
Entailment Simpli�
ation and ConstraintConstru
tors for User-De�ned Constraints�Thom Fr�uhwirthECRC, Arabellastrasse 17, D-8000 Muni
h 81, Germanythom�e
r
.deJanuary 10, 1995Abstra
t. We investigate how to implement entailment simpli�
ation and,more generally,
onstraint
onstru
tors for user-de�ned
onstraints. Entailmentsimpli�
ation was introdu
ed, for feature terms, by Ait-Ka
i, Podelski and Smolka,and
onstraint
onstru
tors in
lude the impli
ation operator (Saraswat), the
ar-dinality operator (Van Hentenry
k), the
hoi
e statements of AKL (Haridi et al.)and the
onditional of OZ (Smolka). We assume that user-de�ned
onstraintsare de�ned by
onstraint handlers written in a CLP language extended with
on-straint handling rules (Fruehwirth). The idea is to get entailment simpli�
ationfor free from given
onstraint handlers by extending the operational semanti
sof
onstraint handling rules and to implement
onstraint
onstru
tors with
on-straint handling rules. We also propose a generi

onstraint
onstru
tor
alledguarded disjun
tion.1 Introdu
tionConstraint handling rules (CHRs) [Fru92℄ are a language extension providing theuser (appli
ation-programmer) with a de
larative and
exible means to introdu
euser-de�ned
onstraints (in addition to built-in
onstraints of the underlying lan-guage). CHRs are essentially multi-headed guarded rules. CHRs de�ne simpli�-
ation of and propagation over user-de�ned
onstraints. Simpli�
ation repla
es
onjun
tions of
onstraints by simpler ones while preserving logi
al equivalen
e.Propagation adds new
onstraints whi
h are logi
ally redundant (but may
ausefurther simpli�
ation). When repeatedly applied the
onstraints be
ome simpli-�ed and may be
ome solved. In this way, a set of CHRs de�nes a
onstrainthandler. If a
onstraint handler always solves the
onstraints, we
all it a
on-straint solver.�Part of this work is supported by ESPRIT Proje
t 5291 CHIC1

User-de�ned
onstraint handling is a very a
tive area of resear
h. CHIPwas the �rst
onstraint logi
 programming language to introdu
e the ne
essary
onstru
ts (demons, forward rules,
onditionals) [D*88℄. These various
onstru
tshave been generalised into CHRs. Constraints are seen as a
omputationallyeÆ
ient in
arnation of the predi
ates de�ned in the underlying host language.CHRs have a logi
al reading and thus preserve the de
larative semanti
s of theunderlying logi
 programming language they extend. Thus we
an reason about
orre
tness, termination and
on
uen
e of a set of CHRs. The representation of
onstraints in the same formalism as the rest of the program greatly fa
ilitates theprototyping, extension, spe
ialization and
ombination of
onstraint handlers.Constraint entailment was introdu
ed to give de
larative semanti
s to [Mah87℄and to syn
hronise
on
urrent exe
ution of guarded rules in
on
urrent logi
 pro-gramming [Sha89℄. At the same time it was used in CLP languages to allowfor more powerful programs [D*88, ?℄. The problem is to
he
k if a
onjun
tionof
onstraints (the
ontext) implies (entails) another
onjun
tion of
onstraints(the lo
al
onstraint). Like
onstraint solving in traditional CLP languages, en-tailment
he
king should be in
remental. This idea seemed to appear �rst in[APS92℄, where the in
remental entailment
he
king of feature term
onstraintsis
alled entailment simpli�
ation.Constraint
onstru
tors we
all operators over
onstraints espe
ially designedto enable the user to build
omplex
onstraints from simpler ones. This idea hasbeen �rst formulated by Van Hentenry
k, who also proposed one su
h
onstru
-tor, the
ardinality operator [VH91℄. Constraint
onstru
tors are often based onlogi
al
onne
tives (e.g.
onditional) or
an have the
avor of meta-predi
ates(e.g.
ardinality).In this work we show that already existing
onstraint handlers written in aCLP language with CHRs
an be used to get entailment simpli�
ation for free.Then we
onsider some
onstraint
onstru
tors proposed in the literature, whi
hall rely on
onstraint entailment as the basi
 operation, and investigate how they
an be implemented by using CHRs with entailment simpli�
ation.2 Some Constraint Constru
torsLet C be a
ontext (the
onjun
tion of
onstraints in the
onstraint store),
i's belo
al
onjun
tions of
onstraints, and ai's,b be non-
onstraint atoms. Let > standfor a
ommitment operator, whi
h is either ! for don't
are nondeterminism asin
ommitted-
hoi
e languages or) for don't know nondeterminism a la Prolog(adapting notation of [?℄).Various
onditionals have been proposed in the literature. The impli
ation
onstraint
onstru
tor proposed by [?℄, written
 =) a, exe
utes a as soon as
is entailed by the
ontext C. If :
 is entailed, then the
onstru
tor simply su
-
eeds, otherwise the
onstru
tor delays (
ounders). The if-then-else
onstru
tor2

