
A Compiler for Constraint Handling Rules based onPartial EvaluationChristian HolzbaurUniversity of ViennaDepartment of Medical Cybernetics and Arti�cial IntelligenceFreyung 6, A-1010 Vienna, Austriachristian@ai.univie.ac.atThom Fr�uhwirthCWG at LMU�Oettingenstrasse 67, D-80538 Munich, Germanyfruehwir@informatik.uni-muenchen.deJuly 30, 1999AbstractWe argue to base the compilation of a particular language for writingconstraint solvers, CHR, on partial evaluation (PE). In contrast to previouscompilers realizations the semantics of the generated code are easier to proveto correspond to the intended ones and we can capitalize on the possibilityto control the degree of PE, which allows for everything between interpretedexecution to full compilation. The resulting di�erences in execution speed andcode size are subject to a tradeo� made and controlled by the user throughcompiler opotions. Further, PE based compilation prepares a next step inthe evolution of CHR implementations where the realization of parts of theconstraint store will be made available to the PE process. The specializationof the abstract data types that make up the constraint store is instrumentalin narrowing the performance gap between special purpose constraint solversand CHR.1 IntroductionIn this paper we focus on the compilation of a declarative language, especiallydesigned for writing constraint solvers, called constraint handling rules (CHR)[Fru91, FrBr95, Fru98, FAM98, HoFr98]. With CHR, one can introduce user-de�nedconstraints into a given high-level host language, be it Prolog or Lisp. As languageextension, CHR themselves are only concerned with constraints, all auxiliary com-putations are performed in the host language.CHR is essentially a committed-choice language consisting of guarded rules thatrewrite constraints into simpler ones until they are solved. CHR can de�ne bothsimpli�cation of and propagation over user-de�ned constraints. Simpli�cation re-places constraints by simpler constraints while preserving logical equivalence. Prop-agation adds new constraints which are logically redundant but may cause furthersimpli�cation.�Constraint Working Group at Ludwig-Maximilians-University1

In contrast to the family of the general-purpose concurrent logic programminglanguages [Sha89], concurrent constraint languages [Sar93] and the ALPS [Mah87]framework, CHR are a special-purpose language concerned with de�ning declarativeobjects, constraints, not procedures in their generality. In another sense, CHR aremore general, since they allow for multiple heads, i.e. conjunctions of constraints inthe head of a rule. Multiple heads are a feature that is essential in solving conjunc-tions of constraints. With single-headed CHR alone, unsatis�ability of constraintscould not always be detected (e.g X<Y,Y<X) and global constraint satisfaction couldnot be achieved.CHR are typically realized as a library containing a compiler, runtime systemand solvers written in CHR. Here we are concerned exclusively with the compilationprocess. The design of the runtime system is covered in [HoFr98b, HoFr98c].The main threads of motivation behind our proposal to base the transformationof CHR into an executable (high-level) language, Prolog in this case, on partialevaluation (PE) are:� Our experience with earlier versions of the system indicated that the trans-formation is pretty expansive in terms of code size, even when targeting ata high-level language. The phenomenon does not hamper the utilization ofconstraint solvers consisting of a couple of CHR, the ratio between lines ofcode in the target vs. source language being roughly 10. But then, CHR di-rectly and fairly e�ciently implement production rule systems, often havinghundreds of rules or more.� We want a �rm formal basis for the compiler.� Once we open the black box that implements the constraint store upon whichCHR act, the specialization of the corresponding abstract data types via PEwill be instrumental in narrowing the residual performance gap between spe-cial purpose constraint solvers and CHR.Overview of this PaperWe quickly recapitulate syntax and semantics for CHR.We implement the semanticsin a Prolog context through the provision of an interpreter and derive the compiledcode via PE. An example will guide us through the paper. Even though it does notde�ne a typical constraint, we chose it for didactic reasons.Example 1.1 (Primes) We implement the sieve of Eratosthenes to compute primesin a