
Integration and Optimization of Rule-based

Constraint Solvers

Slim Abdennadher1 and Thom Frühwirth2

1Faculty of Information Engineering and Technology, German University Cairo, Egypt
Slim.Abdennadher@guc.edu.eg

2Computer Science Faculty, University of Ulm, Germany
Thom.Fruehwirth@informatik.uni-ulm.de

Abstract. One lesson learned from practical constraint solving applica-
tions is that constraints are often heterogeneous. Solving such constraints
requires a collaboration of constraint solvers. In this paper, we introduce
a methodology for the tight integration of CHR constraint programs into
one such program. CHR is a high-level rule-based language for writing
constraint solvers and reasoning systems. A constraint solver is well-
behaved if it is terminating and confluent. When merging constraint
solvers, this property may be lost. Based on previous results on CHR
program analysis and transformation we show how to utilize completion
to regain well-behavedness. We identify a class of solvers whose union
is always confluent and we show that for preserving termination such a
class is hard to find. The merged and completed constraint solvers may
contain redundant rules. Utilizing the notion of operational equivalence,
which is decidable for well-behaved CHR programs, we present a method
to detect redundant rules in a CHR program.

1 Introduction

Many real applications of constraint-based reasoning involve heterogeneous con-
straints. Solving such constraints requires a collaboration of two or more con-
straint solvers. In this paper, we are concerned with solvers written in CHR
language.

CHR (Constraint Handling Rules) [9, 11] is a concurrent committed-choice con-
straint logic programming language consisting of guarded rules that manipulate
conjunctions of constraints. In CHR, we distinguish two kinds of rules: simpli-
fication rules replace constraints by simpler constraints. Propagation rules add
new constraints which may cause further simplification.

Usually, CHR solvers are well-behaved, i.e. terminating and confluent. Confluence
means that it does not matter for the result which of the applicable rules are
applied in a computation. Once termination has been established [10], there is a
decidable, sufficient and necessary test for confluence [1]. Confluence also implies
consistency of the logical reading of the solver program [1]. We have developed
a tool for confluence testing. All solvers of recent CHR releases are terminating



and only two solvers that rely on variable orderings to achieve termination for
variable elimination are not confluent.
Given two well-behaved CHR constraint solvers, then their so-called tight inte-
gration is simply the union of their rules. There is no restriction on the signature
of the solvers. In particular, solvers may fully or partially define the same con-
straints. Any computation that was possible in one of the solvers will also be
possible in the union of the solvers, since additional rules cannot inhibit the
application of old rules (as can be seen from the operational semantics of CHR).
However, the union of the solvers could lose termination and/or confluence, and
thus their well-behavedness.

Example 1. Consider a solver program with the single simplification rule {a
⇔ b} that replaces the CHR constraint a by the constraint b and a solver
program with the single rule {b ⇔ a} that replaces the CHR constraint b by the
constraint a. The union of the two programs, {a ⇔ b, b ⇔ a}, is obviously
non-terminating.
Consider a program P1 with the single rule {a ⇔ b} and a program P2 with
the single rule {a ⇔ c}. Their union {a ⇔ b, a ⇔ c} is terminating, but
obviously non-confluent, since a computation for a may result in either b or c

depending on the (committed) choice of the rule.

While establishing termination for CHR programs without propagation rules is
in practice often rather simple [10], termination is in general undecidable for
CHR programs. On the other hand, completion can make non-confluent pro-
grams confluent [2] by adding new rules. Thus there is a chance to automatically
produce from two well-behaved constraint solvers a solver that behaves well, too.

Example 2. Consider the union of P1 and P2 of Example 1, which is {a ⇔ b,

a ⇔ c}. To make the union confluent, the rule b ⇔ c can be added.

In the paper, we also consider the special case of so-called non-overlapping solvers
that define different constraints. Non-overlapping solvers may have common
(shared) CHR constraints and function symbols and have common built-in con-
straints. We prove that they are well-behaved if their union is terminating. While
confluence is modular (preserved) for well-behaved, non-overlapping solvers, we
will argue that it is very hard to find a syntactic class of solver programs that
admits modularity for termination.
In practice, non-overlapping solvers are integrated using so-called bridge rules be-
tween the different constraints they define. These bridge rules often destroy well-
behavedness and we show by example how completion fares with such solvers.
The resulting constraint solver may contain redundant rules. Since propagation
in a rule-based constraint solver corresponds to a fixpoint computation with
its rules, it is preferable to have a minimal number of rules to accelerate the
fixpoint computation. Based on the operational equivalence notion [3], we present
a method to detect and remove redundant rules in a CHR constraint solver.