of CHIP [D*88℄, written if
 then a else b, behaves like the impli
ation
on-stru
tor, but in addition exe
utes b if :
 is entailed. The
onditional of SmolkasOZ language generalizes this to if
1 then a1 [℄ ... [℄
n then an elseb. We propose here a generi

onstraint
onstru
tor,
alled guarded disjun
tion,written
1 > a1;
2 > a2; : : : ;
n > an. If
i is entailed, then
i > ai is removedfrom the guarded disjun
tion and the
orresponding ai is exe
uted. If > is !,the residual guarded disjun
tion su

eeds. If > is), it is re-a
tivated on ba
k-tra
king if ai failed. If a :
i is entailed, the disjun
t
i > ai is simply removed.A guarded disjun
tion with one disjun
t only
) a is repla
ed by a
onjun
-tion
 ^ a. An empty guarded disjun
tion
orresponds to failure. Otherwisethe
onstru
tor delays. Guarded disjun
tion is useful for exe
uting
on
urrent
ommitted-
hoi
e LP languages as well as CLP languages, as the
ompletion of apredi
ate de�ned by
lauses p(X1; : : : ; Xm)
i > ai is the guarded disjun
tionp(X1; : : : ; Xm)
1 > a1;
2 > a2; : : : ;
n > an, whi
h
an be unfolded deter-ministi
ally. After proposing guarded disjun
tion, we heard of Oz, whi
h relieson similar ideas using two
onstru
tors, the above-mentioned
onditional and adeterministi
 disjun
tion.In [VH91℄, a powerful
onstru
tor, the
ardinality operator is des
ribed, writ-ten #(l,u,[
1; : : : ;
n℄) (l � u) whi
h su

eeds if between l and u lo
al
onstraints
i are entailed by the
ontext. If a
i is entailed, the bounds l and u are de
re-mented by one and the
i is dropped from the list. If a :
i is entailed, the
iis dropped from the list. If (l � 0; n � u) then the
onstru
tor su

eeds. If(n = l) then all
i must be entailed, hen
e we
an repla
e the
onstru
tor by the
onjun
tion of the
i. Similarly, if (u = 0), we repla
e the
onstru
tor by the
onjun
tion of all negated
i. Otherwise the
onstru
tor delays.3 ImplementationTo be able to implement these
onstru
tors for user-de�ned
onstraints, we �rstneed entailment simpli�
ation for a
ontext C and a given set of
i's.Entailment Simpli�
ation. To represent the
i's, we need either lo
al
on-straint stores or to index the lo
al
onstraints (e.g. by prepro
essing them tohave an additional argument). We
hoose the latter alternative, be
ause it
anbe a

omplished with a simple extension of the
urrent prototype interpreter for
onstraint handling rules. As said earlier, we want to reuse already existing
on-straint handlers de�ned with CHRs. Note that propagation CHRs already de�nean entailment relation and the simpli�
ation CHRs de�ne an equivalen
e relation.The idea is to apply CHRs to the
ontext and the lo
al
onstraints whiletaking
are of
orre
tness. In a multi-headed CHR if all the heads mat
h atomi

onstraints from the
ontext (resp. from one lo
al
onstraint), we add the body
onstraint of the CHR to the
ontext (resp. lo
al
onstraint by indexing it) as3

usual. Clearly the heads should not mat
h atomi

onstraints from di�erent lo
al
onstraints. If the heads mat
h mat
h atomi

onstraints from the
ontext andfrom one lo
al
onstraint, we don't tou
h the
ontext - we do not remove any
ontext
onstraint and we add the body
onstraint to lo
al
onstraint.Assume now we simplify a lo
al
onstraint
i. When is it entailed? Clearly,if
i has been simpli�ed to truei, it is entailed. Analogously, if the simpli�
ationresults in falsei, :
i is entailed. Moreover, a lo
al
onstraint
i is also entailedif all of its atomi

onstraints are also present in the
ontext. In this
ase, we
an simplify the lo
al
onstraint to truei.Taking indexed
onstraints into a

