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{ Constraint combinators in cc(FD) [13] allow to build more complex con-straints from simpler constraints.{ Constraints connected to a Boolean variable in BNR-Prolog [2] and \nestedconstraints" [31] allow to express any logical formula over primitive con-straints.{ Indexicals in clp(FD) [5] allow to implement constraints over �nite domainsat a medium level of abstraction.{ Meta- and attributed variables [26], [21], [15] allow to attach constraints tovariables at a low level of abstraction.It should be noted that all the approaches but the last can only extend a solverover a given, speci�c constraint domain, typically �nite domains. The expressivepower to realize other (application-speci�c) constraint domains is only providedby the last approach.Attributed variables provide direct access storage locations for properties as-sociated with variables. When such variables are uni�ed, their attributes have tobe manipulated. Thus attributed variables make uni�cation user-de�nable [15],[16], [17]. Attributed variables require roughly the same implementation e�ortas hard-wired delay (suspension) and coroutining mechanisms found in earlierProlog implementations, while being more general. And indeed, attributed vari-ables nowadays serve as the primary low-level construct for implementing sus-pension (delay) mechanisms and constraint solver extensions in many constraintlogic programming languages, e.g. SICStus [4] and ECLiPSe [3] Prolog. How-ever writing constraints this way is tedious, a kind of \constraint assembler"programming.If there already is a powerful constraint assembler, one may wonder whatan associated high-level language could look like. Our proposal is a declara-tive language extension especially designed for writing constraint solvers, calledconstraint handling rules (CHR) [10], [12], [18], [11]. With CHR, one can intro-duce user-de�ned constraints into a given high level host language, be it Prologor Lisp. As language extension, CHR themselves are only concerned with con-straints, all auxiliary computations are performed in the host language. CHRhave been used in dozens of projects worldwide to encode dozens of constrainthandlers (solvers), including new domains such as terminological and temporalreasoning. If comparable hard-wired constraint solvers are available, the price topay for the 
exibility of CHR is often within an order of magnitude in runtime.The performance gap can in many cases be eliminated by tailoring the CHRconstraints to the speci�cs of the class of applications at hand.CHR is essentially a committed-choice language consisting of guarded rulesthat rewrite constraints into simpler ones until they are solved. CHR can de�neboth simpli�cation of and propagation over user-de�ned constraints. Simpli�ca-tion replaces constraints by simpler constraints while preserving logical equiva-lence. Propagation adds new constraints which are logically redundant but maycause further simpli�cation. CHR can be seen as a generalization of the variousCHIP [6] constructs for user-de�ned constraints.



In contrast to the family of the general-purpose concurrent logic program-ming languages [29], concurrent constraint languages [28] and the ALPS [23]framework, CHR are a special-purpose language concerned with de�ning declar-ative objects, constraints, not procedures in their generality. In another sense,CHR are more general, since they allow for multiple heads, i.e. conjunctions ofconstraints in the head of a rule. Multiple heads are a feature that is essentialin solving conjunctions of constraints. With single-headed CHR alone, unsatis-�ability of constraints could not always be detected (e.g X<Y,Y<X) and globalconstraint satisfaction could not be achieved. The probably most distinguish-ing functionality of CHR is that they act as a powerful iteration, retrieval, andupadte mechanism over the constraint store, a data structure holding constraints.The �rst implementation of CHR in 1991 was an interpreter written inECLiPSe Prolog. Then, the CHR language has been implemented in 1993 inCommon LISP at the German Research Institute for Arti�cial Intelligence [14]and in 1994 as a library of ECLiPSe [9], [10]. A CHR interpreter was writtenin the concurrent logical object-oriented constraint language OZ [32] in 1996.Independent of our work, a new experimental prototype of CHR has been im-plemented recently in ECLiPSe 4.0 [30].CHR are typically realized as a library containing a compiler, runtime systemand solvers written in CHR. With Prolog as the host language, the idea is torealize the CHR constraint store through attributed variables. Rule applicationcompiles into Prolog clauses which inspect and update the constraint store atruntime. Thus CHR can also be understood as a powerful means to manipulatethe attributes of variables in a declarative high-level fashion. In this paper weintroduce the most recent and advanced implementation of CHR in SICStusProlog [18], which improves both on the previous implementation [10] in termsof completeness, 
exibility and e�ciency and on the principles that should guidesuch an implementation [9]. The new release also includes about 30 constraintsolvers written in CHR.For the user, the new release of CHR improves over older versions in thefollowing aspects:{ The number of heads in a rule is no longer limited to two.{ Guards now with Ask and Tell as in concurrent constraint languages.{ Code runs generally about twice as fast as in older versions.{ For more control, rules are compiled in textual order.{ Compilation is now transparent to the user, on-the-
y when loading.{ Improved set of built-in predicates for advanced CHR users.{ Constant time access to constraints of one type for elevated performance.{ New options and pragmas for powerful compiler optimizations.{ Runtime system includes a stepper for Prolog-like debugging.Similar issues, i.e. compilation of committed-choice languages into Prolog,have been investigated before, be it translating GHC [33], implementations ofdelay declarations [25] or the e�cient implementation of QD-Janus [8]. Today, webene�t from more powerful programming constructs, in particular customizablesuspension mechanisms provided by attributed variables. CHR speci�c topicsare multiple heads and propagation rules.