Related Work. There is a renewed interest in languages and models for con-
straint solver cooperation. An overview of the issues in cooperative constraint



solving can be found in [14]. Recent work in this area includes BALI [16], a
scheme for integrating heterogeneous solvers by encapsulation: a cooperation
language based on strategies is compiled into solver specific communication code.
Similarly, the framework of [8] relies on strategies to specify when component
solvers are to be applied. The framework of [15] requires specific interfaces from
the constraint solvers and a meta constraint solver to coordinate the cooper-
ating solvers. Examples and implementations of this framework concentrate on
numerical constraints.
When CHR is used as an implementation language for constraint solvers, desir-
able properties like confluence and operational equivalence can be decided once
termination has been established. There is no need for specific interfaces, be-
cause the constraint solvers communicate freely via shared variables using their
common built-in constraints. In well-behaved CHR solvers, it does not matter
which of the applicable rules are applied. In particular, in well-behaved merged
solvers, it does not matter from which solvers the rules are coming. Thus any
type of cooperation strategies [14], be it hard-coded, be it based on priorities or
explicit operators, is possible. Moreover, the strategies can be very fine-grained,
at the level of the application of a single rule from the solver program, i.e. single
computation step.
The work of [18, 7] focuses on building a constraint solver for the union of theories
with given decision procedures. These theories are usually casted as equational
theories. In [7], the theories are assumed to be disjoint. In [18], combination of
theories sharing constructors have been investigated. In CHR, equalities refer-
ring to distinct theories are assumed to be represented by different constraint
symbols. CHR programs represent first-order theories, that can be unioned with-
out any requirements. Operationally, however, we want to make sure that the
resulting solver is still well-behaved. The constraint solvers we are interested in
are not necessarily decision procedures, but trade efficiency for completeness.
In the term rewriting literature, there is a considerable body of work on modular-
ity of termination and also work on modularity of confluence [17, 13, 6]. Although
CHR borrows notions and techniques from term rewriting systems (TRS), it is
not clear how these results would apply to CHR, since CHR are rather different
to classical TRS:

– CHR propagation rules cannot be directly expressed as terminating TRS.
– CHR manipulate constraints, which usually contain free variables, while

terms that are rewritten in TRS are usually ground (variable-free).
– Rule application in CHR relies on AC-matching of conjunctions of atomic

CHR constraints (relations), and not on matching of terms at arbitrary po-
sitions as in TRS.

– Built-in constraints do not appear in TRS. CHR guards use built-in con-
straints only and differ from conditions in extended TRS that refer to com-
parison of normal forms of TRS reductions.

– Multiple occurences of variables are allowed on both sides of CHR rules.
Variables are allowed to occur only in one side of the rule, in particular
variables can be introduced on the right hand side of a rule.



To the best of our knowledge, there does not exist a TRS with all these properties
for which modularity results have been obtained. Clearly this does not preclude
non-trivial future work to relate aspects of modularity in CHR with aspects of
modularity results in TRS.

Outline of Paper. In Section 2, we define the CHR language and summarize
previous results on confluence, completion, and operational equivalence. In the
next section of the paper, we show how to merge CHR constraint solvers utilizing
completion. We then investigate when termination and confluence are preserved
under union of solver programs. We consider the special case of so-called non-
overlapping solvers that define different constraints and introduce the notion
of so-called bridge rules to integrate such solvers. In Section 6, we show how
to remove redundant rules from a solver utilizing operational equivalence. A
preliminary version of this paper was presented at JFPLC’02 [4].

2 Preliminaries

In this section we give an overview of syntax and semantics for constraint han-
dling rules (CHR) as well as previous results on confluence, completion, and
operational equivalence. Detailed presentations can be found in [12, 1, 5, 2, 3].

2.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of con-
straints: built-in constraint symbols and CHR constraint symbols (user-defined
symbols). We call an atomic formula with a constraint symbol a constraint. Built-
in constraints are handled by predefined constraint black-box solvers. We assume
that these solvers are well-behaved. Built-in constraints include =, true, and
false. The semantics of the built-in constraints is defined by a consistent first-
order constraint theory CT . In particular, CT defines = as the syntactic equality
over finite terms.
CHR constraints are defined by a CHR program.

Definition 1. A CHR program is a finite set of rules. There are two kinds of
rules: A simplification rule is of the form Name @ H ⇔ C B. A propagation
rule is of the form Name @ H ⇒ C B, where Name is an optional, unique
identifier of a rule, the head H is a non-empty conjunction of CHR constraints,
the guard C is a conjunction of built-in constraints, and the body B is a goal. A
goal is a conjunction of built-in and CHR constraints. For convenience, a trivial
guard “true” can be omitted together with “”.
A CHR symbol is defined in a CHR program if it occurs in the head of a rule in
the program.

Example 3. We define a CHR constraint for a partial order relation ≤:

r1 @ X≤X ⇔ true.
r2 @ X≤Y ∧ Y≤X ⇔ X=Y.



r3 @ X≤Y ∧ Y≤Z ⇒ X≤Z.

r4 @ X≤Y ∧ X≤Y ⇔ X≤Y.

