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Abstract. We give an efficiently executable specification of the global
constraint of lexicographic order in the Constraint Handling Rules
(CHR) language. In contrast to previous approaches, the implementa-
tion is short and concise without giving up on the best known worst case
time complexity. It is incremental and concurrent by nature of CHR. It is
provably correct and confluent. It is independent of the underlying con-
straint system, and therefore not restricted to finite domains. We have
found a direct recursive decomposition of the problem. We also show
completeness of constraint propagation, i.e. that all possible logical con-
sequences of the constraint are generated by the implementation. Finally,
we report about some practical implementation experiments.

1 Introduction

Lexicographic orderings are common in everyday life as the alphabetical order
used in dictionaries and listings (e.g., ’zappa’ comes before ’zilch’). In computer
science, lexicographic orders also play a central role in termination analysis, for
example for rewrite systems [3]. In constraint programming, these orders have
recently raised interest because of their use in symmetry breaking (e.g. [14]) and
earlier in modelling preferences among solutions (e.g. [7]).

A natural question to ask is whether lexicographic orders can be implemented
as constraints and what would be appropriate propagation algorithms. There are
two approaches to this problem, starting with [8] and [6]. Both consider the case
of finite domain constraints and (hyper/generalized) arc consistency algorithms,
while our work is independent of the underlying constraint system and achieves
complete constraint progagation as well. All approaches, including ours, yield
algorithms with a worst-case time complexity that is linear in the size of the
lexicographic ordering constraint.

The algorithms and their derivation are quite different, however. In [8] an
algorithm based on two pointers that move along the elements of the sequences
to be lexicographically ordered is given. The algorithm’s description consists of
five procedures with 45 lines of pseudo-code. In [6], a case analysis of the lex-
icographic order constraints yields 7 cases to distinguish, these are translated
into a finite automaton that is then made incremental. The pseudo-code of the
algorithm has 42 lines [5]. The manual derivation of the algorithm is made semi-
automatic in a subsequent paper [4], that can deal with an impressive range



of global constraints over sequences. The pseudo-code of a simple constraint
checker is converted by hand into a corresponding automaton code (16 lines)
that is automatically translated into automata constraints that allow incremen-
tal execution of the automaton and so enforce arc consistency. Note that the
automaton code is interpreted at run-time.

We summarize that these approaches are based on imperative pseudo-code
that seems either lengthy or requires subsequent translation into a different
formalism. Their specifications seem hard to analyse and are not directly exe-
cutable. In contrast, we give a short and concise executable specification in the
Constraint Handling Rules (CHR) language that consists of 6 rules that derive
from three cases. The problem is solved by recursive decomposition, no addi-
tional constraints need to be defined. The implementation is incremental and
concurrent by nature of CHR. It is independent of the underlying constraint
system, and therefore not restricted to finite domains. Its CHR rules can be
analysed, for example we will show their confluence using a confluence checker,
and prove their logical correctness. We derive worst-case time complexity that
is parameterized by the cost of handling built-in constraints. We also show that
the rules are complete, that they propagate as much information (constraints)
as possible.

CHR [9, 13, 16] is a concurrent committed-choice constraint logic program-
ming language consisting of guarded rules that transform multi-sets of con-
straints (atomic formulae) into simpler ones until they are solved. CHR was
initially developed for writing constraint solvers, but has matured into a general-
purpose concurrent constraint language over the last decade. Its main features
are a kind of multi-set rewriting combined with propagation rules. The clean
logical semantics of CHR facilitates non-trivial program analysis and transfor-
mation. Implementations of CHR now exist in many Prolog systems, also in
Haskell and Java. Besides constraint solvers, applications of CHR range from
type systems and time tabling to ray tracing and cancer diagnosis.

Overview of the Paper. After introducing CHR, we give our generic implemen-
tation of the global constraint for lexicographic orderings in Section 3. Then, in
separate sections, we discuss confluence, logical correctness, completeness, worst-
case time complexity and some implementation experiments before we conclude.
This paper is a significantly revised and extended version of [11].

