Entailment Simplification and Constraint
Constructors for User-Defined Constraints®

Thom Fruhwirth
ECRC, Arabellastrasse 17, D-8000 Munich 81, Germany
thom@ecrc.de

January 10, 1995

Abstract. We investigate how to implement entailment simplification and,
more generally, constraint constructors for user-defined constraints. Entailment
simplification was introduced, for feature terms, by Ait-Kaci, Podelski and Smolka,
and constraint constructors include the implication operator (Saraswat), the car-
dinality operator (Van Hentenryck), the choice statements of AKL (Haridi et al.)
and the conditional of OZ (Smolka). We assume that user-defined constraints
are defined by constraint handlers written in a CLP language extended with con-
straint handling rules (Fruehwirth). The idea is to get entailment simplification
for free from given constraint handlers by extending the operational semantics
of constraint handling rules and to implement constraint constructors with con-
straint handling rules. We also propose a generic constraint constructor called
guarded disjunction.

1 Introduction

Constraint handling rules (CHRs) [Fru92] are a language extension providing the
user (application-programmer) with a declarative and flexible means to introduce
user-defined constraints (in addition to built-in constraints of the underlying lan-
guage). CHRs are essentially multi-headed guarded rules. CHRs define simplifi-
cation of and propagation over user-defined constraints. Simplification replaces
conjunctions of constraints by simpler ones while preserving logical equivalence.
Propagation adds new constraints which are logically redundant (but may cause
further simplification). When repeatedly applied the constraints become simpli-
fied and may become solved. In this way, a set of CHRs defines a constraint
handler. If a constraint handler always solves the constraints, we call it a con-
straint solver.

*Part of this work is supported by ESPRIT Project 5291 CHIC

User-defined constraint handling is a very active area of research. CHIP
was the first constraint logic programming language to introduce the necessary
constructs (demons, forward rules, conditionals) [D*88]. These various constructs
have been generalised into CHRs. Constraints are seen as a computationally
efficient incarnation of the predicates defined in the underlying host language.
CHRs have a logical reading and thus preserve the declarative semantics of the
underlying logic programming language they extend. Thus we can reason about
correctness, termination and confluence of a set of CHRs. The representation of
constraints in the same formalism as the rest of the program greatly facilitates the
prototyping, extension, specialization and combination of constraint handlers.

Constraint entailment was introduced to give declarative semantics to [Mah87]
and to synchronise concurrent execution of guarded rules in concurrent logic pro-
gramming [Sha89]. At the same time it was used in CLP languages to allow
for more powerful programs [D*88, ?]. The problem is to check if a conjunction
of constraints (the context) implies (entails) another conjunction of constraints
(the local constraint). Like constraint solving in traditional CLP languages, en-
tailment checking should be incremental. This idea seemed to appear first in
[APS92], where the incremental entailment checking of feature term constraints
is called entailment simplification.

Constraint constructors we call operators over constraints especially designed
to enable the user to build complex constraints from simpler ones. This idea has
been first formulated by Van Hentenryck, who also proposed one such construc-
tor, the cardinality operator [VH91]. Constraint constructors are often based on
logical connectives (e.g. conditional) or can have the flavor of meta-predicates
(e.g. cardinality).

In this work we show that already existing constraint handlers written in a
CLP language with CHRscan be used to get entailment simplification for free.
Then we consider some constraint, constructors proposed in the literature, which
all rely on constraint entailment as the basic operation, and investigate how they
can be implemented by using CHRs with entailment simplification.

2 Some Constraint Constructors

Let C be a context (the conjunction of constraints in the constraint store), ¢;’s be
local conjunctions of constraints, and a;’s,b be non-constraint atoms. Let > stand
for a commitment operator, which is either — for don’t care nondeterminism as
in committed-choice languages or = for don’t know nondeterminism a la Prolog
(adapting notation of [?]).

