
The Munich Rent Advisor

Thom Frühwirth∗, Slim Abdennadher

Computer Science Department, University of Munich

Oettingenstr. 67, 80538 Munich, Germany

{Thom.Fruehwirth,Slim.Abdennadher}@informatik.uni-muenchen.de

{http://www.pst.informatik.uni-muenchen.de/∼fruehwir/

Abstract

The city government of Munich regularly publishes a booklet called
the “Mietspiegel” (MS). The MS basically contains a verbal description
of an expert system. It allows to calculate the estimated fair rent
for a flat. By hand, one may need a weekend to do so. With our
computerized version, “The Munich Rent Advisor”, the user just fills
in a form in a few minutes and the rent is calculated immediately. We
also extended the functionality and applicability of the MS so that the
user need not answer all questions of the form. The key to computing
with partial information was to use constraint technology. We rely
on the internet, and more specifically the World-Wide-Web (WWW),
to provide this service to a broad user–group, the citizens of Munich.
Several thousand people haved used our service during a trial phase
in winter 95/96. To process the answers from the questionnaire and
return its result, we wrote a simple stable special-purpose web-server
directly in ECLiPSe.

1 Introduction

The “Mietspiegel”(MS) [1] is published regularly by the City of Munich.
The MS allows to calculate the estimated fair rent for flats. The results of
these calculations are typically used in civil court cases. The calculations are
based on size, age and location of the flat and a series of detailed questions
about the flat and the house it is in. Some of these questions are hard to
answer. However, in order to be able to calculate the rent estimate by hand,
all questions must be answered.

∗Work was performed while at ECRC, Munich, Germany

1

Equipped with pencil, paper and calculator, one may need a weekend to
figure out the estimated rent. Usually, the calculation is performed by hand
in about half on hour by an expert from the City of Munich or from one of the
renter’s associations. The MS is derived from a statistical model compiled
from sample data using statistical methods such as regression analysis [8].
Due to the underlying statistical approach, there is the problem of inherent
imprecision which is ignored in the paper version of the MS.
In just two man weeks we developed a computerized prototype called

“The Munich Rent Advisor”, MRA, that brought the advising time down
to a few minutes that the user needs to fill in the form. Using constraints
the MRA can account for the statistical imprecision and also compute the
estimated rent even in the presence of partial answers.
Our approach was to first implement the tables, rules and formulas of the

“Mietspiegel” with high-level and declarative programming in ECLiPSe [5,
6], ECRC’s advanced constraint logic programming platform, as if the pro-
vided data was precise. Because of the declarativity of ECLiPSe it was easy
to express the contents of the MS. Then we added constraints to capture
the imprecision due to the statistical method and incompleteness in case the
user gives no or partial answers. Finally, we considered the formulas of the
rent calculation as constraints that refine the rent estimate by propagation
from the constrained input variables. While it would have been difficult
to model the required constraints in a given black-box constraints system,
it was relatively straightforward using constraint handling rules (CHRs). It
was enough to modify an existing finite domains solver written in CHRs that
is part of the CHR ECLiPSe library. The solver takes just a few pages of
code.
The Munich Rent Advisor (MRA) is accessible through the internet,

more specifically through World-Wide-Web (WWW). Using the internet,
there is no need for the user to acquire specific software. In about four man-
weeks, we wrote the web pages including a form in the Hyper Text Markup
Language (HTML). TheWWW-front-end is the graphical user-interface that
should be handable without experienced computer-knowledge. We chose not
to rely on advanced developments like Java applets or frames so that the
service is accessible for any internet user. To process the answers from the
questionnaire and return its result, we wrote a simple stable special-purpose
web-server directly in ECLiPSe using its C-sockets for internet communica-
tion.
The paper is organized as follows. The next section introduces the “Mi-

etspiegel”. Section 3 describes the World-Wide-Web Front End. Section 4
presents the Web–Server in ECLiPSe. Section 5 presents the Munich Rent

2

Advisor from a constraints point of view. Finally, we conclude with a sum-
mary and directions for future work.