2 Preliminaries: Constraint Handling Rules

In this section we give an overview of syntax and semantics for constraint han-
dling rules (CHR) [9, 13, 16]. Readers familiar with CHR can skip this section.

2.1 Syntax of CHR

We distinguish between two different kinds of constraints: built-in (pre-defined)
constraints which are solved by a given constraint solver, and CHR (user-defined)



constraints which are defined by the rules in a CHR program. This distinction al-
lows one to embed and utilize existing constraint solvers as well as side-effect-free
host language statements. Built-in constraint solvers are considered as black-box
in whose behavior is trusted and that do not need to be modified or inspected.
The solvers for the built-in constraints can be written in CHR itself, giving rise
to a hierarchy of solvers [15].

Definition 1. A CHR program is a finite set of rules. There are two main kinds
of rules:

Simplification rule: Name @ H ⇔ C B
Propagation rule: Name @ H ⇒ C B

Name is an optional, unique identifier of a rule, the head H is a non-empty con-
junction of CHR constraints, the guard C is a conjunction of built-in constraints,
and the body B is a goal. A goal is a conjunction of built-in and CHR constraints.
A trivial guard expression “true ” can be omitted from a rule.

Example 1. For example, let ≤ be a built-in constraint symbols with the usual
meaning. Here is a rule for a CHR constraint max, where max(X,Y,Z) means
that Z is the maximum of X and Y:

max(X,Y,Z)⇔ X≤Y Z =Y.

2.2 Declarative Semantics of CHR

The CHR rules have an immediate logical reading, where the guard implies a
logical equality or implication between the l.h.s. and r.h.s. of a rule.

Definition 2. The logical meaning of a simplification rule is a logical equiva-
lence provided the guard holds.

∀(C → (H ↔ ∃ȳ B)),

where ∀ denotes universal closure as usual and ȳ are the variables that appear
only in the body B.

The logical meaning of a propagation rule is an implication provided the
guard holds

∀(C → (H → ∃ȳ B)).

The logical meaning P of a CHR program P is the conjunction of the logical
meanings of its rules united with a consistent constraint theory CT that defines
the built-in constraint symbols.

Example 2. Recall the rule for max from Example 1. The rule means that
max(X,Y,Z) is logically equivalent to Z=Y if X≤Y:

∀(X≤Y → (max(X, Y, Z) ↔ Z=Y ))



2.3 Operational Semantics of CHR

At runtime, a CHR program is provided with an initial state and will be executed
until either no more rules are applicable or a contradiction occurs.

The operational semantics of CHR is given by a transition system (Fig. 1).
Let P be a CHR program. We define the transition relation 7→ by two compu-
tation steps (transitions), one for each kind of CHR rule. States are goals, i.e.
conjunctions of built-in and CHR constraints. States are also called (constraint)
stores. In the figure, all upper case letters are meta-variables that stand for con-
junctions of constraints. The constraint theory CT defines the semantics of the
built-in constraints. Gbi denotes the built-in constraints of G.

Simplify

If (r@H ⇔ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (B ∧G ∧H=H ′ ∧ C)

Propagate

If (r@H ⇒ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (H ′ ∧B ∧G ∧H=H ′ ∧ C)

Fig. 1. Computation Steps of Constraint Handling Rules

Starting from an arbitrary initial goal (state, query, problem), CHR rules are
applied exhaustively, until a fixpoint is reached. A final state (answer, solution)
is one where either no computation step is possible anymore or where the built-in
constraints are inconsistent.

A simplification rule H ⇔ C B replaces instances of the CHR constraints H
by B provided the guard C holds. A propagation rule H ⇒ C B instead adds B
to H. If new constraints arrive, rules are reconsidered for application. Computa-
tion stops if the built-in constraints become inconsistent. Trivial non-termination
of the Propagate computation step is avoided by applying a propagation rule
at most once to the same constraints (see the more concrete semantics in [1]).