ount as des
ribed provides us with entail-ment simpli�
ation on
e and for all, without having to write
onstraint-spe
i�
entailment
ode.Example. We illustrate entailment simpli�
ation with a user-de�ned
on-straint �.(1a) X�Y <=> X=Y | true. % reflexivity(1b) X�Y,Y�X <=> X=Y. % identity(1
) X�Y,Y�Z ==> X�Z. % transitivitySimpli�
ation CHR (1a) states that X�X is logi
ally true. Hen
e, whenever wesee the goal X�X we
an simplify it to true. Similarly, simpli�
ation CHR (1b)means that if we �nd X�Y as well as Y�X in the
urrent goal, we
an repla
e it bythe logi
ally equivalent X=Y. Propagation CHR (1
) states that the
onjun
tionX�Y,Y�Z implies X�Z.The following example illustrates how the
onstraint handler works::- A�B,C�A,B�C.% C�A,A�B propagates C�B by 1
.% C�B,B�C simplifies to B=C by 1b.% C�A,A�B simplifies to A=B by 1b as C=B.A=B,B=C.Now examples for entailment simpli�
ation (lo
al
onstraints are indexed)::- A�B,B�A,B=C, A�1C, A=2B.% A�B,B�A simplifies to A=B by 1b.% A�1C simplifies to true1 by 1a as A=B,B=C.% A=2B simplifies to true2 as A=B is in the
ontext.A=B,B=C,true1,true2.:- A�B, C�1A, B�C.% C�1A,A�B propagates C�1B by 1
.% C�1B,B�C simplifies to B=1C by 1b.% C�1A,A�B simplifies to A=1B by 1b as C=B.% A�B,B�C propagates A�C by 1
.A�B,B�C,A�C, A=1B,B=1C.Constraint Constru
tors. Whenever a
i o

uring to a
onstraint
onstru
toris simpli�ed to truei or faili, the
onstraint
onstru
tor rea
ts.4

As an example, we implement the
ardinality operator.% Initialise - Call Indexed Lo
al Constraints#(L,U,Constraints) <=> length(Constraints,N), L=<U,0=<U,L=<N,
all uniquely indexed
onstraints(Constraints,Indi
es),#(L,U,N,Indi
es).% Spe
ial Cases of Bounds#(L,U,N,IL) <=> L=<0,N=<U | true.#(L,U,N,IL) <=> N=<L | N=L,
all positive(IL).#(L,U,N,IL) <=> U=<0 | U=0,
all negative(IL).% Lo
al Constraint Done#(L,U,N,IL),true(I) <=> delete(I,IL,IL1),#(L-1,U-1,N-1,IL1).#(L,U,N,IL),false(I) <=> delete(I,IL,IL1),#(L,U,N-1,IL1).The �rst propagation CHR adds a
onjun
tion of the indexed
onstraints,the other simpli�
ation CHRs de�ne the behaviour of the
onstraint
onstru
tora

ording to its de�nition.Referen
es[APS92℄ H. Ait-Ka
i, A. Podelski and G. Smolka, A Feature-Based ConstraintSystem for Logi
 Programming with Entailment, Fifth GenerationComputer Systems, Tokyo, Japan, June 1992.[D*88℄ M. Din
bas et al., The Constraint Logi
 Programming Language CHIP,Fifth Generation Computer Systems, Tokyo, Japan, De
ember 1988.[Fru92℄ T. Fr�uhwirth, Constraint Simpli�
ation Rules (later renamed intoCHRs), Te
hni
al Report ECRC-92-18, ECRC Muni
h, Germany, July1992 (revised version of internal report ECRC-91-18i, O
tober 1991).[H*93℄ S. Haridi et al., Con
urrent Constraint Programming at SICS with theAndorra Kernel Language, First Workshop on Prin
iples and Pra
ti
eof Constraint Programming, Newport, RI, USA, April 28-30, 1993.[Mah87℄ Maher M. J., Logi
 Semanti
s for a Class of Committed-Choi
e Pro-grams, Fourth Intl Conf on Logi
 Programming, Melbourne, Australia,MIT Press, pp 858-876.[Sar93℄ V. A. Saraswat, Con
urrent Constraint Programming Languages, MITPress, 1993.[Sha89℄ E. Shapiro, The Family of Con
urrent Logi
 Programming Languages,ACM Computing Surveys, 21(3):413-510, September 1989.[VH91℄ P. Van Hentenry
k, Constraint Logi
 Programming, The KnowledgeEngineering Review, Vol 6:3, 1991, pp 151-194.5

