
Entailment Simpli�
ation and ConstraintConstru
tors for User-De�ned Constraints�Thom Fr�uhwirthECRC, Arabellastrasse 17, D-8000 Muni
h 81, Germanythom�e
r
.deJanuary 10, 1995Abstra
t. We investigate how to implement entailment simpli�
ation and,more generally, 
onstraint 
onstru
tors for user-de�ned 
onstraints. Entailmentsimpli�
ation was introdu
ed, for feature terms, by Ait-Ka
i, Podelski and Smolka,and 
onstraint 
onstru
tors in
lude the impli
ation operator (Saraswat), the 
ar-dinality operator (Van Hentenry
k), the 
hoi
e statements of AKL (Haridi et al.)and the 
onditional of OZ (Smolka). We assume that user-de�ned 
onstraintsare de�ned by 
onstraint handlers written in a CLP language extended with 
on-straint handling rules (Fruehwirth). The idea is to get entailment simpli�
ationfor free from given 
onstraint handlers by extending the operational semanti
sof 
onstraint handling rules and to implement 
onstraint 
onstru
tors with 
on-straint handling rules. We also propose a generi
 
onstraint 
onstru
tor 
alledguarded disjun
tion.1 Introdu
tionConstraint handling rules (CHRs) [Fru92℄ are a language extension providing theuser (appli
ation-programmer) with a de
larative and 
exible means to introdu
euser-de�ned 
onstraints (in addition to built-in 
onstraints of the underlying lan-guage). CHRs are essentially multi-headed guarded rules. CHRs de�ne simpli�-
ation of and propagation over user-de�ned 
onstraints. Simpli�
ation repla
es
onjun
tions of 
onstraints by simpler ones while preserving logi
al equivalen
e.Propagation adds new 
onstraints whi
h are logi
ally redundant (but may 
ausefurther simpli�
ation). When repeatedly applied the 
onstraints be
ome simpli-�ed and may be
ome solved. In this way, a set of CHRs de�nes a 
onstrainthandler. If a 
onstraint handler always solves the 
onstraints, we 
all it a 
on-straint solver.�Part of this work is supported by ESPRIT Proje
t 5291 CHIC1



User-de�ned 
onstraint handling is a very a
tive area of resear
h. CHIPwas the �rst 
onstraint logi
 programming language to introdu
e the ne
essary
onstru
ts (demons, forward rules, 
onditionals) [D*88℄. These various 
onstru
tshave been generalised into CHRs. Constraints are seen as a 
omputationallyeÆ
ient in
arnation of the predi
ates de�ned in the underlying host language.CHRs have a logi
al reading and thus preserve the de
larative semanti
s of theunderlying logi
 programming language they extend. Thus we 
an reason about
orre
tness, termination and 
on
uen
e of a set of CHRs. The representation of
onstraints in the same formalism as the rest of the program greatly fa
ilitates theprototyping, extension, spe
ialization and 
ombination of 
onstraint handlers.Constraint entailment was introdu
ed to give de
larative semanti
s to [Mah87℄and to syn
hronise 
on
urrent exe
ution of guarded rules in 
on
urrent logi
 pro-gramming [Sha89℄. At the same time it was used in CLP languages to allowfor more powerful programs [D*88, ?℄. The problem is to 
he
k if a 
onjun
tionof 
onstraints (the 
ontext) implies (entails) another 
onjun
tion of 
onstraints(the lo
al 
onstraint). Like 
onstraint solving in traditional CLP languages, en-tailment 
he
king should be in
remental. This idea seemed to appear �rst in[APS92℄, where the in
remental entailment 
he
king of feature term 
onstraintsis 
alled entailment simpli�
ation.Constraint 
onstru
tors we 
all operators over 
onstraints espe
ially designedto enable the user to build 
omplex 
onstraints from simpler ones. This idea hasbeen �rst formulated by Van Hentenry
k, who also proposed one su
h 
onstru
-tor, the 
ardinality operator [VH91℄. Constraint 
onstru
tors are often based onlogi
al 
onne
tives (e.g. 
onditional) or 
an have the 
avor of meta-predi
ates(e.g. 
ardinality).In this work we show that already existing 
onstraint handlers written in aCLP language with CHRs
an be used to get entailment simpli�
ation for free.Then we 
onsider some 
onstraint 
onstru
tors proposed in the literature, whi
hall rely on 
onstraint entailment as the basi
 operation, and investigate how they
an be implemented by using CHRs with entailment simpli�
ation.2 Some Constraint Constru
torsLet C be a 
ontext (the 
onjun
tion of 
onstraints in the 
onstraint store), 
i's belo
al 
onjun
tions of 
onstraints, and ai's,b be non-
onstraint atoms. Let > standfor a 
ommitment operator, whi
h is either ! for don't 
are nondeterminism asin 
ommitted-
hoi
e languages or ) for don't know nondeterminism a la Prolog(adapting notation of [?℄).Various 
onditionals have been proposed in the literature. The impli
ation
onstraint 
onstru
tor proposed by [?℄, written 
 =) a, exe
utes a as soon as 
is entailed by the 
ontext C. If :
 is entailed, then the 
onstru
tor simply su
-
eeds, otherwise the 
onstru
tor delays (
ounders). The if-then-else 
onstru
tor2