In more detail, a rule is applicable, if its head constraints are matched by
constraints in the current goal one-by-one and if, under this matching, the guard
of the rule is logically implied by the built-in constraints in the goal. Any of the
applicable rules can be applied, and the application cannot be undone, it is
committed-choice.

Example 3. Here are some sample computations involving the rule for max:

max(1, 2, M) 7→ M=2.
max(A,B,M) ∧ A<B 7→ M=B ∧ A<B.
max(A, A, M) 7→ M=A.



3 The Lexicographic Order Constraint Solver

A lexicographic order allows one to compare sequences by pairwise comparing
the elements of the sequences.

Definition 3. Given two sequences l1 and l2 of variables of the same length
n, [x1, . . . , xn] and [y1, . . . , yn]. Then l1 is lexicographically smaller than
or equal to l2, written l1�lexl2, iff either n=0 or x1<y1 or x1=y1 and
[x2, . . . , xn]�lex[y2, . . . , yn].

The corresponding logical specification of the lex constraint thus is:

l1�lexl2 ↔ (l1=[] ∧ l2=[]) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2)

In our CHR solver for the lex constraint we will use concrete syntax of Prolog
implementations of CHR. Variables start with upper-case letters, constraint and
function symbols with lower-case letters. Lists are enclosed in square brackets,
with their elements seperated by commata, while after the symbol ‘‘|’’ the
remainder of the list follows as a list. Conjunction ∧ is written as comma ’,’.

Our solver will be independent from the constraint system in which the built-
in constraints (inequalities) are defined. Different list elements can be from dif-
ferent constraint domains if their inequalities are polymorphic. They can even
be a (differently named) lexicographic constraint provided it is built-in.

The derivation of the following six rules for our lexicographic order constraint
solver is explained in [11]. The solver consists of three pairs of rules, the first
two corresponding to base cases of the recursion (garbage collection), then two
rules performing forward reasoning (recursive traversal and implied inequality),
and finally two for backward reasoning, covering a not so obvious special case
when the lexicographic constraint has a unique solution.

l1 @ [] lex [] <=> true.
l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.
l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
l4 @ [X|L1] lex [Y|L2] ==> X=<Y.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The first three rules l1, l2 and l3 are directly derived from the three dis-
juncts of the logical specification. The notation [X|L] refers to a list with first
element X and the remainder of the list is the list L. The three rules will apply
when the lists are empty or when the relationship between the leading list ele-
ments X and Y is sufficiently known. The built-in constraints X<Y and X=Y are in
the guards, so they check if the appropriate relationship between the variables
holds. When a rule is tried, the built-in constraint solver has to check if the
guard is implied by the current built-in constraints.



For example, the three queries [1] lex [2], [X] lex [X], and [X] lex
[Y], X<Y will all reduce to true. For finite domains, consider X in {0,1}, Y
in {2,3}, [X] lex [Y]. Rule l2 asks in the guard if the constraint X<Y holds,
i.e. if it is implied by the current built-in constraints. If the built-in finite domain
solver is strong enough to infer X<Y from X in {0,1}, Y in {2,3}, then rule
l2 is applicable and its application results in X in {0,1}, Y in {2,3}. For
simplicity, we will just use explicit inequalities in our examples.

The propagation rule l4 implements a common consequence of the last two
disjuncts of the logical specification. The built-in inequality constraint appears
in the body of the rule and is thus enforced when the rule is applied.

For example, to the query [R|Rs] lex [T|Ts], R<>T only the propagation
rule is applicable and adds R=<T. This results in [R|Rs] lex [T|Ts], R<T after
simplification of the built-in constraints for inequality. Now rule l2 is applicable,
the lex-constraint is removed and the final answer is the remaining R<T.

Rule l5 deals with the special case where the elements of the second pair of
the sequence are related by a strict inequality in the wrong way such that the only
(way to a) solution is to enforce a strict inequality on the first two elements. Note
that rules l4 and l5 are the only ones that directly impose a built-in constraint.
Rule l6 uses double recursion, but note that the first recursive lex constraint has
a fixed, small list length. The rule deals with the case where the wrong inequality
treated in l5 is further down the lists. The additional condition L1=[ | ] in the
guard of rule l6 avoids non-termination in case L1=[].