way reminiscent of the \chemical abstract machine" [BCL88]: The constraintcandidates(N) generates candidates for prime numbers, prime(M), where M is be-tween 1 and N. The candidates react with each other such that each number absorbsmultiples of itself. In the end, only prime numbers remain.candidates(1) <=> true. % rule 1generate @ candidates(N) <=> N>1 | % rule 2M is N-1, prime(N), candidates(M).sieve @ prime(I) \ prime(J) <=> J mod I =:= 0 | true. % rule 3The �rst rule says that the number 1 is not a good candidate for a prime,candidates(1) is thus rewritten into true, a constraint that is always satis�edand therefore it has no e�ect and representation in the constraint store. Note thathead matching is used in CHR so the �rst rule will only apply to candidates(1).A constraint for candidates with a free variable, like candidates(X), will suspend(delay). 2

The generate rule generates a candidate prime(N) and proceeds recursively withthe next smaller number, provided the guard (precondition, test) N>1 is satis�ed.The third, multi-headed rule named sieve reads as follows: If there is a con-straint prime(I) and some other constraint prime(J) such that J mod I =:= 0holds, i.e. J is a multiple of I, then keep prime(I) but remove prime(J) andexecute the body of the rule, true.2 Syntax and SemanticsWe assume some familiarity with (concurrent) constraint (logic) programming, e.g.[Sha89, vHSD92, Sar93, JaMa94, MaSt98]. As a special purpose language, CHRextend a host language with (more) constraint solving capabilities. Auxiliary com-putations in CHR programs are executed as host language statements. Here the hostlanguage is (SICStus) Prolog. For more formal and detailed syntax and semanticsof constraint handling rules see [Fru98, FAM98].2.1 SyntaxDe�nition 2.1 There are three kinds of CHR. A simpli�cation CHR is of the form[Name '@'] Head1,...,HeadN '<=>' [Guard '|'] Body.where the rule has an optional Name, which is a Prolog term, and the multi-headHead1,...,HeadN is a conjunction of CHR constraints, which are Prolog atoms.The guard is optional; if present, Guard is a Prolog goal excluding CHR constraints;if not present, it has the same meaning as the guard 'true |'. The body Body is aProlog goal including CHR constraintsA propagation CHR is of the form[Name '@'] Head1,...,HeadN '==>' [Guard '|'] Body.A simpagation CHR is a combination of the above two kinds of rule, it is of theform[Name '@'] Head1,...'\'...,HeadN '<=>' [Guard '|'] Body.where the symbol '\' separates the head constraints into two nonempty parts.A simpagation rule combines simpli�cation and propagation in one rule. Therule HeadsK \ HeadsR <=> Body is equivalent to the simpli�cation rule HeadsK,HeadsR <=> HeadsK, Body, i.e. HeadsK is kept while HeadsR is removed. However,the simpagation rule is more compact to write, more e�cient to execute and hasbetter termination behaviour than the corresponding simpli�cation rule.2.2 SemanticsDeclaratively1, a rule relates heads and body provided the guard is true. A simpli-�cation rule means that the heads are true if and only if the body is satis�ed. Apropagation rule means that the body is true if the heads are true.In this paper, we are interested in the operational semantics of CHR in actualimplementations. A CHR constraint is implemented as both code (a Prolog pred-icate) and data (a Prolog term) in the constraint store, which is a data structureholding constraints. Every time a CHR constraint is posted (executed) or woken1Unlike general committed-choice programs, CHR programs can be given a declarative seman-tics since they are only concerned with de�ning constraints, not procedures in their generality.3

(reconsidered), it checks itself the applicability of the rules it appears in. Such aconstraint is called (currently) active, while the other constraints in the constraintstore that are not executed at the moment are called (currently) passive.Heads. For each CHR, one of its heads is matched against the constraint.Matching succeeds if the constraint is an instance of the head, i.e. the head servesas a pattern. If a CHR has more than one head, the constraint store is searchedfor partner constraints that match the other heads. If the matching succeeds, theguard is executed. Otherwise the next rule is tried.Guard. A guard is a precondition on the applicability of a rule. The guardeither succeeds or fails. A guard succeeds if the execution succeeds without causingan instantiation error2 and