-find algorithm in CHR: we added arguments holding the relations to ex-
isting CHR constraints. In the rules, these additional arguments for the relations
are variables. In the head of each rule, these variables are all distinct. The guards
have not been changed. The additional constraints in the rule bodies only involve
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variables for relations. These operations on relations can be performed in con-
stant time. Moreover, if we specialise our algorithm to the case where the only
relation is identity id, we get back the original program. These observations are
an indication that we can preserve the complexity and correctness results of the
original algorithm under certain conditions.

We first have to establish some general lemmas for CHR rule applications.
We restrict ourselves to simplification rules in this section, since this is the only
type of rules we use in this paper. Then, our proof is based on a mapping from
computations in our generalised algorithm to computation in the original union-
find algorithm.

Definition 1. Given a CHR simplification rule R = H ⇔ G | B, then (H ∧ G)
is called the minimal state of R and the transition (H ∧G) �−→ (B ∧G) is called
the minimal transition of R.

Minimal transitions capture the essence of a CHR rule application.

Lemma 1 (Minimal Transitions). A CHR simplification rule R = H ⇔ G |
B is applicable to its minimal state, (H ∧ G), leading to the minimal transition
of R, (H ∧ G) �−→ (B ∧ G).

Proof. The proof is straightforward from the operational semantics of CHR
given as transition system in Figure 2. We take a copy of the rule R, H ′ ⇔
G′ | B′. It obviously satisfies the rule applicability condition of the transition,
CT |= ∀(G → ∃X̄(H ′=H ∧ G′)), where H ′=H is simply a variable renaming
that makes G and G′ equivalent. We can apply this variable renaming in the
resulting state (B′ ∧ H ′=H ∧ G) to get (B ∧ G). 	


Lemma 2 (Arbitrary Transitions). Any transition (H ′ ∧ C) �−→ (B ∧
H=H ′ ∧ C) resulting from application of a rule R (cf. Fig. 2) can be derived
from the minimal transition (H ∧G) �−→ (B ∧G) of R (cf. Lemma 1) by instan-
tiating variables according to the equation H=H ′ and by replacing the guard
constraints G with H=H ′ ∧ C.

Proof. Based on the transition system in Fig. 2, we only have to note that the
source states (H ∧ H=H ′ ∧ C) and (H ′ ∧ C) are identical: By definition H and
(H ′ ∧ C) do not have any variables in common, therefore we can replace H by
H ′ and remove the redundant resulting equation H ′=H ′. 	


In our algorithm, rule applications take constant time as in the original union-find
algorithm in CHR if the additional operations on relations take constant time.

Lemma 3 (Union-Find Rule Application Complexity). Every rule of the
generalised union-find algorithm can be applied in constant time and space un-
der the refined semantics of CHR [DSdlBH04], if the introduced operations on
relations (combine, compose, equal, invert) take constant time and space.

Proof Sketch. The proof is essentially the same as that for the original optimal
union-find algorithm as presented in Section 6 of [SF06]. We only repeat the
main points here.
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Following the refined semantics of CHR [DSdlBH04], CHR implementations
exist where all of the following take constant time [SF06]:

– finding all constraints with a particular value in a given argument position
(due to indexing),

– matching of constants and variables in the head of a rule,
– testing and solving simple built-in constraints (like =, =< and >=),
– adding and deleting CHR constraints.

It is further assumed that storing the (data) constraints and their indexes takes
constant space per constraint and variable.

From the above assumptions it is shown that processing a data constraint
under the refined semantics takes constant time: the constraint is called, some
rules are tried, some partner constraints which share a variable with the active
constraint are looked for, but none are present, and finally the call ends with
inserting the data constraint into the constraint store. It follows that all rule
tries and applications with an active constraint take constant time. 	


We now can show optimal time and space complexity of our algorithm.

Theorem 1 (Optimal Complexity). Our generalised union-find algorithm in
CHR has the same time and space complexity as the original optimised union-
find algorithm if the introduced operations on relations (combine, compose,
equal, invert) take constant time and space.

Proof Sketch. We prove the Theorem by showing that any computation in
our generalised algorithm can be mapped into a computation of the original
union-find algorithm with the same time and space complexity. The claim is
shown by induction on length of the computation and case analysis of the rules
applicable in a computation step. It is thus sufficient to consider individual rule
applications. Since each rule application takes constant time and space in both
algorithms by Lemma 3, it suffices to show that the computations lengths are
linearily related.