The CHR program implements reflexivity (r1), antisymmetry (r2), transitivity
(r3) and redundancy (r4) in a straightforward way. The reflexivity rule r1 states
that X≤X is logically true. The antisymmetry rule r2 means X≤Y ∧ Y≤X is
logically equivalent to X=Y. The transitivity rule r3 states that the conjunction
of X≤Y and Y≤Z implies X≤Z. The redundancy rule r4 states that X≤Y ∧ X≤Y

is logically equivalent to X≤Y.

2.2 Operational Semantics of CHR

The operational semantics of CHR is given by a transition system. A state is
simply a goal, i.e. a conjunction of built-in and CHR constraints. Let P be a CHR
program. We define the transition relation 7→P by introducing two computation
steps (transitions), one for each kind of CHR rule (cf. Figure 1). In the figure, all
meta-variables stand for conjunctions of constraints. The notation Gbi denotes
the built-in constraints of G. Since the two transitions are structurally very

Simplify

If (H ⇔ C B) is a fresh variant of a rule with variables x̄

and CT |= ∀ (Gbi → ∃x̄(H=H
′ ∧ C))

then (H ′ ∧ G) 7→Simplify

P
(G ∧ B ∧ C ∧ H=H

′)

Propagate

If (H ⇒ C B) is a fresh variant of a rule with variables x̄

and CT |= ∀ (Gbi → ∃x̄(H=H
′ ∧ C))

then (H ′ ∧ G) 7→Propagate

P
(H ′ ∧ G ∧ B ∧ C ∧ H=H

′)

Fig. 1. Computation Steps of Constraint Handling Rules

similar, we first describe their common behavior and only at the end point out
their differences.
A fresh variant of a rule is applicable to a state H ′ ∧G if H ′ matches its head H

and if its guard C is implied by the built-in constraints appearing in G. A fresh
variant of a rule is obtained by renaming its variables to fresh variables, listed
in the sequence x̄. Matching (one-sided unification) succeeds if H ′ is an instance
of H , i.e. it is only allowed to instantiate (bind) variables of H but not variables
of H ′. Matching is logically expressed by equating H ′ and H but existentially
quantifying all variables from the rule, x̄. This equation H ′=H is shorthand for
pairwise equating the arguments of the constraints in H ′ and H , provided their
constraint symbols are equal. Note that conjuncts can be permuted.
If an applicable rule is applied, the equation H=H ′, its guard C and its body
B are added to the resulting state. A rule application cannot be undone (CHR



is a committed-choice language without backtracking). When a simplification
rule is applied in the transition Simplify, the matching CHR constraints H ′

are removed from the state. The Propagate transition is like the Simplify

transition, except that it keeps the constraints H ′ in the resulting state. Trivial
non-termination caused by applying the same propagation rule again and again
is avoided by applying it at most once to the same constraints [1].
A computation of a goal G in a program P is a sequence S0, S1, . . . of states
with Si 7→P Si+1 beginning with the initial state S0 for G and ending in a
final state or diverging. A final state is one where either no computation step is
possible anymore or where the built-in constraints are inconsistent. 7→∗

P
denotes

the reflexive and transitive closure of 7→P . When it is clear from the context, we
will drop the reference to the program P .

Example 4. Recall the solver program for ≤ of Example 3. Operationally the
rule r1 removes occurrences of constraints that match X≤X. The antisymmetry
rule r2 means that if we find X≤Y as well as Y≤X in the current store, we can
replace them by the logically equivalent X=Y. The transitivity rule r3 propagates
constraints. We add the logical consequence X≤Z as a redundant constraint. The
redundancy rule r4 absorbs multiple occurrences of the same constraint.
A computation of the goal A≤B ∧ C≤A ∧ B≤C proceeds as follows:
A≤B ∧ C≤A ∧ B≤C 7→Propagate

A≤B ∧ C≤A ∧ B≤C ∧ C≤B 7→Simplify

A≤B ∧ B≤A ∧ B=C 7→Simplify

A=B ∧ B=C

2.3 Confluence

The confluence property of a program guarantees that any computation for a
goal results in the same final state no matter which of the applicable rules are
applied.

Definition 2. A CHR program is confluent if for all states S, S1, S2: If S 7→∗ S1

and S 7→∗ S2 then the pair of states (S1, S2) is joinable.
A pair of states (S1, S2) is joinable if there exist states T1 and T2 such that
S1 7→∗ T1 and S2 7→∗ T2 where T1 and T2 are identical up to renaming of
variables and logical equivalence of built-in constraints.

To analyze confluence of a given CHR program we cannot check joinability start-
ing from any given ancestor state S, because in general there are infinitely many
such states. However for terminating programs, one can restrict the joinabil-
ity test to a finite number of “minimal” states, the so-called critical states as
explained below.
A CHR program is called terminating, if there are no infinite computations.
For many existing CHR programs simple well-founded orderings are sufficient
to prove termination [10]. In general, such orderings are not sufficient because
of non-trivial interactions between simplification and propagation rules. In this
paper we assume that the constraint solvers are terminating.