2 The “Mietspiegel”

The “Mietspiegel” (MS) is published every other year by the housing group
of the department for social issues of the city government of Munich af-
ter negotiations with renter’s and landlord’s associations and lawyers. The
“Infratest Sozialforschung” in Munich together with the institute for hous-
ing and environment in Darmstadt conducted about 7000 interviews with
a 27 page questionnaire to obtain the sample data. About a third of the
interviews were useful to build the statistical model at the department of
statistics of the Ludwig-Maximilians University in Munich [8].
The scheme for calculating the rent estimate is roughly as follows:

Estimated Rent = Size ∗Basic Rent per Squaremeter

∗ (Sum of Deviations as Percentage + 100) ∗ 0, 01

∗ (Imprecision Deviation Percentage + 100) ∗ 0, 01

+ Fixed Costs (“Nebenkosten”)

The calculation starts with the average rent per squaremeter taken from
a table with about 200 entries. From this anti-monotonic function (the
bigger the flat, the less this cost) the average rent is calculated.
The deviations from the average rent are computed from the answers

regarding the size, location, features of the flat, as well as age and state
of the house. There are six yes-no questions about features of the house
concerning e.g. number of floors, optical impression, lift, etc., and 13 yes-no
questions about features of the flat concerning e.g. central heating, separate
shower, dish-washer, etc. The answers to these questions combined with the
age of the house yield the deviations from the average rent.
The main deviation comes from the age of the house, the number of

rooms in the flat and if it has a balcony. The overall deviation may be up
to ±60%. It is a non-monotonic function.
For the MS, the complex data-sets derived from the interview have been

reduced and simplified so that an average person could calculate the esti-
mated rent. As we have pointed out in the introduction, the MS is still too
complicated to be used by everybody. In addition, it ignores the inherent
imprecision of the statistical model. The imprecision is basically the stan-
dard deviation obtained in the statistical model. Therefore it is higher for

3

rare kinds of flats (very small, big or very old, new etc.). On average, the
imprecision deviation amounts to about ±10%.
Finally one has to add fixed costs (“Nebenkosten” in German), e.g.

taxes, fees for rubbish dump, house cleaning, cable TV and other service
charges. Part of them may be included in the rent, part of them not, part of
them may not apply. There are currently 16 items on the list of fixed costs.
Usually, the user will just ignore this section and thus a range from minimal
to maximal fixed costs will be added to the estimated rent. Detailed answers
(and thus detailed results) only make sense if the user wants to go to court
because he is overcharged with the fixed costs.

3 The World Wide Web Front End

In our computerized version, The Munich Rent Advisor (MRA), we rely
on the internet, and more specifically the World-Wide-Web (WWW). We
programmed in HTML version 3.0, because it is considered the current stan-
dard. We chose not to rely on advanced developments like Java applets or
frames so that the service is accessible for any internet user. In addition, we
prepared our web-pages so that they can also be viewed with browsers that
do not support HTML 3.0 (in particular, tables).
For users who are not familiar with the “Mietspiegel” (MS) we have

created several web pages of background information in German. This is
basically plain text with the possibility to go backward, upward and forward
in the text. Furthermore, there are the additional possibilities a hypertext
document provides: cross-references, links to the city of Munich and renter’s
associations and to the institutions involved in preparing the MS.
All relevant information for calculating an estimated rent will be col-

lected in the questionnaire. MRA users need to fill in only what they know
and what they care about. All answers are optional. There are only four
questions requiring numeric inputs, where it is possible to give a range
(editable fields) and one question about location requiring a search in a
list of districts (pull-down menu). The remaining questions are multiple
choices, where the only possible answers are Yes, No and, in addition, Don’t
know/care (buttons). Optional detailed questions are provided to calculate
the fixed costs where numeric input can be given. This form is divided in
four sections, basic questions, questions about the house, questions about the
flat itself (figure 1) and questions about the fixed costs of the flat. These
questions were sorted by importance of the answer to estimate the rent.
Questions at the beginning of a section have more influence on the result

4

Figure 1: Fragment of the Form

than questions at the end of a section.
To fit the form on one web-page we had to create a long document that

consequently needs a lot of scrolling. We have experimented with internal
anchors and links but users found this too complicated. Collecting data
from different pages in the server would have been too error-prone:

• The same page could be sent to the server more than once.