We construct a function that maps transitions of our generalised union-find
algorithm to transitions of the optimised union-find algorithm. The mapping
function τ simply removes the additional arguments holding the relations and
additional constraints for the operations on the relations. The function τ is
exhaustively defined by the following equalities:

τ((A �−→ B)) = τ(A) �−→ τ(B)
τ((A ∧ B)) = τ(A) ∧ τ(B)
τ(make(X)) = make(X)
τ(union(X,XY,Y)) = union(X,Y)
τ(find(X,XY,Y)) = find(X,Y)
τ(link(X,XY,Y)) = link(X,Y)
τ(X=Y) = true if X and Y are relations
τ(X=Y) = X=Y if X and Y are elements
τ(X>=Y) = X>=Y
τ(root(X,Y)) = root(X,Y)
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τ(X-XY->Y)) = X->Y
τ(combine(XA,YB,XY,AB)) = true
τ(compose(XY,YR,XR)) = true
τ(equal(XX)) = true
τ(invert(XY,YX)) = true
Note that the constraint true is the neutral element for conjunction, i.e. true

∧ A and A ∧ true are each the same as A.
We now establish correctness of the mapping: in our generic algorithm, tran-

sitions can be caused by the application of the union-find rules or of rules that
define the operations on relations (combine, compose, equal, invert) for the
specific instance. For the union-find rules, we have to show that for each rule
application in a transition of our generic algorithm, there is an application of the
rule by the same name in the corresponding mapped transition in the original
union-find program.

We need not apply rules to arbitrary states, but just have to consider minimal
transitions by Lemma 2. It remains to show that the function τ correctly maps
the queries and the minimal transitions for each rule of union-find. For the union
rule we have that
τ(union(X,XY,Y) �−→ find(X,XA,A) ∧ find(Y,YB,B) ∧

combine(XA,YB,XY,AB) ∧ link(A,AB,B)) =
union(X,Y) �−→ find(X,A) ∧ find(Y,B) ∧ link(A,B).

Analogously, the mapping can be applied to the other rules of the program.
If one of the rules for operations on relations is applied in a transition, the

source and target state in the mapped transition are identical, because τ maps
these operations and the built-in syntactic equalities for relations resulting from
them all to true. Since we required that these operations take constant time and
space, each operation can only cause a constant number of transitions. There-
fore their execution causes only a constant time overhead for each rule of our
algorithm.

We also have to consider inconsistency errors caused by execution of equal
caused by the application of a linkeq rule. In that case, the computation stops
in our generic algorithm, while in the corresponding mapped transition, equal
is mapped to true and the computation can possibly proceed. Clearly it needs
less time and space to stop a computation early. 	


6 Correctness

By correctness of a program we mean that the logical reading of the rules of
a program is a logical consequence of a specification given as a logical theory.
Since our generalised union-find algorithm maintains relations between elements
under the operation of adding relations, the specification is a theory for these
relations. Since our program should work with arbitrary relations, we expect the
logical reading of its rules to follow from the empty theory, i.e. to be tautologies.
We will see that this is not the case for all rules. To this end, we prove that when
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the relations involved are bijective functions, our generalisation yields a correct
algorithm. We also show that bijectivity is a necessary condition for correctness
if the relations include the identity function.

In the logical reading of our rules, we replace union, find, link and -> as
intended by the binary relations between their variables (using infix notation),
and the constraints for operations on relations by their definitions using func-
tional notation. As usual, formulas are assumed to be universally closed. Even
though the logical reading of union-find does not reflect the intended meaning
of the root data constraint [SF05], the logical reading suffices for our purposes.