Definition 3. Let R1 be a simplification rule and R2 be a (not necessarily
different) rule, whose variables have been renamed apart. Let Hi ∧ Ai be the
head and Ci be the guard of rule Ri (i = 1, 2). Then a critical ancestor state of
R1 and R2 is

(H1 ∧ A1 ∧ H2 ∧ (A1=A2) ∧ C1 ∧ C2),

provided A1 and A2 are non-empty conjunctions and CT |= ∃((A1=A2) ∧ C1 ∧
C2).
Let S be a critical ancestor state of R1 and R2. If S 7→ S1 using rule R1 and
S 7→ S2 using rule R2 then the tuple (S1, S2) is a critical pair of R1 and R2.

The following theorem from [1, 5] gives a decidable, sufficient and necessary
condition for confluence of a terminating CHR program:

Theorem 1. A terminating CHR program is confluent iff all its critical pairs
are joinable.

Example 5. Recall the program for ≤ of Example 3. Consider a critical ancestor
state of r2 and r3 where A1 = A2 = X≤Y. This critical state is X≤Y ∧ Y≤X ∧ Y≤Z
and gives raise to the following critical pair

(S1, S2) = (X=Y ∧ X≤Z, X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z)

which is joinable: S1 is a final state, i.e. no further computation step is possible.
A computation beginning with S2 results in S1:
X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z 7→Simplify

X≤Z ∧ X≤Z ∧ X=Y 7→Simplify

X≤Z ∧ X=Y

2.4 Completion

Completion is the process of adding rules to a non-confluent program until it
becomes confluent. Rules are built from a non-joinable critical pair to allow a
transition from one of the states into the other while maintaining termination.
In contrast to other completion methods, in CHR we need in general more than
one rule to make a critical pair joinable: a simplification rule and a propagation
rule [2]. When these rules are added, new critical pairs may be produced, but
also old non-joinable critical pairs may be removed, because the new rules make
them joinable. Completion tries to continue introducing rules this way until the
program becomes confluent. The essential part of a completion algorithm is the
introduction of rules from critical pairs.

Definition 4. Let ≫ be a termination order and let (Cud1 ∧Cbi1 , Cud2 ∧Cbi2)
be a critical pair, where the states are ordered such that Cud1 is a non-empty
conjunction and Cud1 ≫ Cud2. Then the orientation of the critical pair results
in the rules:

Cud1 ⇔ Cbi1 | Cud2 ∧ Cbi2

Cud2 ⇒ Cbi2 | Cbi1

The second rule is needed if Cud2 is a non-empty conjunction and CT 6|= Cbi2 →
Cbi1.



Examples of completion will be shown in the next section of the paper. In these
examples, unless otherwise noticed, a simple termination order will suffice, where
C1 ≫ C2 if C1 = (C2 ∧ C), i.e. the conjunction C1 contains all conjuncts of C2

and more (C is non-empty).
In [2] it was shown that if the completion procedure stops successfully, then
the resulting program is well-behaved. But completion cannot always be suc-
cessful: completion is aborted if a critical pair cannot be transformed into rules.
Completion may not terminate, because new rules produce new critical pairs.

2.5 Operational Equivalence

The following definition clarifies when two programs are operationally equivalent:
if for each goal, all final states in one program are the same as the final states
in the other program.

Definition 5. Let P1 and P2 be programs. A state S is P1, P2-joinable, iff there
are two computations S 7→∗

P1
S1 and S 7→∗

P2
S2, where S1 and S2 are final states,

and S1 and S2 are identical up to renaming of variables and logical equivalence
of built-in constraints.

Definition 6. Let P1 and P2 be programs. P1 and P2 are operationally equiva-
lent if all states are P1, P2-joinable.

In [3], we gave a decidable, sufficient and necessary syntactic condition for op-
erational equivalence of well-behaved CHR programs: when testing operational
equivalence, similar to our confluence test, we can restrict ourselves to a finite
number of critical states that consist of the head and the guard of a rule. These
critical states are run in both programs, and their outcome must be the same.

Definition 7. Let P1 and P2 be programs. Then a critical state of P1 and P2

is defined as follows:

H ∧ C where (H ⊙ C B) ∈ P1 ∪ P2 and ⊙ ∈ { ⇔ , ⇒ }

Theorem 2. Two well-behaved programs P1 and P2 are operationally equiva-
lent iff all critical states of P1 and P2 are P1, P2-joinable.

Examples for operational equivalence can be found in the subsequent sections.

3 Tight Integration of CHR Constraint Solvers with

Completion

In the introduction, Example 1 illustrated that the union of two well-behaved
(i.e. terminating and confluent) programs is not necessarily well-behaved. Once
termination of the union has been established, we can use our confluence test
to check if the union of well-behaved programs is confluent again. We call such
programs “compatible”.