• Some forms might not be sent at all.

• The server has to wait for the missing forms and in this time has to
buffer the data.

5

One problem in implementing the form concerns the flat’s location.
There are sometimes small areas in the same district that are either ex-
tremely expensive or cheap. We tried to use a map just like in the paper
version of the MS. There were two problems with this approach. First, in
HTML coordinates being extracted out of a map have to be submitted right
after they have been taken. So clicking on the map would be possible only at
the end of the form as a replacement of the submit-button. But at the end of
the document the map is out of context. Second, sending graphical data for
a detailed map over a normal connection in the WWW is not acceptable for
any user. Obviously, the use of a database that includes street names and
numbers with the price level of the rent would be the best solution. Since
such database was not available when we implemented the first version of
the MRA, we ask only for the main living areas (districts) and otherwise rely
on computation with imprecise data using constraints to capture extremes.

4 ECLiPSe as Web-Server

To process the answers from the questionnaire and return its result, we
wrote a simple stable special-purpose web-server directly in ECLiPSe. This
is opposed to the standard approach where for each user request a script is
executed (usually written in Perl) via the CGI interface (or using the Unix
inetd service). Since starting up ECLiPSe (and ECLiPSe saved states) takes
up to a second and considerable memory, it would not have been feasible
to start a new ECLiPSe process with each user request. We also did not
want to struggle with CGI scripts - but this problem seems to be solved in
the meantime [7]. It was more natural that ECLiPSe is constantly running
and listening to the port waiting for the next user request. Moreover, this
avoids the overhead of using standard Perl-scripts to communicate the data
between a standard web server and the ECLiPSe process. The disadvantage
is that the server is not concurrent (multi-user). However, since it takes
considerably less than a second to serve a user request, we did not encounter
problems in practice. We think that the server could be made concurrent
(ab)using ECLiPSe ’s or-parallelism similar to [11].
ECLiPSe 3.5.x offers a number of built-in predicates for TCP/IP based

communication on the internet. The complete socket-library (Internet Pro-
tocol Suite) as used under SUN-OS is available. Therefore the basic code of
a web-server in ECLiPSe is just:

% top level

6

go :-

writeln(’Starting MRA Server’),

connect(socket),

loop(socket),

close(socket).

% connecting to I/O stream, standard way

connect(Socket) :-

socket(internet,stream,Socket),

bind(Socket, hostname/portnumber)

listen(Socket,1).

% get user requests

loop(S) :-

accept(S,_,IOStream), % get the request

process(IOStream), % process the request

close(IOStream), % done - served the request

loop(S). % go for next request

When the user presses the submit button of the form, the connection will
be established (accept) and the data will be sent to the server. During
calculation the connection is in stand-by mode until the result is sent back on
the same channel (IOStream). For calculation, the data is stored temporarily
in main memory during the calculation. No personal information is stored.
The MRA service is anonymous.
The MRA server only deals with the input posted from the form, all

other functionality (e.g. hyperlinks) is provided by a standard server. A
general server is available in the recently introduced ECLiPSe http library
[4]. However, for real life purposes, this server seems not stable enough: It
can hang because it does not use timeouts, and it can fail with browsers
because the grammar used for parsing is too strict.
The processing of a user request amounts to the following code:

process(IOStream) :-

readin_request(IOStream,RequestString),

parse(RequestString,InputVarList),

compute(InputVarList,OutputVarList)

->

sendback_result(IOStream,OutputVarList)

7

;

sendback_error(IOStream).