(make) make(X) ⇔ root(X,0).
(union) (X XY Y) ⇔ ∃XA,A,YB,B,AB ((X XA A) ∧ (Y YB B) ∧

XA^-1◦XY◦YB=AB ∧ (A AB B))

(findNode) (X XY Y) ∧ (X XR R) ⇔ ∃YR ((Y YR R) ∧
XY◦YR=XR ∧ (X XR R))

(findRoot) root(X,N) ∧ (X XR R) ⇔ root(X,N) ∧ XR=id ∧ X=R

(linkEq) (X XX X) ⇔ XX=id
(linkLeft) RX>=RY ⇒ ((X XY Y) ∧ root(X,RX) ∧ root(Y,RY) ⇔

∃YX (XY^-1=YX ∧ (Y YX X) ∧ root(X,max(RX,RY+1))))
(linkRight) RY>=RX ⇒ ((X XY Y) ∧ root(Y,RY) ∧ root(X,RX) ⇔

(X XY Y) ∧ root(Y,max(RY,RX+1)))

Most rules lead to formulas that do not impose any restriction on the binary
relations involved. However, the logical reading of linkEq and findRoot implies
that the only relation that is allowed to hold between identical variables is the
identity function id. Most importantly, the meaning of the findNode rule is a
logical equivalence, that is not a tautology and restricts the involved relations.
For example, it does not hold for ≤=XR=YR=XY even though ≤ ◦ ≤=≤.

We now show that our implementation is correct if the involved relations are
bijective functions. In that case, the composition operation is precise enough in
that it allows to derive any of the three involved relations from the other two.
For most other types of relations, our generalised union-find algorithm is not
correct, since it looses information due to composition.

Definition 2. A function f is bijective if the function is injective and surjective,
i.e. f(x̄) = y ∧ f(ū) = v ∧ (x̄ = ū ∨ y = v) → x̄ = ū ∧ y = v.

Thus a unary function f is bijective if for every x there is exactly one y and
vice versa such that f(x) = y. Bijective functions are closed under inverse and
composition.

Theorem 2 (Correctness). The logical reading of the rules of our generalised
union-find algorithm is a consequence of a theory for the relations if these rela-
tions are bijective functions.
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Proof. The identity function id needed by rules findRoot and linkEq is a
bijective function. The findNode rule leads to the non-tautological formula,

(X XR R) ∧ (X XY Y) ⇔ (X XR R) ∧ (Y YR R) where XY◦YR=XR.
This condition is obviously satisfied if the involved relations are bijective func-

tions, because then, for any value given to one of the variables, the values for the
other two variables are uniquely determined on both sides of the logical equiv-
alence and there cannot be another triple of values (x, y, z) that has any of the
values in the same component. All other rules are tautologies. 	


Next we show that when the identity function id is one of the relations, then all
relations must be bijective.

Theorem 3 (Bijectiveness). The logical reading of the rules of our generalised
union-find algorithm implies that all relations are bijective if the allowed relations
include the identity function.

Proof. In the formula for rule findNode,

(X XR R) ∧ (X XY Y) ⇔ (X XR R) ∧ (Y YR R) where XY◦YR=XR,
we consider two cases in which we replace either relation XY or relation YR by

the identity function id. This leads to the two formulas

(X XR R) ∧ (X id Y) ⇔ (X XR R) ∧ (Y XR R) and
(X XR R) ∧ (X XR Y) ⇔ (X XR R) ∧ (Y id R).

The former formula means that any relation XR used must be surjective, the
latter means that any relation XR must be injective. Hence any relation must be
bijective. 	

The two instances of our generalised union-find algorithm that we will discuss
next involve bijective functions only.

7 Instance of Boolean Equations

With our generalised union-find algorithm, we can solve inequations between
Boolean variables (propositions), i.e. certain 2-SAT problems. This instance fea-
tures thus a (small) finite domain and a finite number of relations. In the CHR
implementation, the relations are eq for = and ne for �=, and the truth values are
0 for false and 1 for true. Note that the ne relation holds if the Boolean exclusive-
or function (xor) returns true. The operations on relations can be defined by
the following rules:

compose(eq,R,S) <=> S=R. invert(R,S) <=> S=R.
compose(R,eq,S) <=> S=R.
compose(R,R,S) <=> S=eq. equal(S) <=> S=eq.

combine(XA,YB,XY,AB) <=>
compose(XY,YB,XB), invert(XA,AX), compose(AX,XB,AB).
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Here is a simple example of a query for Booleans. Note that we introduce the
truth values 0 and 1 by make and add union(0,ne,1) to enforce that they are
distinct. This suffices to solve this type of Boolean inequations.

?- make(0),make(1),union(0,ne,1),
make(A),make(B),union(A,eq,B),union(A,ne,0),union(B,eq,1).

root(A,2), B-eq->A, 0-ne->A, 1-eq->A.

The result of the query shows that A is also equal to 1. More examples are
available online.

