
Entailment Simpli�ation and ConstraintConstrutors for User-De�ned Constraints�Thom Fr�uhwirthECRC, Arabellastrasse 17, D-8000 Munih 81, Germanythom�er.deJanuary 10, 1995Abstrat. We investigate how to implement entailment simpli�ation and,more generally, onstraint onstrutors for user-de�ned onstraints. Entailmentsimpli�ation was introdued, for feature terms, by Ait-Kai, Podelski and Smolka,and onstraint onstrutors inlude the impliation operator (Saraswat), the ar-dinality operator (Van Hentenryk), the hoie statements of AKL (Haridi et al.)and the onditional of OZ (Smolka). We assume that user-de�ned onstraintsare de�ned by onstraint handlers written in a CLP language extended with on-straint handling rules (Fruehwirth). The idea is to get entailment simpli�ationfor free from given onstraint handlers by extending the operational semantisof onstraint handling rules and to implement onstraint onstrutors with on-straint handling rules. We also propose a generi onstraint onstrutor alledguarded disjuntion.1 IntrodutionConstraint handling rules (CHRs) [Fru92℄ are a language extension providing theuser (appliation-programmer) with a delarative and exible means to introdueuser-de�ned onstraints (in addition to built-in onstraints of the underlying lan-guage). CHRs are essentially multi-headed guarded rules. CHRs de�ne simpli�-ation of and propagation over user-de�ned onstraints. Simpli�ation replaesonjuntions of onstraints by simpler ones while preserving logial equivalene.Propagation adds new onstraints whih are logially redundant (but may ausefurther simpli�ation). When repeatedly applied the onstraints beome simpli-�ed and may beome solved. In this way, a set of CHRs de�nes a onstrainthandler. If a onstraint handler always solves the onstraints, we all it a on-straint solver.�Part of this work is supported by ESPRIT Projet 5291 CHIC1



User-de�ned onstraint handling is a very ative area of researh. CHIPwas the �rst onstraint logi programming language to introdue the neessaryonstruts (demons, forward rules, onditionals) [D*88℄. These various onstrutshave been generalised into CHRs. Constraints are seen as a omputationallyeÆient inarnation of the prediates de�ned in the underlying host language.CHRs have a logial reading and thus preserve the delarative semantis of theunderlying logi programming language they extend. Thus we an reason aboutorretness, termination and onuene of a set of CHRs. The representation ofonstraints in the same formalism as the rest of the program greatly failitates theprototyping, extension, speialization and ombination of onstraint handlers.Constraint entailment was introdued to give delarative semantis to [Mah87℄and to synhronise onurrent exeution of guarded rules in onurrent logi pro-gramming [Sha89℄. At the same time it was used in CLP languages to allowfor more powerful programs [D*88, ?℄. The problem is to hek if a onjuntionof onstraints (the ontext) implies (entails) another onjuntion of onstraints(the loal onstraint). Like onstraint solving in traditional CLP languages, en-tailment heking should be inremental. This idea seemed to appear �rst in[APS92℄, where the inremental entailment heking of feature term onstraintsis alled entailment simpli�ation.Constraint onstrutors we all operators over onstraints espeially designedto enable the user to build omplex onstraints from simpler ones. This idea hasbeen �rst formulated by Van Hentenryk, who also proposed one suh onstru-tor, the ardinality operator [VH91℄. Constraint onstrutors are often based onlogial onnetives (e.g. onditional) or an have the avor of meta-prediates(e.g. ardinality).In this work we show that already existing onstraint handlers written in aCLP language with CHRsan be used to get entailment simpli�ation for free.Then we onsider some onstraint onstrutors proposed in the literature, whihall rely on onstraint entailment as the basi operation, and investigate how theyan be implemented by using CHRs with entailment simpli�ation.2 Some Constraint ConstrutorsLet C be a ontext (the onjuntion of onstraints in the onstraint store), i's beloal onjuntions of onstraints, and ai's,b be non-onstraint atoms. Let > standfor a ommitment operator, whih is either ! for don't are nondeterminism asin ommitted-hoie languages or ) for don't know nondeterminism a la Prolog(adapting notation of [?