Various conditionals have been proposed in the literature. The implication
constraint constructor proposed by [?], written ¢ = a, executes a as soon as ¢
is entailed by the context C'. If —¢ is entailed, then the constructor simply suc-
ceeds, otherwise the constructor delays (flounders). The if-then-else constructor

of CHIP [D*88], written if ¢ then a else b, behaves like the implication con-
structor, but in addition executes b if —¢ is entailed. The conditional of Smolkas
OZ language generalizes this to if ¢; then a; [1 ... [1 ¢, then a, else
b.

We propose here a generic constraint constructor, called guarded disjunction,
written ¢; > ay;co > as;...;c, > a,. If ¢; is entailed, then ¢; > a; is removed
from the guarded disjunction and the corresponding a; is executed. If > is —,
the residual guarded disjunction succeeds. If > is =, it is re-activated on back-
tracking if a; failed. If a —¢; is entailed, the disjunct ¢; > a; is simply removed.
A guarded disjunction with one disjunct only ¢ = a is replaced by a conjunc-
tion ¢ A a. An empty guarded disjunction corresponds to failure. Otherwise
the constructor delays. Guarded disjunction is useful for executing concurrent
committed-choice LP languages as well as CLP languages, as the completion of a
predicate defined by clauses p(Xi,..., X;,) < ¢; > a; is the guarded disjunction
p(X1,..., X;m) < ¢ B ag;en B oas;...;¢, > ay,, which can be unfolded deter-
ministically. After proposing guarded disjunction, we heard of Oz, which relies
on similar ideas using two constructors, the above-mentioned conditional and a
deterministic disjunction.

In [VHO1], a powerful constructor, the cardinality operator is described, writ-
ten #(Lu,[cy, ..., ¢n]) (I <u) which succeeds if between 1 and u local constraints
¢; are entailed by the context. If a ¢; is entailed, the bounds | and u are decre-
mented by one and the ¢; is dropped from the list. If a —¢; is entailed, the ¢;
is dropped from the list. If (I < 0,n < u) then the constructor succeeds. If
(n = 1) then all ¢; must be entailed, hence we can replace the constructor by the
conjunction of the ¢;. Similarly, if (u = 0), we replace the constructor by the
conjunction of all negated ¢;. Otherwise the constructor delays.

3 Implementation

To be able to implement these constructors for user-defined constraints, we first
need entailment simplification for a context C' and a given set of ¢;’s.
Entailment Simplification. To represent the ¢;’s, we need either local con-
straint stores or to index the local constraints (e.g. by preprocessing them to
have an additional argument). We choose the latter alternative, because it can
be accomplished with a simple extension of the current prototype interpreter for
constraint handling rules. As said earlier, we want to reuse already existing con-
straint handlers defined with CHRs. Note that propagation CHRs already define
an entailment relation and the simplification CHRs define an equivalence relation.
The idea is to apply CHRs to the context and the local constraints while
taking care of correctness. In a multi-headed CHR if all the heads match atomic
constraints from the context (resp. from one local constraint), we add the body
constraint of the CHR to the context (resp. local constraint by indexing it) as

3

usual. Clearly the heads should not match atomic constraints from different local
constraints. If the heads match match atomic constraints from the context and
from one local constraint, we don’t touch the context - we do not remove any
context constraint and we add the body constraint to local constraint.

Assume now we simplify a local constraint ¢;. When is it entailed? Clearly,
if ¢; has been simplified to true;, it is entailed. Analogously, if the simplification
results in false;, —¢; is entailed. Moreover, a local constraint ¢; is also entailed
if all of its atomic constraints are also present in the context. In this case, we
can simplify the local constraint to true;.

Taking indexed constraints into account as described provides us with entail-
ment simplification once and for all, without having to write constraint-specific
entailment code.

Example. We illustrate entailment simplification with a user-defined con-
straint <.