without touching a variable from the heads. A variableis touched if it takes part in a uni�cation or gets more constrained by a built-inconstraint. If the guard succeeds, the rule applies. Otherwise it fails and the nextrule is tried.Body. If the �ring CHR is a simpli�cation rule, the matched constraints areremoved from the store and the body of the CHR is executed. Similarly for a �ringsimpagation rule, except that the constraints that matched the heads preceding '\'are kept. If the �ring CHR is a propagation rule the body of the CHR is executedwithout removing any constraints. It is remembered that the propagation rule �red,so it will not �re again (and again) with the same constraints. Since the currentlyactive constraint has not been removed, the next rule is tried.Suspension. If all rules have been tried and the active constraint has not beenremoved, it suspends (delays) until a variable occurring in the constraint is touched.Here suspension means that the constraint is inserted into the constraint store asdata.3 ImplementationThe transformation scheme outlined in this section maps CHR to Prolog clauseswhich will (re)produce the semantics from the previous section. The mapping itselfis coded in (SICStus) Prolog ([HoFr98]) and translates CHR into Prolog on-the-
y, while the CHR �le is loaded (consulted). In contrast to earlier presentationsbased on de�nite clause grammar (DCG) templates ([HoFr98b]) we describe themapping as the result of the partial evaluation of a CHR interpreter with respectto a given set of rules. A compiler that generates code that provably mirrors theinterpreters semantics can be synthesized via PE. Besides this theoretical attractiveconstruction, the degree of PE can be controlled and provides the user with a meansto choose between compact interpreted and fully specialized, fast, yet voluminouscode.3.1 Transformation scheme, Interpreter skeletonCHR compilation is non-local, i.e. not rule by rule, in the sense that we have toaccount for each constraint in each of the two possible roles (active,passive) in allrules where it occurs as a head. Roughly, we thread the
ow of control throughthe match-attempts, guard evaluation, updates to the constraint store dependingon the rule type, and evaluation of the rule bodies.3.1.1 Global
owInitially, the relation chr_crossref/2 between constraints and rules is computed.It associates each constraint with all its occurrences in the rules. The order follows2A built-in predicate of Prolog complains about free variables where it needs instantiated ones.4

the one in the source �le with the only exception that occurrences where the currentconstraint would be removed if the rule applied are listed �rst. The motivation isthat this constellation is particularly e�cient to execute (section 3.1.2). Example:With a current constraint prime/1 and rules as listed in (example 1.1) we startwith the second head in rule 3, followed by the �rst head in rule 3.chr_crossref(prime(_), [3:2,3:1]).chr_crossref(candidates(_), [1:1,2:1]).Example 3.1 (Interpreter skeleton) Here is the part of the CHR interpreterthat implements the crude execution plan: For a given constraint C its occurrencesare determined via chr_crossref/2 and processed in sequence. The constraint issuspended once the agenda gets empty.chr(C) :-chr_crossref(C, Agenda), % Agenda = occurrences of Cchr(Agenda, C).chr([], C) :- suspend(C).chr([Current|Agenda], C) :-rule_parts(Current, ActiveHead, Partners, Guard, Body),(subsumes(ActiveHead, C),join(Partners, ...), % find partner constraintscheck_guard(Guard, ...) -> % commit... % update store,call(Body)... % maybe proceed with Agenda; chr(Agenda, C) % try next).If we have the set of rules available at compile time, partial evaluation of thispart of the interpreter is trivial. PE of chr_crossref/2 in particular reduces tosimple execution at compile time for a given constraint C. Unrolling the recursiondriven by the �rst argument in chr/2 yields the residual clauses3 (check example3.2). The predicate rule_parts/5 retrieves components like the active and partnerheads, the guard, and the body for a given rule plus active head indication. Withthis data, PE will specialize subsumes/2, join, and check_guard4.Example 3.2 (Primes, contd.) For the constraint candidates/1 we generatethe following residual code (edited for readability).% for each occurrence of the constraint as a head of a rule:% in rule candidates(1) <=> truecandidates(A) :-nonvar(A), % matchingA=1, % instructions!. % commit% in rule candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M)candidates(A) :-ground(A), % guardA>1, % evaluation!, % commitC is A-1, % body3Redundant term structure is removed by PE. For example, chr(candidates(A),...) :- ...becomes candidates(A) :- ...4De�nitions omitted due to space limit 5