Related Work. It is well known that 2-SAT (conjunctions of disjunctions of at
most two literals) [APT79] and Horn-SAT (conjunctions of disjunctions with at
most one positive literal, i.e. propositional Horn clauses) [BB79, DG84, Min88]
can be checked for satisfiability in linear time. The class of Boolean equations and
inequations we can deal with is a proper subset of 2-SAT, but not of Horn-SAT,
since A ne B ⇔ (A ∨ B) ∧ (¬A ∨ ¬B).

These two classical linear-time SAT algorithms are not incremental. They as-
sume that the problem and its graph representation are initially known, because
it has to be traversed along its edges. The algorithms only check for satisfiability
and can report one possible solution, but they do not simplify or solve the given
problem in a general way, so the results are less informative than ours.

The 2-SAT algorithm translates a given problem into a directed graph where
arcs are the implications that are logically equivalent to the individual clauses
in the problem. It then relies on a linear-time preprocessing of the graph
to find is maximal strongly connected components in reverse topological or-
der. Respecting the topological order, truth values are propagated through the
components, where all nodes in a component are assigned to the same truth
value.

In contrast, our generalised union-find algorithm produces a simple normal
form representing all solutions. Due to the properties of the generalised union-
find algorithm, our Boolean instance can be integrated into a Boolean constraint
solver. For example, the classical Boolean solver in CHR is based on value (unit)
propagation, with rules such as and(X,Y,Z) <=> X=0 | Z=0, and propagation of
equalities, e.g. and(X,Y,Z) <=> X=Y | Y=Z. It can be now extended by propa-
gation of inequalities, e.g. and(X,Y,Z) <=> X ne Y | Z eq 0 and and(X,Y,Z)
<=> X ne Z | X eq 1, Y eq 0, Z eq 0.

Can we extend our algorithm instance of generalised union-find to deal with
2-SAT? As put to use in the classical algorithm, any disjunction in two variables,
A ∨ B can be written as implication ¬A → B. Since we can implement negation
using an auxiliary variable, e.g. A ne negA, we just would have to introduce the
relation → (that corresponds to a total non-strict order ≤ on the truth values).
But the implication relation looses too much information when composed. For
example, given a tree B-≤->A, C-≤->A, B and C can be arbitrarily related.
If one now asserts union(B,eq,C), it has no effect on the tree, and thus the
information that B eq C is lost.
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8 Instance of Linear Polynomials

Another instance of our generalised union-find algorithm deals with linear poly-
nomial equations in two variables. It features an infinite domain and an infinite
number of relations. In this instance, the CHR data constraint X-A#B->Y (with
A �=0) means X=A*Y+B. The operations on relations are defined as follows:

compose(A#B,C#D,S) <=> S = A*C # A*D+B.
invert(A#B,S) <=> S = 1/A # -B/A. equal(S) <=> S = 1#0.

combine(XA,YB,XY,AB) <=>
compose(XY,YB,XB), invert(XA,AX), compose(AX,XB,AB).

Again, a small example illustrates the behaviour of this instance.

?- make(X),make(Y),make(Z),make(W),
union(X,2#3,Y),union(Y,0.5#2,Z),union(X,1#6,W).

root(X,1), Y-0.5#(-1.5)->X, Z-1.0#(-7.0)->X, W-1.0#(-6.0)->X.

Note that the generic linkEq rule asserts that the relation XX in link(X,XX,X)
must be the identity function. Thus link(X,1#0,X) is fine, but all other equa-
tions of the form link(X,A#B,X) with A#B different from 1#0 will lead to
an inconsistency error. While this is correct for link(X,1#1,X), the equation
link(X,2#1,X) should not fail as it does, since it has the solution X=-1. Indeed,
in our program, an inconsistency will occur whenever a variable is fixed, i.e.
determined to take a unique value. Our implementation succeeds exactly when
the set of equations has infinitely many solutions.

We now introduce concrete numeric values and solve for determined variables.
We express numbers as multiples of the number 1. To make sure that the number
1 always stays the root, so that it can be always found by the find operation, we
add root(1,∞) (instead of make(1)) to the beginning of a query.