(1a) X<Y <=> X=Y | true. % reflexivity
(1b) X<Y,Y<X <=> X=Y. 7, identity
(1c) X<Y,Y<Z ==> X<Z. % transitivity

Simplification CHR (1a) states that X<X is logically true. Hence, whenever we
see the goal X<X we can simplify it to true. Similarly, simplification CHR (1b)
means that if we find X<Y as well as Y<X in the current goal, we can replace it by
the logically equivalent X=Y. Propagation CHR (1c) states that the conjunction
X<Y,Y<Z implies X<Z.

The following example illustrates how the constraint handler works:

- A<B,C<A,B<C.

%» C<A,A<B propagates C<B by lc.

% C<B,B<C simplifies to B=C by 1b.

% C<A,A<B simplifies to A=B by 1b as C=B.
A=B,B=C.

Now examples for entailment simplification (local constraints are indexed):

:~ A<B,B<A,B=C, A<,C, A=,B.

%» A<B,B<A simplifies to A=B by 1b.

% A<,C simplifies to true; by la as A=B,B=C.

% A=5B simplifies to true, as A=B is in the context.
A=B,B=C,true;,true,.

- A<B, C<,A, B<C.

% C<;A,A<B propagates C<;B by lc.

% C<{B,B<C simplifies to B=;C by 1b.

% C<{A,A<B simplifies to A=;B by 1b as C=B.

%» A<B,B<C propagates A<C by lc.
A<B,B<C,A<C, A=,B,B=,C.

Constraint Constructors. Whenever a ¢; occuring to a constraint constructor
is simplified to true; or fail;, the constraint constructor reacts.

4

As an example, we implement the cardinality operator.
%» Initialise - Call Indexed Local Constraints
#(L,U,Constraints) <=> length(Constraints,N), L=<U,0=<U,L=<N,
call_uniquely_indexed_constraints(Constraints,Indices),
#(L,U,N,Indices).
% Special Cases of Bounds
#(L,U,N,IL) <=> L=<0,N=<U | true.
#(L,U,N,IL) <=> N=<L | N=L,call _positive(IL).
#(L,U,N,IL) <=> U=<0 | U=0,call_negative(IL).
% Local Constraint Done
#(L,U,N,IL),true(I) <=> delete(I,IL,IL1),#(L-1,U-1,N-1,IL1).
#(L,U,N,IL),false(I) <=> delete(I,IL,IL1),#(L,U,N-1,IL1).
The first propagation CHR adds a conjunction of the indexed constraints,
the other simplification CHRs define the behaviour of the constraint constructor
according to its definition.

References

[APS92] H. Ait-Kaci, A. Podelski and G. Smolka, A Feature-Based Constraint
System for Logic Programming with Entailment, Fifth Generation
Computer Systems, Tokyo, Japan, June 1992.

[D*88] M. Dincbas et al., The Constraint Logic Programming Language CHIP,
Fifth Generation Computer Systems, Tokyo, Japan, December 1988.

[Fru92] T. Frithwirth, Constraint Simplification Rules (later renamed into
CHRs), Technical Report ECRC-92-18, ECRC Munich, Germany, July
1992 (revised version of internal report ECRC-91-18i, October 1991).

[H*93] S. Haridi et al., Concurrent Constraint Programming at SICS with the
Andorra Kernel Language, First Workshop on Principles and Practice
of Constraint Programming, Newport, RI, USA, April 28-30, 1993.

[Mah87] Maher M. J., Logic Semantics for a Class of Committed-Choice Pro-
grams, Fourth Intl Conf on Logic Programming, Melbourne, Australia,
MIT Press, pp 858-876.

[Sar93] V. A. Saraswat, Concurrent Constraint Programming Languages, MIT
Press, 1993.

[Sha89] E. Shapiro, The Family of Concurrent Logic Programming Languages,
ACM Computing Surveys, 21(3):413-510, September 1989.

[VHI1] P. Van Hentenryck, Constraint Logic Programming, The Knowledge
Engineering Review, Vol 6:3, 1991, pp 151-194.