prime(A), % bodycandidates(C). % body% if no rule applied, suspend the constraint on its variablescandidates(A) :-suspend(candidates(A)).3.1.2 Join computation, MatchingThe realization of the condition part of CHR consists of �nding sets of tuples in theconstraint store which match the heads of a rule, resembling the relational algebrajoin operation. In the binding environments of these tuple sets, the applicabilityof a rule is decided by evaluating its guard. The situation is quite similar to thematching phase in rule/production systems, where the earlier predominant state-preserving RETE match algorithm [For82] was redeemed by the superior state-lessTREAT algorithm [Mir87]. State preservation is even more of debatable utilityin the presence of guards. Thus, the CHR compilation draws upon a state-lessincremental matching mechanism.In the terminological framework of [LiOk87] CHR operate under the \immediateupdate view": at the time a rule commits, the constraints to be removed as indicatedby the rule type are gone. Constraints added by a rule's body are visible to thecurrently active rule(s) immediately. There are three prototypical cases [HoFr98c]:1. The active constraint is removed by the rule. Independent from the numberof partner constraints, the rule will apply at most once, and no further ruleswill have to be tried since the active constraint can no longer participate in ajoin.2. The active constraint is kept, some partner constraints are removed. Since theactive constraint is kept, one has to continue looking for applicable rules afterthe rule applied. However, since at least one partner constraint will have beenremoved, the same rule will only be applicable again with another constraintfrom the store that matches the same partner head.3. The active constraint and all partner constraints are kept. This is the mostexpensive case. The full crossproduct of constraints as indicated by the ruleheads has to be generated. Further rules will have to be tried since the activeconstraint is not removed.Example 3.3 (Primes, contd.) The residual code for prime/1 from our exampledemonstrates cases 1,2 from above. nd_init_iteration/4 nondeterministicallygenerates candidate constraints with the given functor and arity (prime/1) fromthe constraint store:% rule prime(I) \ prime(J) <=> J mod I =:= 0 | true.prime(J) :- % 2nd head in rule 3, case 1nd_init_iteration(prime, 1, _, I),ground(I),ground(J),J mod I =:= 0 , % J is a multiple of some prime in the store!. % commit, thus J not storedprime(I) :-prime_loop(I), % remove multiples of Isuspend(prime(I)). % storeprime_loop(I) :- % 1st head in rule 3, case 2nd_init_iteration(prime, 1, D, J),6

ground(I),ground(J),J mod I =:= 0, !, % J is a multiple of Iremove_constraint(D),% remove prime(J)prime_loop(I). % other multiples of I?prime_loop(_). % exhausted3.2 Specialized Partial EvaluationWe started our PE experiments on CHR with MIXtus [Sah91], a partial evaluatorfor full Prolog. The formulation of the interpreter had to be revised a couple oftimes to yield the desired residual code. Although MIXtus should be self-applicablein principle and thus allow for Futamura projections [Futa71], i.e. the automatedformal synthesis of a CHR compiler from the CHR interpreter, we manually deriveda compiler from the CHR interpreter. The main reasons are:� We need only a fraction of the MIXtus coverage of Prolog to translate CHR.� PE for full Prolog probably does not meet the performance requirements of aproduction compiler - even after auto-projection.� We would have had to teach MIXtus about the partial evaluation of sub-sumption, i.e. matching. Providing MIXtus with the corresponding predi-cates results in rather slow PE. Directly extending the MIXtus set of built-inpredicates exceeds our expertise on the non-documented internals of MIXtus.