of CHIP [D*88℄, written if 
 then a else b, behaves like the impli
ation 
on-stru
tor, but in addition exe
utes b if :
 is entailed. The 
onditional of SmolkasOZ language generalizes this to if 
1 then a1 [℄ ... [℄ 
n then an elseb. We propose here a generi
 
onstraint 
onstru
tor, 
alled guarded disjun
tion,written 
1 > a1; 
2 > a2; : : : ; 
n > an. If 
i is entailed, then 
i > ai is removedfrom the guarded disjun
tion and the 
orresponding ai is exe
uted. If > is !,the residual guarded disjun
tion su

eeds. If > is ), it is re-a
tivated on ba
k-tra
king if ai failed. If a :
i is entailed, the disjun
t 
i > ai is simply removed.A guarded disjun
tion with one disjun
t only 
 ) a is repla
ed by a 
onjun
-tion 
 ^ a. An empty guarded disjun
tion 
orresponds to failure. Otherwisethe 
onstru
tor delays. Guarded disjun
tion is useful for exe
uting 
on
urrent
ommitted-
hoi
e LP languages as well as CLP languages, as the 
ompletion of apredi
ate de�ned by 
lauses p(X1; : : : ; Xm) 
i > ai is the guarded disjun
tionp(X1; : : : ; Xm)  
1 > a1; 
2 > a2; : : : ; 
n > an, whi
h 
an be unfolded deter-ministi
ally. After proposing guarded disjun
tion, we heard of Oz, whi
h relieson similar ideas using two 
onstru
tors, the above-mentioned 
onditional and adeterministi
 disjun
tion.In [VH91℄, a powerful 
onstru
tor, the 
ardinality operator is des
ribed, writ-ten #(l,u,[
1; : : : ; 
n℄) (l � u) whi
h su

eeds if between l and u lo
al 
onstraints
i are entailed by the 
ontext. If a 
i is entailed, the bounds l and u are de
re-mented by one and the 
i is dropped from the list. If a :
i is entailed, the 
iis dropped from the list. If (l � 0; n � u) then the 
onstru
tor su

eeds. If(n = l) then all 
i must be entailed, hen
e we 
an repla
e the 
onstru
tor by the
onjun
tion of the 
i. Similarly, if (u = 0), we repla
e the 
onstru
tor by the
onjun
tion of all negated 
i. Otherwise the 
onstru
tor delays.3 ImplementationTo be able to implement these 
onstru
tors for user-de�ned 
onstraints, we �rstneed entailment simpli�
ation for a 
ontext C and a given set of 
i's.Entailment Simpli�
ation. To represent the 
i's, we need either lo
al 
on-straint stores or to index the lo
al 
onstraints (e.g. by prepro
essing them tohave an additional argument). We 
hoose the latter alternative, be
ause it 
anbe a

omplished with a simple extension of the 
urrent prototype interpreter for
onstraint handling rules. As said earlier, we want to reuse already existing 
on-straint handlers de�ned with CHRs. Note that propagation CHRs already de�nean entailment relation and the simpli�
ation CHRs de�ne an equivalen
e relation.The idea is to apply CHRs to the 
ontext and the lo
al 
onstraints whiletaking 
are of 
orre
tness. In a multi-headed CHR if all the heads mat
h atomi