℄).Various onditionals have been proposed in the literature. The impliationonstraint onstrutor proposed by [?℄, written  =) a, exeutes a as soon as is entailed by the ontext C. If : is entailed, then the onstrutor simply su-eeds, otherwise the onstrutor delays (ounders). The if-then-else onstrutor2



of CHIP [D*88℄, written if  then a else b, behaves like the impliation on-strutor, but in addition exeutes b if : is entailed. The onditional of SmolkasOZ language generalizes this to if 1 then a1 [℄ ... [℄ n then an elseb. We propose here a generi onstraint onstrutor, alled guarded disjuntion,written 1 > a1; 2 > a2; : : : ; n > an. If i is entailed, then i > ai is removedfrom the guarded disjuntion and the orresponding ai is exeuted. If > is !,the residual guarded disjuntion sueeds. If > is ), it is re-ativated on bak-traking if ai failed. If a :i is entailed, the disjunt i > ai is simply removed.A guarded disjuntion with one disjunt only  ) a is replaed by a onjun-tion  ^ a. An empty guarded disjuntion orresponds to failure. Otherwisethe onstrutor delays. Guarded disjuntion is useful for exeuting onurrentommitted-hoie LP languages as well as CLP languages, as the ompletion of aprediate de�ned by lauses p(X1; : : : ; Xm) i > ai is the guarded disjuntionp(X1; : : : ; Xm)  1 > a1; 2 > a2; : : : ; n > an, whih an be unfolded deter-ministially. After proposing guarded disjuntion, we heard of Oz, whih relieson similar ideas using two onstrutors, the above-mentioned onditional and adeterministi disjuntion.In [VH91℄, a powerful onstrutor, the ardinality operator is desribed, writ-ten #(l,u,[1; : : : ; n℄) (l � u) whih sueeds if between l and u loal onstraintsi are entailed by the ontext. If a i is entailed, the bounds l and u are dere-mented by one and the i is dropped from the list. If a :i is entailed, the iis dropped from the list. If (l � 0; n � u) then the onstrutor sueeds. If(n = l) then all i must be entailed, hene we an replae the onstrutor by theonjuntion of the i. Similarly, if (u = 0), we replae the onstrutor by theonjuntion of all negated i. Otherwise the onstrutor delays.3 ImplementationTo be able to implement these onstrutors for user-de�ned onstraints, we �rstneed entailment simpli�ation for a ontext C and a given set of i's.Entailment Simpli�ation. To represent the i's, we need either loal on-straint stores or to index the loal onstraints (e.g. by preproessing them tohave an additional argument). We hoose the latter alternative, beause it anbe aomplished with a simple extension of the urrent prototype interpreter foronstraint handling rules. As said earlier, we want to reuse already existing on-straint handlers de�ned with CHRs. Note that propagation CHRs already de�nean entailment relation and the simpli�ation CHRs de�ne an equivalene relation.The idea is to apply CHRs to the ontext and the loal onstraints whiletaking are of orretness. In a multi-headed CHR if all the heads math atomionstraints from the ontext (resp. from one loal onstraint), we add the bodyonstraint of the CHR to the ontext (resp. loal onstraint by indexing it) as3