In readin request the data is received as an HTML document page
(the RequestString) consisting of a header and a body (similar to an e-
mail message):

POST / HTTP/1.0

Referer: http://www.ecrc.de/staff/thom/Miet/HTML_SEITEN/miete2.html

Connection: Keep-Alive

...

Content-type: application/x-www-form-urlencoded

Content-length: 654

Language=English&M2_min=22&M2_max=160&ZI_min=1&ZI_max=9&

BJ_min=1800&BJ_max=1992&Bezirk=Schwabing&

Hinter_Haus=%3F&Guter_Haus_Eindruck=%3F&Renovierung=%3F&

...

nk-antenne=0&nk-kabel=8%2C75&nk-kabel=0&nk-summe=350%2C00

Bezirk is German for district, Renovierung means renovation. The mes-
sage body contains the answers of the user as “fieldname=value” entries
separated by “&”.
The difficulty in parsing (predicate parse) is that different browsers may

use different syntactic conventions and different encodings for characters
(typically codes start with “%” followed by a hexadecimal ASCII code). The
fieldnames of the form are associated with Prolog variables which will be
used to constrain the input variables:

Language=’English’, M2_min=22, M2_max=160,...

Bezirk=’Schwabing’,...

Renovierung=’?’,...

In retrospect, using a ground representation (e.g. global variables) or
the ECLiPSe library “structures” that provides structures with fieldnames
would have been easier than passing around a long list of variables.
Then with the predicate compute the estimated rent is computed from

the constrained input variables (see next section). This takes less than a
second. This means that the Web user gets the reply as fast as loading a
medium-sized text-only web page and therefore the pure calculation time is
neglectable.

8

Finally, from the OutputVarList containing the constrained output vari-
ables (the main one being the estimated rent), a web page is assembled and
sent back to the user (sendback result) (figure 2).

Figure 2: Result of a Sample Query

If any failure occurs during the processing (connection times out, parsing
not possible due to wrong user input in editable fields, computation unex-
pectedly fails), a generic error message with some hints about typical errors
is sent back to the user (sendback error). Of course, this primitive error
handling is only sufficient for a prototype.

9

5 Rent Advisor Constraints

From a constraint logic programming point of view [10], the MRA appli-
cation is quite atypical: The computation proceeds deterministically from
constrained input variables (the user data) to constrained output variables
(the rent estimate), there is only local search and no backpropagation nec-
essary for the constraints. The reason for this is that the original MS has
already solved the problem: It is a complicated function that computes the
rent estimate from the user data. When we added constraints to capture
imprecise and partial information, this did not change: There is no need
for NP-hard constraint solving, only for constraint propagation. Clearly the
answer we expect is the smallest interval covering all possible rents, not an
enumeration of all possible rents by backtracking.
The MRA implementation is characterized by

• Interval constraints over non-linear equations

• Constraint database (i.e. tables involving interval constraints)

While it would have been difficult to implement the required constraints with
a given, built-in black-box constraints system, it was relatively straight-
forward using constraint handling rules (CHRs). It sufficed to modify an
existing finite domains solver written in CHRs that is part of the CHR
ECLiPSe library. The solver takes just a few pages of code as will be exam-
plified in the following.
Constraint handling rules (CHRs) [6, 9] are a high-level language exten-

sion to write constraint systems. Basically, CHRs are multi-headed guarded
rules. CHRs support rapid prototyping of application-oriented constraint
systems by providing executable specifications and efficient implementations
due to an optimizing compiler. They allow for specialization, modification
and combination of constraint solvers.
Simplification CHRs rewrite constraints to simpler constraints while pre-

serving logical equivalence (e.g. X>Y,Y>X <=> false). Propagation CHRs
add new constraints which are logically redundant but may cause further
simplification (e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying the rules in-
crementally solves constraints (e.g. A>B,B>C,C>A leads to false). With
multiple heads and propagation rules, CHRs provide two features which are
essential for non-trivial constraint handling. Due to space limitations, we
cannot give a formal account of syntax and semantics of CHRs in this paper.