� We require quite detailed control over some aspects of the residual code forultimate performance. As a particular example consider the minimization ofargument motion: If a predicate calls another predicate, notably recursively,and some arguments are passed on, we want them at the same argument po-sitions in caller and callee to avoid logically irrelevant but runtime consumingregister copy instructions at the WAM level.4 ConclusionsThe overall e�ect of the PE approach is that we can now derive the compiler in asound fashion. This is to be seen in contrast to earlier versions of the compiler whichwere based on ad hoc DCG templates for the three prototypical cases from section3.1.2. Under the assumption that demonstration of correctness is su�cient andsimpler on the more compact representation of the CHR interpreter, PE exoneratesthe compiler generation from that burden. It is also quite re-assuring to see thatthe earlier templates are indeed roughly re-synthesized through PE.Among the plans for the future development of the CHR implementation isthe speci�cation of the constraint store as an abstract data type (ADT). The de-fault implementation would be the current one based on suspensions via attributedvariables. Through the provision of specialized implementations on a constraintby constraint basis, the user can exploit peculiarities of his/her application. Ifall the constraints of one type are ground for example, they make no reference tothe suspend/wake mechanism. In that case this part of the store is better keptin a relational data base, which quite likely provides indices to facilitate the joincomputations. 7

References[BCL88] Banatre J.-P., Coutant A. and Le Metayer D., A Parallel Machine for Multi-set Transformation and its Programming Style, Future Generation ComputerSystems 4:133-144, 1988.[CaWi95] Carlsson M., Widen J, Sicstus Prolog Users Manual, Release 3#0, SwedishInstitute of Computer Science, SICS/R-88/88007C, 1995.[For82] Forgy C.L, Rete: A Fast Algorithm for the Many Pattern/Many Object PatternMatch Problem, Arti�cial Intelligence, 19(1), 17-37, 1982.[FrBr95] T. Fr�uhwirth and P. Brisset, High-Level Implementations of Constraint Han-dling Rules, Technical Report ECRC-95-20, ECRC Munich, Germany, June1995.[FAM98] T. Fr�uhwirth, S. Abdennadher and H. Meuss, Con
uence and Semantics of Con-straint Simpli�cation Rules, Constraint Journal, Kluwer Academic Publishers,1998.[Fru91] T. Fr�uhwirth, Introducing Simpli�cation Rules, Technical Report ECRC-LP-63,ECRC Munich, Germany, October 1991.[Fru98] T. Fr�uhwirth, Theory and Practice of Constraint Handling Rules, Special Issueon Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.), Journalof Logic Programming, Vol 37(1-3), pp 95-138, October 1998.[Futa71] Y. Futamura, Partial Evaluation of Computation Process { An approach to aCompiler-Compiler, in: Systems, Computers, Controls, 2(5)45-50, 1971.[HoFr98] Ch. Holzbaur C. and Th. Fr�uhwirth, Constraint Handling Rules Reference Man-ual, for SICStus Prolog, �Osterreichisches Forschungsinstitut f�ur Arti�cial Intel-ligence, Vienna, Austria, TR-98-01, March 1998.[HoFr98b] Ch. Holzbaur and Th. Fr�uhwirth, Compiling Constraint Handling Rules,ERCIM/COMPULOG Workshop on Constraints, CWI, Amsterdam, TheNetherlands, 1998.[HoFr98c] Ch. Holzbaur C. and Th. Fr�uhwirth, Join Evaluation Schemata for ConstraintHandling Rules, 13th Workshop Logische Programmierung WLP'98, TU Vi-enna, Austria, September 1998.[JaMa94] J. Ja�ar and M. J. Maher, Constraint Logic Programming: A Survey, Journalof Logic Programming, 1994:19,20:503-581.[LiOk87] Lindholm T. O'Keefe R.A.: E�cient Implementation of a Defensible Semanticsfor Dynamic PROLOG Code, in Lassez J.L.(ed.), Proceedings of the FourthInternational Conference on Logic Programming - Volume 1, MIT Press, Cam-bridge, MA, pp.21-39, 1987.[Mah87] Maher M. J., Logic Semantics for a Class of Committed-Choice Programs,Fourth Intl Conf on Logic Programming, Melbourne, Australia, MIT Press,pp 858-876.[MaSt98] K. Marriott and P. J. Stuckey, Programming with Constraints, MIT Press, USA,March 1998.[Mir87] Miranker D.P.: TREAT: A Better Match Algorithm for AI Production Sys-tems, in Proceedings of the Sixth National Conference on Arti�cial Intelligence(AAAI- 87), Morgan Kaufmann, Los Altos, CA, pp.42-47, 1987.[Sah91] Sahlin D, An Automatic Partial Evaluator for Full Prolog, Swedish Institute ofComputer Science, 1991.[Sar93] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cambridge,1993.[Sha89] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACMComputing Surveys, 21(3):413-510, September 1989.[vHSD92] P. van Hentenryck, H. Simonis and M. Dincbas, Constraint Satisfaction UsingConstraint Logic Programming, Arti�cial Intelligence, 58(1-3):113{159, Decem-ber 1992. 8