To see how rules l5 and l6 work together, consider the query
[R1,R2,R3] lex [T1,T2,T3], R2>=T2, R3>T3. Since R2>=T2, rule l6 is ap-
plicable, and leads to R2>=T2, R3>T3, [R1,R2] lex [T1,T2], [R1,R3] lex
[T1,T3]. Now rule l5 can be applied to the second lex constraint, and we ar-
rive at R2>=T2, R3>T3, [R1,R2] lex [T1,T2], R1<T1. Because now R1<T1 is
enforced, rule l2 removes the remaining lex constraint and the final answer is
R2>=T2, R3>T3, R1<T1.

4 Confluence

Typically, CHR programs for constraint solving are well-behaved, i.e. terminat-
ing and confluent. Confluence means that the result of a computation is inde-
pendent from the order in which rules are applied to the constraints. This also
implies that the order of constraints in a goal does not matter. Once termina-
tion has been established [10], there is a decidable, sufficient and necessary test
for confluence [1, 2]. In the latter papers it is also shown that confluent CHR
programs have a consistent logical reading.

Definition 4. A CHR program is confluent if for all computation states
S, S1, S2: If S 7→∗ S1 and S 7→∗ S2 then there exist states T1 and T2 such
that S1 7→∗ T1 and S2 7→∗ T2 and T1 and T2 are identical up to renaming of
local variables and logical equivalence of built-in constraints.



For checking confluence, one takes copies (with fresh variables) of two rules
(not necessarily different) from the program. The heads of the rules are over-
lapped by equating at least one head constraint from one rule with one from the
other rule. For each overlap, one considers the two states resulting from applying
one or the other rule. These two states form a so-called critical pair. One tries
to join the states in the critical pair by finding two computations starting from
the states that reach a common state. If a critical pair is not joinable, one has
found a counterexample for confluence of the program.

We used and improved the confluence checker mentioned in [12] to check con-
fluence of the lex constraint. The six rules for the lexicographic order constraint
are confluent, the program code and its results are available at:
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/conflexico.pl

The rule l1 cannot give rise to any critical pair. It does not overlap with any
other rule, since it is the only one dealing with empty lists. The rules l2 and
l3 are mutually exclusive. There are overlaps between all the remaining pairs of
rules. If rule l2 or rule l4 is dropped, the solver becomes non-confluent, while
the other rules can be dropped without hurting confluence.

Example 4. Consider the overlap between the rules

l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.

which is [X,U|L1] lex [Y,V|L2], U>V, X=Y and which leads to the following
confluence check:

[X, U|L1] lex [Y, V|L2], X=Y, U>V

l3

sshhhhhhhhhhhhhhhhhhh
l5

**UUUUUUUUUUUUUUUUU

X=Y, U>V, [U|L1] lex [V|L2]

l4, built-in
++WWWWWWWWWWWWWWWWWWWWW

X=Y, U>V, X < Y

built-inttiiiiiiiiiiiiiiiiiii

false

Using the first rule, we arrive at X=Y, U>V, [U|L1] lex [V|L2]. Using the
second rule, we arrive at X=Y, U>V, X<Y. These two states form the critical pair.
The propagation rule l4 is applicable to the first state X=Y, U>V, [U|L1] lex
[V|L2] and leads to X=Y, U>V, [U|L1] lex [V|L2], U=<V, which fails due to
the contradicting constraints on U and V. The second state immediately fails due
to the contradicting constraints on X and Y. Hence, this critical pair is joinable,
in both cases we finally fail (independent of the order of rule applications).

Example 5. Another confluence check involves the rules l5 and l6.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].



Their overlap is

[X,U|L1] lex [Y,V|L2], U>V, L1=[ | ].

The resulting critical pair is

U>V, L1=[_|_], X<Y vs.
U>V, L1=[_|_], [X,U] lex [Y,V], [X|L1] lex [Y|L2].