10

5.1 Interval constraints over non-linear equations

In the MRA, dealing with imprecise numerical information involves arith-
metic computations with intervals. We modified an existing finite domain
solver in CHRs, domain, that works with arbitrary ground terms including
integers and reals, so that it can deal with interval constraints over non-
linear equations. We first specialized the solver to interval constraints of the
form

X::Min:Max

meaning that X is between Min and Max, which are arbitrary numbers
(integers, rationals or floating points). We removed the handling of enumer-
ation domains.
All variables are initialized to their allowed range with such an inter-

val constraint (e.g. the flats covered by the MS are between 22 and 160
squaremeters, i.e. Size::22:160. The fieldname variables are used to con-
strain the input variables of the MS:

FlatSize::M2_min:M2_max

Boolean truth values are represented by 0 and 1. Boolean variables are
initialized as in e.g. Renovierung::0:1. Since we are only interested in
the minimal and maximal estimated rent, the approximation of the two
boolean values 0 and 1 by the whole interval from 0 : 1 in case the value
is not known does not result in a loss of precision. Using an enumeration
domain [0,1] would have been cleaner, but doubled the coding effort for
the application-specific constraints.
Furthermore the original CHR solver provides simple inequations and

equations (X=Y, X<Y, X=<Y,...) between two variables or numbers.
The specialized solver contains CHRs like:

X::Min:Min <=> X=Min.

X::Min:Max <=> Min>Max | fail.

X::Min:Max <=> number(X) | Min=<X,X=<Max.

...

Min2 =< X, X::Min1:Max <=> number(Min2) |

maximum(Min1,Min2,Min), X::Min:Max.

...

X =< Y, Y::Min:Max ==> var(X) | X =< Max.

X >= Y, Y::Min:Max ==> var(X) | X >= Min.

11

CHRs of the form Head <=> Guard | Body (where the guard is optional)
are used to simplify the head constraints into the body, provided the guard
is satisfied. Similarly, CHRs of the form Head ==> Guard | Body are used
to propagate from the head constraints by adding the body. For example,
from the constraints A::1:2, B::2:3, A>=B we get A=2,B=2 by applying
some of the above CHRs.
Then we extended this simple solver by allowing linear and non-linear

equations reducing to the normal form
C0+C1*X1+C2*X2+...+Cn*Xn = Y and C*X1*X2*...*Xn = Y
where the Ci and C are numbers and the Xi and Y are different variables

and n>=0. These equations and inequations are needed to express the formu-
las appearing in the MS. In the implementation, C0+C1*X1+C2*X2+...+Cn*Xn
= Y is represented by sum(C0:C0, [C1*X1,C2*X2,...,Cn*Xn], Y)

sum(Min:Max, [], Result) <=> Result::Min:Max.

sum(Min:Max, [C*V|Rest], Result) <=> number(V) |

NewMin is Min + C*V,

NewMax is Max + C*V,

sum(NewMin:NewMax, Rest, Result).

V::VMin:VMax, sum(Min:Max, [C*V|Rest], Result) <=>

NewMin is Min + min(C*VMin,C*VMax),

NewMax is Max + max(C*VMin,C*VMax),

sum(NewMin:NewMax, Rest, Result),

V::VMin:VMax.

Since we do not need backpropagation in our application (as all the formulas
compute from the input variables to the output variables which are initially
unconstrained), these three rules suffice. The implementation for non-linear
equations is as straightforward.
We could presumably have used CLP(BNR) [2] or Newton [3] to express

the required constraints. However it would have been quite difficult to tailor
the amount and direction of constraint propagation to the needs of the
application at hand.

5.2 Constraint Database for Tables

The Mietspiegel contains several tables that relate features of the flat to
percentual changes of the estimated rent. For example, the rent depends
on the age of the flat and its number of rooms. The table to describe this

12

function as found in the MS is:

Year 1 Room 2 or 3 Rooms ≥ 4 Rooms

...
1966-1977 -3.5 -2.0 -3.0
1978-1983 2.0 10.0 3.0
1984-1986 6.0 18.0 7.0
...