Definition 8. Let P1 and P2 be two well-behaved CHR programs and let the
union of the two programs, P1 ∪P2, be terminating. P1 and P2 are compatible if
P1 ∪ P2 is confluent.

The critical pairs of P1 ∪P2 are the critical pairs of P1 unioned with the critical
pairs of P2 unioned with critical pairs coming from one rule from P1 and one
rule from P2. Since P1 and P2 are already confluent, for compatibility it suffices
to check only those critical pairs coming from rules in different programs (cf.
proof of upcoming Theorem 3). In other words, the confluence test can be made
incremental in the addition of rules.
If the compatibility test succeeds, we can just take the union of the rules in the
two programs. This holds even for constraints that are fully or partially defined
in more than one of the programs which are merged.

Example 6. The well-behaved program P1 contains the following CHR rules
defining max, where max(X,Y,Z) means that Z is the maximum of X and Y:

max(X,Y,Z)⇔ X<Y Z=Y.

max(X,Y,Z)⇔ X≥Y Z=X.

whereas well-behaved P2 defines max by

max(X,Y,Z)⇔ X≤Y Z=Y.

max(X,Y,Z)⇔ X>Y Z=X.

Note that <, ≤, and ≥ are built-in constraints in this example.
In order to perform the union of the two programs, we check whether the def-
initions of max are compatible. There are three critical ancestor states coming
from one rule in P1 and one rule in P2:
max(X,Y,Z) ∧ X<Y ∧ X≤Y

max(X,Y,Z) ∧ X≥Y ∧ X≤Y

max(X,Y,Z) ∧ X≥Y ∧ X>Y

Since the critical pairs of these critical ancestor states are joinable, the two
definitions of max are compatible. Hence we can just take the union of the rules
and define max by all four rules.
Note that the constraint max is “operationally stronger” in P1 ∪P2 than in each
program alone, in the sense that more computation steps are possible: in P1∪P2

(and P1) we have the computation
max(X,Y,Z) ∧ X≥Y 7→P1∪P2

Z=X ∧ X≥Y

while in P2 the goal cannot reduce at all, it is a final state. But like P2, P1 is not
as strong as P1 ∪P2: the goal max(X,Y,Z) ∧ X≤Y is a final state in P1, while it
has a non-trivial computation in P1 ∪ P2 and P2.

Example 7. Here we consider a variation on a solver for max that does not use
any built-in constraints (except for implicit syntactical equality). We define max

with the inequalities as CHR constraints in two steps.
Given the constraint solver for ≤ (example 3), we add the following simplification
rule describing the interaction of max and ≤:



max1 @ max(X,Y,Z) ∧ X≤Y ⇔ Z=Y ∧ X≤Y.

The resulting solver is non-confluent. The critical ancestor state max(X,X,Z) ∧
X≤X of the rule max1 and of the reflexivity rule r1 of ≤ produces the non-joinable
critical pair (X=Z ∧ X≤X, max(X,X,Z)). We use completion to make the solver
confluent. For the above-mentioned critical pair it adds the rule:

max2 @ max(X,X,Z) ⇔ Z=X.

Now, we consider a solver for < which is well-behaved

X<X ⇔ false.
X<Y ∧ X<Y ⇔ X<Y.

X<Y ∧ Y<Z ⇒ X<Z.

and we add the rule describing the interaction of max and <:

max3 @ max(X,Y,Z) ∧ Y<X ⇔ Z=X ∧ Y<X.

The resulting solver remains well-behaved.
Finally, we union the solvers for ≤ and for < that have been extended by the
three rules for max, i.e. max1, max2, and max3. The union of these solvers is not
confluent. The completion method adds the following rule to make a non-joinable
critical pair stemming from the rules max1 and max3 joinable:

X≤Y ∧ Y<X ⇔ false.

The rules derived by completion revealed interesting properties of max, i.e. rules
max2 and max3, and the interaction of ≤ and <. The completed program is
well-behaved.

4 Modularity of Termination and Confluence

We have seen that well-behavedness is not modular, i.e. it is not preserved under
union of programs. We may ask ourselves if there are syntactic criteria for classes
of programs that admit modularity of well-behavedness. In this section we will
show that while for confluence, the answer is positive and simple (presupposing
termination), the situation seems very difficult for termination.
When the two solvers do not have any defined CHR constraints in common (i.e.
a CHR symbol occurring in the head of the rules in a solver does not occur in
the head of the rules in the other solver), we call them non-overlapping. Note
that non-overlapping solvers may have common (shared) CHR constraints and
function symbols and have common built-in constraints (by definition, at least
syntactical equality). We can show that the union of two non-overlapping well-
behaved solvers is always well-behaved if the union is terminating.