We split the linkEq rule into two rules. The first restricts applicability of the
generic linkEq rule to the case where A=1, the second rule applies otherwise, i.e. to
equations that determine their variable (A=\=1) and normalises the equation such
that the coefficient is 1 and the second occurrence of the variable is replaced by 1.

linkEq1 @ link(X,A#B,X) <=> A=:=1 | B=:=0.
linkEq2 @ link(X,A#B,X) <=> A=\=1 | link(X,1#B/(1-A)-1,1).

Note that there is a subtle point about these two rules: X may be the value 1,
and in that case the execution of link(X,1#B/(1-A)-1,1) in the right hand
side of rule linkEq2 will use rule linkEq1 to check if B/(1-A)-1 is zero (which
holds if B = 1-A).

The following small examples illustrate the behaviour of the two new rules
(∞ is chosen to be 9):

?- root(1,9), make(X),make(Y), union(X,2#3,Y),union(X,4#1,1).
root(1,9), X-4#1->1, Y-0.5#(-1.5)->X.
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?- root(1,9), make(X),make(Y), union(X,4#1,1),union(X,2#3,Y).
root(1,9), X-4#1->1, Y-2#(-1)->1.

The queries and answers mean the same, but the answers are syntactically dif-
ferent due to the different order of union operations in the query.

We add another rule that propagates values for determined variables down
the tree data structure and so binds all determined variables in linear time:

X-A#B->N <=> number(N) | X=A*N+B.

?- root(1,9), make(X),make(Y), union(X,2#3,Y),union(X,4#1,1).
root(1,9), X=5, Y=1.

More examples are available online.

Related Work. [AS80] gives a linear time algorithm that is similar to ours,
but is more complicated. Equations correspond to directed arcs in a graph.
Like the 2-SAT algorithm [APT79], it computes maximal strongly connected
components, and thus the problem has to be known form the beginning. Inside
each component, a modification of any linear-time spanning tree algorithm can
be used to simplify the equations. The overall effect is the same as with our
algorithm, and the algorithm is similar on the components, especially if Kruskal’s
algorithm [Kru56] for spanning trees is used which relies on union-find. However,
our algorithm is simpler and more general in its applicability. It does not need
to compute strongly connected components or spanning tress, it directly uses
union-find and moreover is incremental.

9 Conclusions

We systematically extended the applicability of union-find algorithm as imple-
mented in CHR. We saw that the generalisation of the algorithm from main-
taining equalities to certain binary relations (in particular bijective functions
that admit precise composition) is straightforward in CHR and that the gener-
alisation does not compromise quasi-linear time and space efficiency. We have
implemented the generalisation and two instances, for equations and inequa-
tions over Booleans and for linear polynomial equations in two variables. While
linear-time algorithms are known to check satisfiability and to exhibit certain
solutions of these problems, our algorithms are simple instances of our generic
algorithm. Our implementation in the Sicstus 3 Prolog CHR library is available
at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
and can be run at chr.informatik.uni-ulm.de/∼webchr/webchr1.

Our generic algorithm has desirable properties that make it suitable for in-
corporating its instances into constraint solvers: by nature of CHR, our imple-
mentation is an anytime algorithm and online algorithms. The rules solve and
simplify the constraints in the problem, and can test them for entailment, even
when the constraints arrive incrementally, one after the other.

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/ufe.pl
chr.informatik.uni-ulm.de/~webchr/webchr1
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From classical optimal union-find, our generic algorithm inherits amortised
quasi-linear time and space complexity as well as the possibility to both assert
relations and test for entailed relations. It produces a compact solved normal
form that represents all solutions of the given problem and has at most the size
of the original problem. By using the find operation, the results can be further
normalised in quasi-linear time. The relation between two given variables can be
found in quasi-constant time using find operations.

We have proven that when the relations involved are bijective functions, our
generalisation yields a correct algorithm. We also showed that bijectivity is a
necessary condition for correctness if the relations include the identity function.
While bijective functions may seem quite a strong restriction we remind the
reader that permutations, isomorphisms and many other mappings (such as en-
codings in cryptography) are bijective functions. Indeed, for a domain of size n,
there exist n! different bijective functions, i.e. more than exponentially many.
Also, most arithmetic functions are at least piecewise bijective, since they are
piecewise monotone.

Future work will try to extend the class of bijective functions to other binary
relations by abandoning the identity function, and investigate the relationship
with classes of tractable constraints. We also would like to find out about the
potential tradeoff between efficiency and precision (i.e. when applying our gen-
eralised union-find to inequalities like ≤).
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