The implementation with interval constraints uses facts of the form
table1(YearInterval,RoomsInterval,Percentage). This shorthandmain-
tains readability and saves typing work.

...

table1(1966:1977, 1:1, -3.5).

table1(1966:1977, 2:3, -2.0).

table1(1966:1977, 4:99, -3.0).

table1(1978:1983, 1:1, 2.0).

table1(1978:1983, 2:3, 10.0).

table1(1978:1983, 4:99, 3.0).

table1(1984:1986, 1:1, 6.0).

table1(1984:1986, 2:3, 18.0).

table1(1984:1986, 4:99, 7.0).

...

These table facts are translated into the corresponding rules of the form

table1(Year,Rooms,Percentage) :-

Year::YearInterval, Rooms::RoomsInterval

at compile time by macro expansion, another useful feature of logic pro-
gramming systems. Overall, the tables of the MS result in several hundred
rules. For example, the query
Year=1980, Rooms=2, table1(Year,Rooms,Percentage)

yields Percentage=10.0.
When we use the tables, we are only interested in the smallest interval

that contains all the answers, not in all answers per se. The computation
is thus deterministic, no choices need to be explored. This means that we
have to collect all the answers and compute minima and maxima to find the
smallest interval that contains all answers. Instead of a query

13

table1(Year,Rooms,Percentage)

where we are interested in the interval for Percentage, we use the built-
in predicate setof(Variable,Query,List) that collects all bindings of the
variable in all the answers to the query in an ordered list.

setof(Percentage,Year^Rooms^table1(Year,Rooms,Percentage),List),

first(List,Min),

last(List,Max),

Percentage::Min:Max.

For example, the above code with Year::1980:1985, Rooms::1:4 yields
Percentage::2.0:18.0. Note that this code also works if no or just one
answer is produced.
A similar procedure was used for all tables. The running time is sat-

isfactory for tables with a few hundred constrained tuples. If the function
computed from a table is (anti-)monotonic, the code will be specialized,
since then only reasoning on the bounds of the input variables is necessary.
The web-page sent back to the user containing the result is produced by

a series of printf calls filling in the actual values or ranges of the variables
into a skeleton, e.g. for the header:

printf(IOStream,

"<HTML><HEAD><TITLE>%w</TITLE></HEAD><BODY><H1>%w</H1>%b",

[Title,Headline])

The w-option puts the next element of the list in the third argument into
the text written in the second argument. The b-option flushes the output.
The tables are produced line by line using a recursion.

6 Conclusions

The Munich Rent Advisor represents a class of applications is rather atypical
for constraint logic programming, since it is not concerned with the NP-hard
constraint-pruned search for a solution, but executing an existing calculation
(i.e. a solved problem) in the presence of partial information. Nevertheless
constraint logic programming can deal with imprecise knowledge and partial
information in an elegant, correct and efficient way, provided it is possible
to adopt the constraints to the application.
It took about 4 man weeks to write the web user interface, only 2 weeks

to write the expert system code and 1 week to debug it. We think that the

14

coding would have dominated the implementation effort if a conventional
programming language had been used.
The MRA user typically needs only a few minutes to fill in the question-

naire. The calculations of the MRA are performed within a second. This
means that the Web user gets the reply as fast as loading a medium-sized
text-only web page. Several thousand people haved used our service during
a trial phase in winter 95/96.
Our very high-level state-of-the-art approach also means that the pro-

gram can be easily maintained and modified. This is crucial, since every
city and every new version of the ”Mietspiegel” comes with different tables
and rules.
One direction for future work is to integrate integrity constraints (e.g. if

a house is built after 1949, its flats have a bathroom) directly derived from
the statistical raw data of the Mietspiegel.
Our application identified the need for lightweight CLP implementa-

tions that can run as agents or Java-like applets over the internet. We think
that our approach can be applied to many applications where one wants
to reason with partial information (e.g. meteorology, mechanics, electri-
cal engineering) without compromising correctness as is the case in ad-hoc
“fuzzification” approaches.