Theorem 3. Let P1 and P2 be two well-behaved CHR programs and let the
union of the two programs, P1 ∪ P2, be terminating. If P1 and P2 are non-
overlapping then P1 ∪ P2 is confluent.



Proof. To show that P1 ∪P2 is confluent, we only have to show that all critical
pairs of P1 ∪ P2 are joinable, since P1 ∪ P2 is terminating. The set of critical
pairs of P1 ∪ P2 consists of all critical pairs stemming from two rules appearing
in P1 (case 1. below), all critical pairs stemming from two rules appearing in P2

(case 2) and all critical pairs stemming from one rule appearing in P1 and one
rule appearing in P2 (case 3).

1. P1 is well-behaved, thus all critical pairs stemming from two rules appearing
in P1 are joinable. Therefore, these critical pairs are also joinable in P1 ∪P2.

2. Analogous to case 1.
3. Critical pairs from rules of different programs can only exist, if the head

of the rules have at least one constraint in common. Since P1 and P2 are
non-overlapping, there exists no critical pair stemming from one rule in P1

and one rule in P2. ⊓⊔

For modularity of termination, the situation seems very difficult: even if two
terminating programs do not have common CHR constraint symbols, their union
may be non-terminating.

Example 8. Consider the following two programs:

P1: c(f(X)) ⇔ X=g(Y) ∧ c(Y).

P2: d(g(Y)) ⇔ Y=f(Z) ∧ d(Z).

Any goal (of finite size) terminates in each of the two programs, but the goal
c(f(X)) ∧ d(X) does not terminate in the union of the programs (due to com-
mon function symbols).
c(f(X)) ∧ d(X) 7→Simplify

X=g(Y) ∧ c(Y) ∧ d(g(Y)) 7→Simplify

X=g(f(W)) ∧ Y=f(W) ∧ c(f(W)) ∧ d(W) 7→Simplify . . .

Actually, even if there are no common symbols in the program text, we may run
into trouble.

Example 9. The previous example can be rewritten such that instead of common
function symbols one uses built-in constraints to the same effect:

P1: c(FX) ⇔ f1(FX,X) | g1(X,Y) ∧ c(Y).

P2: d(GY) ⇔ g2(GY,Y) | f2(Y,Z) ∧ d(Z).

where f1(X, Y ) and f2(X, Y ) are both defined as X = f(Y ) in the constraint
theory for the built-in constraints and analogously for g1(X, Y ) and g2(X, Y ).
There are no common symbols in the CHR program itself, but only in the con-
straint theory. Any goal terminates in each of the two programs, but the goal
c(FX) ∧ f1(FX,X) ∧ d(X) does not terminate in the union of the programs.

Summarizing, as soon as there are common symbols, no matter if they are CHR
constraints, built-in constraints or function symbols (even when only shared in
the built-in constraint theories), termination is in danger. But any non-trivial
integration of constraint solvers will at least share some function symbols, oth-
erwise there could not be shared variables in goals, and without shared variables
there is no non-trivial communication between the solvers.



5 Cooperation Using Bridge Rules and Completion

In practice, one will often add to the union of non-overlapping solvers a few so-
called bridge rules. These are rules that may translate constraints from one solver
to constraints of the other solver to improve the overall solving power, i.e. more
propagation is possible. In general, they relate constraints from different solvers
to enable non-trivial cooperation. In other words, they define communication
between the solvers by sharing data (constraints).
When adding bridge rules, care has to be taken to maintain termination. On the
other hand, bridge rules can be used to re-introduce termination: we may make
a union of solvers terminating by renaming symbols apart and using bridge rules
to control the interaction between the solvers. In any case, terminating bridge
rules will typically cause non-confluence and thus will be the starting point for
completion.

Example 10. We want to build a Boolean constraint solver from a well-behaved
program P1 defining conjunction and a well-behaved program P2 defining im-
plication. In P1, the constraint and(X,Y,Z) stands for X ∧ Y ↔ Z and in P2,
imp(X,Y) stands for X → Y.

P1: and(X,X,Z) ⇔ X=Z.

and(X,Y,1) ⇔ X=1 ∧ Y=1.

and(X,1,Z) ⇔ X=Z.

and(X,0,Z) ⇔ Z=0.

and(1,Y,Z) ⇔ Y=Z.

and(0,Y,Z) ⇔ Z=0.

and(X,Y,Z) ∧ and(X,Y,Z1) ⇔ and(X,Y,Z) ∧ Z=Z1.

P2: imp(0,X) ⇔ true.
imp(X,0) ⇔ X=0.

imp(1,X) ⇔ X=1.

imp(X,1) ⇔ true.
imp(X,Y) ∧ imp(Y,X) ⇔ X=Y.

We add the following bridge rule:

and(X,Y,X) ⇔ imp(X,Y).