The first state of the critical pair is already a final state, in the second one,
rule l5 can be applied to the first lex constraint resulting in U>V, L1=[ | ],
X<Y, [X|L1] lex [Y|L2]. Now, since X<Y, rule l2 can be applied to remove
the remaining lex constraint, the two states of the critical pair are joinable.

5 Logical Correctness

CHR programs can be formally verified on the basis of their logical reading.
Recall that the logical meaning of a CHR program is the logical meaning of its
rules united with the constraint theory CT for the built-in constraints.

Definition 5. Let P be the logical meaning of a CHR program P . Let S be a
logical specification for P , i.e. a consistent theory for the CHR constraints in P .
Then program P is logically correct with respect to specification S iff

S ∪ CT |= P.

The logical reading of the six rules for the lexicographic order constraint
solver is as follows.

([] �lex [])
X<Y → ([X|L1] �lex [Y |L2])
X=Y → ([X|L1] �lex [Y |L2] ↔ L1�lexL2)

([X|L1] �lex [Y |L2] → X≤Y )
U>V → ([X, U |L1] �lex [Y, V |L2] ↔ X<Y )

(U≥V ∧ L1=[ | ]) → ([X, U |L1] �lex [Y, V |L2] ↔
([X, U ]�lex[Y, V ] ∧ [X|L1]�lex[Y |L2]))

For logical correctness, we have to show that these formulas are logical con-
sequences of the logical specification given by

l1�lexl2 ↔ (l1=[] ∧ l2=[]) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2)

For example, it is easy to see that the logical reading of propagation rule l4
is a common consequence of the last two disjuncts of the specification,

(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨ (l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2) →

l1=[x|l′1] ∧ l2=[y|l′2] ∧ x≤y.



Proof for Rule l6. As a more involved example, we prove that the logical reading
of propagation rule l6 is a logical consequence of the specification. From the
specification it follows

[X|L1]�lex[Y |L2] ↔ (X<Y ∨ X=Y ∧ L1�lexL2)

For the rule l6, we will actually prove a slightly stronger result by remov-
ing L1=[ | ] from the precondition (the condition was introduced to ensure
termination). Instead of C → (H ↔ B) we use the logically equivalent
(H ∧ C) ↔ (C ∧B)).

To show the equivalence of the l.h.s. and r.h.s. of the formula, we will now
replace the lex constraints in the logical reading of the rule according to the
specification, distribute conjunction over disjunction and simplify by removing
unsatisfiable disjuncts.

The l.h.s. of the rule, [X, U |L1]�lex[Y, V |L2] ∧ U≥V , becomes

U≥V ∧ (X<Y ∨ X=Y ∧ U<V ∨ X=Y ∧ U=V ∧ L1�lexL2) ↔
(U≥V ∧X<Y ∨ X=Y ∧ U=V ∧ L1�lexL2)

The r.h.s. U≥V ∧ [X, U ]�lex[Y, V ] ∧ [X|L1]�lex[Y |L2] becomes

U≥V ∧(X<Y ∨ X=Y ∧U<V ∨ X=Y ∧U=V )∧(X<Y ∨ X=Y ∧L1�lexL2) ↔
U≥V ∧(U≥V ∧X<Y ∨ X=Y ∧U=V )∧(U≥V ∧X<Y ∨ U≥V ∧X=Y ∧L1�lexL2)
↔ (U≥V ∧X<Y ∨ X=Y ∧ U=V ∧ L1�lexL2)

Both sides, l.h.s. and r.h.s., are equivalent.

6 Worst-Case Time Complexity

We would like to give a complexity result that is independent from the constraint
system in which the built-in constraints (inequalities) are defined. The reason is
that most constraint systems, such as Booleans, finite domains, and linear poly-
nomials, admit these inequalities, but the typical algorithms used (e.g. arc and
path consistency, simplex) have different time complexities and achieve different
degrees of completeness (local or global). We therefore give our complexity re-
sult in the number of atomic built-in constraints that are checked and imposed,
respectively.