Acknowledgements. We would like to thank Peter Blenninger who
implemented a first prototype of the MRA and ECRC that he could work
there. We are also grateful to the City of Munich for letting us use their
Mietspiegel data and Norbert Eisinger for proof-reading.

References

[1] Mietspiegel für München ’94 (in german). Sozialreferat der Stadt
München - Amt für Wohnungswesen et al., City of Munich, Germany,
July 1994.

[2] F. Benhamou. Interval constraint logic programming. In A. Podelski,
editor, Constraint Programming: Basics and Trends. LNCS 910, March
1995.

[3] F. Benhamou, D. MacAllester, and P. Van Hentenryck.
Clp(intervals) revisited. In ILPS’94. MIT Press, 1994.
http://www.cs.brown.edu/publications/techreports/reports/CS-
94-18.html.

15

[4] Ph. Bonnet, S. Bressan, L. Leth, and B. Thomsen. To-
wards ECLiPSe agents on the internet. In Paul Ta-
rau, Andrew Davison, Koen De Bosschere, and Manuel
Hermenegildo, editors, 1st Workshop on Logic Programming
Tools for INTERNET Applications, JICSLP’96, Bonn, Septem-
ber 1996. http://www.ecrc.de/eclipse/html/software.html,
http://clement.info.umoncton.ca/∼lpnet/lpnet2.html.

[5] P. Brisset, T. Frühwirth, P. Lim, M. Meier, T. Le Provost, J. Schimpf,
and M. Wallace. ECLiPSe 3.5 User Manual. ECRC Munich Germany,
December 1995. http://www.ecrc.de/eclipse/eclipse.html.

[6] P. Brisset, T. Frühwirth, P. Lim, M. Meier, T. Le Provost,
J. Schimpf, and M. Wallace. ECLiPSe 3.5 Extensions
User Manual. ECRC Munich Germany, December 1995.
http://www.ecrc.de/eclipse/html/extroot/extroot.html.

[7] D. Cabeza, M. Hermenegildo, and S. Varma. The pillow/ciao li-
brary for internet/www programming using computational logic sys-
tems. In Paul Tarau, Andrew Davison, Koen De Bosschere, and
Manuel Hermenegildo, editors, 1st Workshop on Logic Programming
Tools for INTERNET Applications, JICSLP’96, Bonn, September 1996.
http://clement.info.umoncton.ca/∼lpnet/lpnet3.html.

[8] R. Alles et al. Gutachten zur Erstellung des Mietspiegels für München
’94 (in german). Sozialreferat der Stadt München - Amt für Woh-
nungswesen et. al, City of Munich, Germany, 1994.

[9] T. Frühwirth. Constraint handling rules. In A. Podelski, edi-
tor, Constraint Programming: Basics and Trends. LNCS 910, March
1995. http://www.pst.informatik.uni-muenchen.de/∼fruehwir/chr-
intro.html.

[10] T. Frühwirth, A. Herold, V. Küchenhoff, T. Le Provost, P. Lim, E. Mon-
froy, and M. Wallace. Constraint logic programming - an informal in-
troduction. In G. Comyn et al., editor, Logic Programming in Action.
Springer LNCS 636, September 1992. http://www.pst.informatik.uni-
muenchen.de/∼fruehwir/node7.html.

[11] P. Szeredi, K. Molnar, and R. Scott. Serving multiple html
clients from a prolog application. In Paul Tarau, Andrew

16

Davison, Koen De Bosschere, and Manuel Hermenegildo, ed-
itors, 1st Workshop on Logic Programming Tools for IN-
TERNET Applications, JICSLP’96, Bonn, September 1996.
http://clement.info.umoncton.ca/∼lpnet/lpnet9.html.

17