The program containing P1 and P2 together with the bridge rule is not confluent:
the critical pair (true, imp(X,X)) stemming from the critical ancestor state
and(X,X,X) of the first rule of and and the bridge rule is not joinable. Completion
generates the following rules from the non-joinable critical pairs:

imp(X,X) ⇔ true.
imp(X,Y) ∧ imp(X,Y) ⇔ imp(X,Y).

imp(X,Y) ∧ and(X,Y,Z) ⇔ imp(X,Y) ∧ X=Z.

Again, the automatically derived rules reveal interesting properties of the con-
straints.



6 Removal of Redundant Rules with Operational

Equivalence

Since propagation in a rule-based constraint solver corresponds to a fixpoint
computation with its rules, it is preferable to have a minimal number of rules
to accelerate the fixpoint computation and thus to improve the efficiency of
the constraint solver. A smart fixpoint engine may detect redundant rules at
run-time, but it is obviously cheaper to remove them at compile time or before.
We can use a variation of the operational equivalence test [3] between programs
to remove redundant rules from the (completed) union of constraint solvers.

Definition 9. A rule R is redundant in a CHR program P iff for all states S:
If S 7→∗

P
S1 then S 7→∗

P\{R} S2, where S1 and S2 are final states and S1 and
S2 are identical up to renaming of variables and logical equivalence of built-in
constraints.

Example 11. In example 6, the union of the two programs defining max

r1 @ max(X,Y,Z)⇔ X<Y Z=Y.

r2 @ max(X,Y,Z)⇔ X≥Y Z=X.

r3 @ max(X,Y,Z)⇔ X≤Y Z=Y.

r4 @ max(X,Y,Z)⇔ X>Y Z=X.

was operationally stronger than each program alone. However, the union contains
redundant rules. For example, rule r3 can always make a transition when rule
r1 does, with the same result, but not vice versa. Hence rule r1 is redundant,
and analogously for rule r4.

Redundant rules can be discovered using operational equivalence: We remove
one rule from the program and compare it with the original program. If the two
programs are operationally equivalent, then the rule was obviously redundant
and we can remove it. We continue until we have tried to remove all rules. The
final program found this way is not necessarily unique, since the result may
depend on the order in which rules are tried and removed.
However, Theorem 2 may not be applicable for our redundancy check: If we
remove a rule from a well-behaved program, it may become non-confluent. In
order to come up with a decidable rule redundancy test, we first have to test
confluence of the program without the candidate rule for redundancy. If the
program is not confluent, it cannot be operationally equivalent to the initial
program, and hence the candidate rule cannot be redundant. If the program is
confluent, we can and must check for operational equivalence.

Theorem 4. Let P be a well-behaved program. A rule R is redundant with
respect to P iff P\{R} is well-behaved and all critical states of P and P\{R}
are P, P\{R}-joinable.

Proof. ⇒ First, we prove the claim that P\{R} is well-behaved by contradic-
tion. Assumption: P\{R} is not well-behaved. We can distinguish two cases:



1. P\{R} is non-terminating, thus P is also non-terminating, which is a
contradiction to the fact that P is well-behaved.

2. P\{R} is non-confluent, thus there exists a state S such that S 7→∗
P\{R}

S1 and then S 7→∗
P\{R} S2, where S1 and S2 are final states, and S1 and

S2 are not identical up to renaming of variables and logical equivalence
of built-in constraints. R is redundant with respect to P , therefore there
exists a state S3 such that S 7→∗

P
S3, where S3 is a final state, and S3

and S1 as well as S3 and S2 are identical up to renaming of variables
and logical equivalence of built-in constraints. This is a contradiction to
the claim that S1 and S2 are not identical up to renaming of variables
and logical equivalence of built-in constraints.

Now we prove that all critical states of P and P\{R} are P, P\{R}-joinable.
R is redundant with respect to P , thus for all states S the following holds:
S 7→∗

P
S1 then S 7→∗

P\{R} S2, where S1 and S2 are final states and S1 and S2

are identical up to renaming of variables and logical equivalence of built-in
constraints. Therefore, all states are P, P\{R}-joinable. ⊓⊔

It is easy to see that we can specialize our operational equivalence test for re-
dundancy removal: We only have to check if the computation step due to the
candidate rule that is tested for redundancy can be performed by the remainder
of the program, but we do not have to consider any other rule prefixes.