usual. Clearly the heads should not math atomi onstraints from di�erent loalonstraints. If the heads math math atomi onstraints from the ontext andfrom one loal onstraint, we don't touh the ontext - we do not remove anyontext onstraint and we add the body onstraint to loal onstraint.Assume now we simplify a loal onstraint i. When is it entailed? Clearly,if i has been simpli�ed to truei, it is entailed. Analogously, if the simpli�ationresults in falsei, :i is entailed. Moreover, a loal onstraint i is also entailedif all of its atomi onstraints are also present in the ontext. In this ase, wean simplify the loal onstraint to truei.Taking indexed onstraints into aount as desribed provides us with entail-ment simpli�ation one and for all, without having to write onstraint-spei�entailment ode.Example. We illustrate entailment simpli�ation with a user-de�ned on-straint �.(1a) X�Y <=> X=Y | true. % reflexivity(1b) X�Y,Y�X <=> X=Y. % identity(1) X�Y,Y�Z ==> X�Z. % transitivitySimpli�ation CHR (1a) states that X�X is logially true. Hene, whenever wesee the goal X�X we an simplify it to true. Similarly, simpli�ation CHR (1b)means that if we �nd X�Y as well as Y�X in the urrent goal, we an replae it bythe logially equivalent X=Y. Propagation CHR (1) states that the onjuntionX�Y,Y�Z implies X�Z.The following example illustrates how the onstraint handler works::- A�B,C�A,B�C.% C�A,A�B propagates C�B by 1.% C�B,B�C simplifies to B=C by 1b.% C�A,A�B simplifies to A=B by 1b as C=B.A=B,B=C.Now examples for entailment simpli�ation (loal onstraints are indexed)::- A�B,B�A,B=C, A�1C, A=2B.% A�B,B�A simplifies to A=B by 1b.% A�1C simplifies to true1 by 1a as A=B,B=C.% A=2B simplifies to true2 as A=B is in the ontext.A=B,B=C,true1,true2.:- A�B, C�1A, B�C.% C�1A,A�B propagates C�1B by 1.% C�1B,B�C simplifies to B=1C by 1b.% C�1A,A�B simplifies to A=1B by 1b as C=B.% A�B,B�C propagates A�C by 1.A�B,B�C,A�C, A=1B,B=1C.Constraint Construtors. Whenever a i ouring to a onstraint onstrutoris simpli�ed to truei or faili, the onstraint onstrutor reats.4



As an example, we implement the ardinality operator.% Initialise - Call Indexed Loal Constraints#(L,U,Constraints) <=> length(Constraints,N), L=<U,0=<U,L=<N,all uniquely indexed onstraints(Constraints,Indies),#(L,U,N,Indies).% Speial Cases of Bounds#(L,U,N,IL) <=> L=<0,N=<U | true.#(L,U,N,IL) <=> N=<L | N=L,all positive(IL).#(L,U,N,IL) <=> U=<0 | U=0,all negative(IL).% Loal Constraint Done#(L,U,N,IL),true(I) <=> delete(I,IL,IL1),#(L-1,U-1,N-1,IL1).#(L,U,N,IL),false(I) <=> delete(I,IL,IL1),#(L,U,N-1,IL1).The �rst propagation CHR adds a onjuntion of the indexed onstraints,the other simpli�ation CHRs de�ne the behaviour of the onstraint onstrutoraording to its de�nition.Referenes[APS92℄ H. Ait-Kai, A. Podelski and G. Smolka, A Feature-Based ConstraintSystem for Logi Programming with Entailment, Fifth GenerationComputer Systems, Tokyo, Japan, June 1992.[D*88℄ M. Dinbas et al., The Constraint Logi Programming Language CHIP,Fifth Generation Computer Systems, Tokyo, Japan, Deember 1988.[Fru92℄ T. Fr�uhwirth, Constraint Simpli�ation Rules (later renamed intoCHRs), Tehnial Report ECRC-92-18, ECRC Munih, Germany, July1992 (revised version of internal report ECRC-91-18i, Otober 1991).[H*93℄ S. Haridi et al., Conurrent Constraint Programming at SICS with theAndorra Kernel Language, First Workshop on Priniples and Pratieof Constraint Programming, Newport, RI, USA, April 28-30, 1993.[Mah87℄ Maher M. J., Logi Semantis for a Class of Committed-Choie Pro-grams, Fourth Intl Conf on Logi Programming, Melbourne, Australia,MIT Press, pp 858-876.[Sar93℄ V. A. Saraswat, Conurrent Constraint Programming Languages, MITPress, 1993.[Sha89℄ E. Shapiro, The Family of Conurrent Logi Programming Languages,ACM Computing Surveys, 21(3):413-510, September 1989.[VH91℄ P. Van Hentenryk, Constraint Logi Programming, The KnowledgeEngineering Review, Vol 6:3, 1991, pp 151-194.5