Lemma 1. For the rules of the lex constraint, the number of checks and addi-
tions of built-in constraints is proportional to the number of rule applications.

Proof. Head matching can be done in constant time, guards contain at most one
built-in inequality constraint to check, and rule bodies directly impose at most
one built-in inequality constraint.

We show now that an upper bound on the number of rule applications r
depends on the list lengths only. We treat lex constraints with list arguments
up to two elements separately, because they play a special role in rule l6.



Lemma 2. The number of checks and additions of built-in inequality con-
straints is linear in the length of the list.

Proof. By Lemma 1, it suffices to consider the number of rule applications. We
use the following recurrence equations generated from the rules of the lex con-
straint solver. The number of rule applications involving a list of some given
length is computed as follows in the equations below: We charge 1 (unit) cost
for applying one of the applicable rules and add the number of rule applications
caused by the body of the respective rule. The unit costs are represented by
constants l1 to l6 to indicate which rule is applied. From all the potential rule
applications, the maximum is taken. Since the propagation rule is always appli-
cable to non-empty lists, its cost is added outside of the maximum expression.

l1 = l2 = l3 = l4 = l5 = l6 = 1
r(0) = l1 = 1
r(1) = max(l2, l3+r(0), l5)+l4 = 3
r(2) = max(l2, l3+r(1), l5)+l4 = 5

...
r(n) = max(l2, l3+r(n−1), l5, l6+r(2)+r(n−1))+l4 = 7+r(n−1) < 7n−8

To empty lists, only the rule l1 is applicable. To lists with one or two ele-
ments, the rules l2 up to l5 are applicable, but not rule l6. The propagation
rule l4 can be applied at most once to each lex constraint. The recursive rules
l3 and l6 dominate the costs.

For lists of length n less than or equal to 2, the number of rule applications
is bounded by a constant (at most 5). For lists of length greater than 2, the
number of rule applications is linear in the length of the list.

For the overall complexity, we should not forget about waking: If a variable of
a pending lex constraint gets more constrained by a built-in constraint, the lex
constraint will be woken. Then the results hold even if the built-in constraints are
imposed incrementally, as is standard in constraint programming applications.

Theorem 1. The overall worst case time complexity is linear modulo the cost
of handling the built-in constraints. At most O(n + w) built-in constraints are
checked, imposed or woken where n is the list length and w is the number of
wake (propagation) events caused by the built-in constraint solver.

Proof. The result follows from Lemma 2 and the following observation: If a
CHR constraint is woken, it’s rules will be re-checked for applicability. If a rule is
applicable, the cost of the continuation of the computation on the lex constraint
has already been accounted for in the above calculations. But what is the cost
of waking lex in vain, i.e. if no rule turns out to be applicable? Then a constant
number of head matchings and guard checks has been performed if rules are
tried.



7 Completeness

In this section we discuss completeness of the constraint solver for the lexico-
graphic order constraint, i.e. if it produces all built-in constraints, i.e. inequali-
ties, that logically follows from the lex constraint and some given inequalities.

We already know that the solver is correct and confluent. Thus it cannot
propagate incorrect conctraints and starting from a given goal it will always
propagate the same constraints, no matter which of the applicable rules are ap-
plied. Thus what is left to show for completeness is that all possible propagations
are performed, not just a few.

Of course, also the completeness result is relative to the built-in constraint
solver. In particular, if its entailment check is too weak to detect all cases where
guard inequalities are implied, the lex constraint solver will also become incom-
plete. This is the case for finite domains, since the underlying arc consistency
algorithm only provides local completeness.

Definition 6. A solution of a lexicographic order constraint [x1, . . . , xn] �lex

[y1, . . . , yn] is of the form

x1=y1 ∧ x2=y2 ∧ . . . ∧ xi−1=yi−1[∧xi<yi] (1 ≤ i ≤ n+1),

where xi<yi is dropped from the conjunction if i = n+1. We describe a solution
to lex by an expression (=)i−1[<] and we identify it by the position i of the strict
inequality <. The resulting sequence of inequalities is meant to hold between the
respective pairs of variables from the two lists of the lex constraint. [e] means
that expression e is dropped if its position in the sequence is greater than n. An
expression e0 is also dropped.