Example 12. The critical states of the program P in Example 11 are

cs1: max(X,Y,Z) ∧ X<Y

cs2: max(X,Y,Z) ∧ X≥Y

cs3: max(X,Y,Z) ∧ X≤Y

cs4: max(X,Y,Z) ∧ X>Y

Note that any subset of the program in Example 11 is still well-behaved. A pro-
gram P\{R} (R ∈ {r1, r2, r3, r4}) obviously cannot contribute any new critical
states. So if we try to remove rule r1 we only have to check the critical state
from rule r1, that is cs1, by running it in both programs:

max(X,Y,Z) ∧ X<Y 7→P X<Y ∧ Z=Y by rule r1

max(X,Y,Z) ∧ X<Y 7→P\{r1} X<Y ∧ Z=Y by rule r3

Since rule r3 enables the same transition, rule r1 must be redundant. In an
analogous way, redundancy of rule r4 can be shown. Rule r2, however, is not
redundant:

max(X,Y,Z) ∧ X≥Y 7→P X≥Y ∧ Z=X by rule r2

max(X,Y,Z) ∧ X≥Y 67→P\{r2}

In program P\{r2}, the critical state is a final state. Hence (the only) redun-
dancy free program consists of the rules r2 and r3.



7 Conclusions

In this paper, we have shown that terminating and confluent, i.e. well-behaved
CHR constraint solvers can be merged provided termination is preserved: their
tight integration is the union of the rules, even if some constraints are fully or
partially defined and/or used in several solvers or program parts. In case that
the resulting solver becomes non-confluent, we use our completion method to
improve its behavior.
Non-overlapping solvers do not define common constraints but may freely share
them otherwise. We have shown that their union is always well-behaved if it
is terminating. We argued that a similar modularity result for termination is
likely to be very hard to obtain. Future work will investigate how to maintain
termination of the union, i.e. modularity results, trying to build on work in term
rewriting systems such as [17, 13, 6].
We have discussed bridge rules as a communication means to integrate solvers
with disjoint constraints utilizing completion. Finally, we have introduced a
method to remove redundant rules from a CHR solver using our operational
equivalence test and our confluence test to improve the efficiency of the CHR
solver. An implementation of the approach on the basis of our confluence testing
tool is certainly desirable to gain more practical experience.
For future work, we are also interested in general notions of confluence and com-
pletion, since we have found that on larger examples, their current requirements
are unnecessarily strict. A more efficient method for detecting and removing
redundant rules should be found.
Another open question is how the results that we obtained for CHR can be
transferred to rewrite systems and other rule-based languages. Our work could
serve as a starting point for developing a methodology for integration that is
supported by semi-automatic tools.
Last but not least we would like to thank the anonymous referees for often
detailed and crucial comments that helped to improve and clarify our paper.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Third International Conference on Principles and Practice of Constraint
Programming, CP97, LNCS 1330. Springer-Verlag, 1997.

2. S. Abdennadher and T. Frühwirth. On completion of constraint handling rules. In
4th International Conference on Principles and Practice of Constraint Program-
ming, CP98, LNCS 1520. Springer-Verlag, 1998.

3. S. Abdennadher and T. Frühwirth. Operational equivalence of constraint handling
rules. In Fifth International Conference on Principles and Practice of Constraint
Programming, CP99, LNCS. Springer-Verlag, 1999.

4. S. Abdennadher and T. Frühwirth. Using program analysis for integration and op-
timization of rule-based constraint solvers. In Onziemes Journees Francophones de
Programmation Logique et Programmation par Contraintes (JFPLC’2002), 2002.

5. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and semantics of con-
straint simplification rules. Constraints Journal, 4(2), May 1999.



6. T. Arts, J. Giesl, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

7. F. Baader and K. U. Schulz. Combining constraint solving. In Constraints in
Computational Logics, volume 2002 of Lecture Notes in Computer Science, pages
104–158. Springer, 2001.

8. C. Castro and E. Monfroy. Basic operators for solving constraints via collaboration
of solvers. In Proceedings of AISC 2000, LNAI 1930. Springer-Verlag, 2000.

9. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95–138, 1998.

10. T. Frühwirth. Proving termination of constraint solver programs. In E. M.
K.R. Apt, A.C. Kakas and F. Rossi, editors, New Trends in Constraints, LNAI
1865. Springer-Verlag, 2000.

11. T. Frühwirth. Constraint handling rules web pages, www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html, 2004.

12. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

13. B. Gramlich. On termination and confluence properties of disjoint and constructor-
sharing conditional rewrite systems. Theoretical Computer Science, 165(1):97–131,
1996.

14. L. Granvilliers, E. Monfroy, and F. Benhamou. Cooperative solvers in constraint
programming: A short introduction. In Workshop on Cooperative Solvers in Con-
straint Programming (CoSolv) at CP 2001, 2001.

15. P. Hofstedt. Better communication for tighter cooperation. In First Intl. Confer-
ence on Computational Logic (CL 2000), LNAI 1861. Springer-Verlag, 2000.

16. E. Monfroy. The constraint solver collaboration language of BALI. In Frontiers
of Combining Systems 2, Vol. 7 of Studies in Logic and Computation. Research
Studies Press/Wiley, 2000.

17. E. Ohlebusch. Modular properties of composable term rewriting systems. Journal
of Symbolic Computation, 20(1), 1995.

18. C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations
of satisfiability procedures. Theoretical Computer Science, 290(1):291–353, Jan.
2003.