onstraints from the 
ontext (resp. from one lo
al 
onstraint), we add the body
onstraint of the CHR to the 
ontext (resp. lo
al 
onstraint by indexing it) as3



usual. Clearly the heads should not mat
h atomi
 
onstraints from di�erent lo
al
onstraints. If the heads mat
h mat
h atomi
 
onstraints from the 
ontext andfrom one lo
al 
onstraint, we don't tou
h the 
ontext - we do not remove any
ontext 
onstraint and we add the body 
onstraint to lo
al 
onstraint.Assume now we simplify a lo
al 
onstraint 
i. When is it entailed? Clearly,if 
i has been simpli�ed to truei, it is entailed. Analogously, if the simpli�
ationresults in falsei, :
i is entailed. Moreover, a lo
al 
onstraint 
i is also entailedif all of its atomi
 
onstraints are also present in the 
ontext. In this 
ase, we
an simplify the lo
al 
onstraint to truei.Taking indexed 
onstraints into a

ount as des
ribed provides us with entail-ment simpli�
ation on
e and for all, without having to write 
onstraint-spe
i�
entailment 
ode.Example. We illustrate entailment simpli�
ation with a user-de�ned 
on-straint �.(1a) X�Y <=> X=Y | true. % reflexivity(1b) X�Y,Y�X <=> X=Y. % identity(1
) X�Y,Y�Z ==> X�Z. % transitivitySimpli�
ation CHR (1a) states that X�X is logi
ally true. Hen
e, whenever wesee the goal X�X we 
an simplify it to true. Similarly, simpli�
ation CHR (1b)means that if we �nd X�Y as well as Y�X in the 
urrent goal, we 
an repla
e it bythe logi
ally equivalent X=Y. Propagation CHR (1
) states that the 
onjun
tionX�Y,Y�Z implies X�Z.The following example illustrates how the 
onstraint handler works::- A�B,C�A,B�C.% C�A,A�B propagates C�B by 1
.% C�B,B�C simplifies to B=C by 1b.% C�A,A�B simplifies to A=B by 1b as C=B.A=B,B=C.Now examples for entailment simpli�
ation (lo
al 
onstraints are indexed)::- A�B,B�A,B=C, A�1C, A=2B.% A�B,B�A simplifies to A=B by 1b.% A�1C simplifies to true1 by 1a as A=B,B=C.% A=2B simplifies to true2 as A=B is in the 
ontext.A=B,B=C,true1,true2.:- A�B, C�1A, B�C.% C�1A,A�B propagates C�1B by 1
.% C�1B,B�C simplifies to B=1C by 1b.% C�1A,A�B simplifies to A=1B by 1b as C=B.% A�B,B�C propagates A�C by 1
.A�B,B�C,A�C, A=1B,B=1C.Constraint Constru
tors. Whenever a 
i o

uring to a 
onstraint 
onstru
toris simpli�ed to truei or faili, the 
onstraint 
onstru
tor rea
ts.4



As an example, we implement the 
ardinality operator.% Initialise - Call Indexed Lo
al Constraints#(L,U,Constraints) <=> length(Constraints,N), L=<U,0=<U,L=<N,
all uniquely indexed 
onstraints(Constraints,Indi
es),#(L,U,N,Indi
es).% Spe
ial Cases of Bounds#(L,U,N,IL) <=> L=<0,N=<U | true.#(L,U,N,IL) <=> N=<L | N=L,
all positive(IL).#(L,U,N,IL) <=> U=<0 | U=0,
all negative(IL).% Lo
al Constraint Done#(L,U,N,IL),true(I) <=> delete(I,IL,IL1),#(L-1,U-1,N-1,IL1).#(L,U,N,IL),false(I) <=> delete(I,IL,IL1),#(L,U,N-1,IL1).The �rst propagation CHR adds a 
onjun
tion of the indexed 
onstraints,the other simpli�
ation CHRs de�ne the behaviour of the 
onstraint 
onstru
tora

ording to its de�nition.Referen
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