We argue for completeness based on the following observations:

– There can be at most n + 1 solutions to a given lex constraint over lists of
length n.

– The disjunction of all solutions of a lex constraint is logically equivalent to
the constraint.

– Inequality constraints can be added to a lex constraint so that any subset
of solutions is possible:
• Imposing xi < yi or xi 6= yi means there can be a solution at position i,

but not at any greater position, since equality is not possible anymore
at position i.

• Imposing xi = yi or xi ≥ yi means there cannot be a solution at position
i, but possibly at greater positions.

• Imposing xi ≤ yi means there can be a solution at position i or any
greater position.

• Imposing xi > yi means there cannot be a solution at position i or any
greater position.

– Hence the smallest position that admits a solution is the first position i that
admits < (i.e. <, ≤, 6=, true) or where i=n+1, provided all previous positions
admitted = but not < (i.e. =, ≥). If there is no such smallest position, then
there is no solution.



Based on these observations, we distinguish two kinds of propagation.

Forward Propagation The new inequalities that we can propagate from a
disjunction of the solutions of a given lex constraint together with some
inequalities, i.e. all those built-in constraints that are implied, that must
hold no matter which disjunct (solution) is chosen, are simply and only
(=)i−1[≤], where i is the first, smallest position of a solution.
Thus a complete implementation has to turn leading ≥ inequalities into
equalities =, proceed over = and impose ≤ on the first remaining other
inequality. In our constraint solver implementation this is achieved by the
propagation rule l4 that imposes ≤ on any current first position and the
recursive simplification rule l3 that removes leading =.

Backward Propagation A special case arises if there is exactly one solution,
in that case obviously the last inequality that we have to propagate can be
made strict, (=)i−1[<]. We have exactly one solution if there are no more
solutions after the smallest position that admits a solution. This is the case
if the smallest position is followed by a sequence of zero or more = or ≥
constraints that is ended by >.
This special one-solution case is handled by the simplification rules l5 and
l6. Rule l5 covers the case where > holds for the second position, so <
must hold for the first position to ensure a solution. Rule l6 allows one to
reduce the other instances of the special case, where there is an arbitrary
number of = or ≥ constraints between the unique position for a solution and
the > inequality (that could also come from a ≥ being strenghened), to the
situation in rule l5.

Note that the rules l1 and l2 are not needed for completeness of propagation,
simply because they do not propagate anything except the trivial true. But the
two rules are useful for garbage collection and l2 is also needed for confluence.

8 Implementation Experiments

In the literature so far, the lex constraint has only been used for finite domains,
so a comparison is only possible when this constraint system is chosen as built-
in one. While the implementation of [8] seems not to be public domain, the
implementation of [6] is included in the latest Sicstus Prolog releases.

We tested our CHR implementation of lex with the CHR library in Sic-
stus Prolog, while Tom Schrijvers was so kind to test it in SWI Prolog. The
implementations are not incremental at this point, but can be made so by a
tighter coupling. While some readers may be impressed with benchmark tables,
we have omitted them for space reasons. The interested reader can find more
detailed measures that would fit a paper online. The main test file with code
and results for both Prolog implementations is available online (further test files
are mentioned in that file):
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/lextest.pl



For our tests we have used Sicstus 3.11 Prolog with standard settings running
on a Suse Linux PC with medium overall work load. We compiled our code
with the ’compactcode’ option of Sicstus. In the implemented rules, we used
a straightforward coupling between the CHR lex constraint utilizing the chr
library of Sicstus and the finite domain built-in constraints of the Sicstus clpfd
library, where we inspect domains in the guards to perform the necessary checks.

After some initial experiments we found that the propagation rule l4 of the
solver exhibits a non-linear (quadratic) behavior instead of a linear one. One
reason is because every time a lex constraint suspends, all its variables in the
constraint are scanned, while it would only be necessary to scan the first two
variable pairs. We avoided this bottleneck by rewriting the propagation rule into
a guarded simplification rule.

We compared our CHR implementation of lex with the built-in lex chain
constraint [6] of the Sicstus clpfd constraint library. This unary constraint takes
a list of lists of domain variables with finite bounds or integers. The constraint
holds if the lists are in ascending lexicographic order.

We considered lists up to 40000 elements, at around 50000 elements memory
problems occurred. Garbage collection was never performed by the system. In
our experiments, both lexicographic constraints showed a complete propagation
behavior and linear time complexity. The number of rule applications in our
solver is linear in the list length as calculated. Run-times were less than a second
for the CHR lex constraint for simpler test cases. While forward propagation
in CHR was just 3 times slower than built-in lex chain, backward propagation
proved to be 10–20 times slower, possibly because the recursive decomposition
in the CHR solver generates many small lex constraints.

Tom Schrijvers has run the tests in his K.U. Leuven CHR system in an
experimental version of SWI Prolog that will be included in the development
version in early 2006. Due to compile-time suspension variable inference in that
CHR implementation, scanning is improved so that the original propagation
rule of the lexicographic constraint solver can be run without run-time penalty
in linear time. In tests with up to 4000 list elements, a linear-time behavior was
observed. Some additional time is spend in garbage collection.

9 Conclusions

Just six CHR rules correctly and efficiently specify and implement an incremental
and concurrent, logical algorithm to maintain consistency of the lexicographic
ordering constraint. Previous approaches presented algorithms for the lexico-
graphic order constraint in pseudo-code that seems hard to analyse or use an
automata formalism that seems hard to re-implement, while our solver program
is simple, short, concise and directly executable. We have found a direct recur-
sive decomposition of the problem that does not need additional constraints and
performs all possible propagations. Moreover, our solver is independent of the
underlying constraint system that provides inequalities between the elements of



the sequences to be compared lexicographically, and therefore our solver is not
restricted to finite domains.

Our solver consists of three pairs of rules, the first two corresponding to base
cases of the recursion (garbage collection), then two rules performing forward
reasoning (recursive traversal and implied inequality), and finally two for back-
ward reasoning, covering a special case when the lexicographic constraint has
a unique solution. We have proven the rules to be confluent using our semi-
automatic confluence checker. We showed logical correctness, completeness of
constraint propagation and worst-case time complexity linear in the cost of han-
dling the built-in inequality constraints.

We already know that, at least in theory, CHR can implement any algorithm
in best-known space and time complexity [17], and many CHR constraint solvers
including the lex constraint discussed here are practical proof that it is indeed
possible. The remaining constant-factor slow-down observed in the implementa-
tion experiments is the price one currently has to pay for using a very high-level
language as CHR in contrast to a low-level hard-wired implementation. Since
the run-time increase is by a constant factor only, we can hope that compiler
optimization will further close the performance gap.

Future work should consider extensions of the lexicographic ordering con-
straint that can be found in the recent literature, e.g. using it in chains or with
a summation constraint, or simplifying lex constraints for symmetry breaking.
As for the instantiations of the generic constraint solver to specific built-in con-
straint systems, several issues are open: To show that the finite domain instance
maintains generalized arc consistency, to use other underlying built-in constraint
systems such as linear polynomials or temporal constraints, and to give an im-
plementation that does not rely on built-in constraints for inequality, but rather
uses existing CHR solvers. Finally, a hard, challenging question is if and how
rules such as the ones presented here can be derived automatically from inductive
definitions.
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12. T. Frühwirth. Parallelizing union-find in constraint handling rules using conflu-
ence. In M. Gabbrielli and G. G., editors, Logic Programming: 21st International
Conference, ICLP 2005, volume 3668 of Lecture Notes in Computer Science, pages
113–127. Springer, Oct. 2005.
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cation checking for chr constraints. In 6th International Workshop on Rule-Based
Programming, volume 147 of Electronic Notes in Theoretical Computer Science,
pages 93–111, Jan. 2006.
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