Overview of this Paper We quickly recapture syntax and semantics for CHR.Then we describe the three phases of the new compilation scheme and the run-time system for CHR. We conclude with a comparison with the previous imple-mentation. This paper is a revised version of [19].An example will guide us through the paper. Even though it does not de�nea typical constraint, we chose it for didactic reasons. It is small but can stillillustrate the various stages of our compilation scheme. We use Prolog syntax inthis paper.Example 1 (Primes).We implement the sieve of Eratosthenes to compute primesin a way reminiscent of the \chemical abstract machine" [1]: The constraintcandidates(N) generates candidates for prime numbers, prime(M), where M isbetween 1 and N. The candidates react with each other such that each numberabsorbs multiples of itself. In the end, only prime numbers remain.candidates(1) <=> true.generate @ candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M).sieve @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.The �rst rule says that the number 1 is not a good candidate for a prime,candidates(1) is thus rewritten into true, a constraint that is always satis�edand therefore it has no e�ect. Note that head matching is used in CHR so the�rst rule will only apply to candidates(1). A constraint for candidates witha free variable, like candidates(X), will suspend (delay).The generate rule generates a candidate prime(N) and proceeds recursivelywith the next smaller number, provided the guard (precondition, test) N>1 issatis�ed.The third, multi-headed rule named sieve reads as follows: If there is aconstraint prime(I) and some other constraint prime(J) such that J mod I=:= 0 holds, i.e. J is a multiple of I, then keep prime(I) but remove prime(J)and execute the body of the rule, true.2 Syntax and SemanticsWe assume some familiarity with (concurrent) constraint (logic) programming,e.g. [29], [13], [28], [22], [24]. As a special purpose language, CHR extend a hostlanguage with (more) constraint solving capabilities. Auxiliary computations inCHR programs are executed as host language statements. Here the host lan-guage is (SICStus) Prolog. For more formal and detailed syntax and semanticsof constraint handling rules see [12], [11].2.1 SyntaxDe�nition 1. There are three kinds of CHR. A simpli�cation CHR is of theform11 For simplicity, we omit syntactic extensions like pragmas which are not relevant forthis paper.



[Name '@'] Head1,...,HeadN '<=>' [Guard '|'] Body.where the rule has an optional Name, which is a Prolog term, and the multi-head Head1,...,HeadN is a conjunction of CHR constraints, which are Prologatoms. The guard is optional; if present, Guard is a Prolog goal excluding CHRconstraints; if not present, it has the same meaning as the guard 'true |'. Thebody Body is a Prolog goal including CHR constraints.A propagation CHR is of the form[Name '@'] Head1,...,HeadN '==>' [Guard '|'] Body.A simpagation CHR is a combination of the above two kinds of rule, it is ofthe form[Name '@'] Head1,...'\'...,HeadN '<=>' [Guard '|'] Body.where the symbol '\' separates the head constraints into two nonempty parts.A simpagation rule combines simpli�cation and propagation in one rule. Therule HeadsK \ HeadsR <=> Body is equivalent to the simpli�cation rule HeadsK,HeadsR <=> HeadsK, Body, i.e. HeadsK is kept while HeadsR is removed. How-ever, the simpagation rule is more compact to write, more e�cient to executeand has better termination behaviour than the corresponding simpli�cation rule.2.2 SemanticsDeclaratively2, a rule relates heads and body provided the guard is true. Asimpli�cation rule means that the heads are true if and only if the body issatis�ed. A propagation rule means that the body is true if the heads are true.In this paper, we are interested in the operational semantics of CHR inactual implementations.A CHR constraint is implemented as both code (a Prologpredicate) and data (a Prolog term) in the constraint store, which is a datastructure holding constraints. Every time a CHR constraint is posted (executed)or woken (reconsidered), it triggers checks to determine the applicability of therules it appears in. Such a constraint is called (currently) active, while the otherconstraints in the constraint store that are not executed at the moment are called(currently) passive.Heads. For each CHR, one of its heads is matched against the constraint.Matching succeeds if the constraint is an instance of the head, i.e. the head servesas a pattern. If a CHR has more than one head, the constraint store is searchedfor partner constraints that match the other heads. If the matching succeeds,the guard is executed. Otherwise the next rule is tried.Guard. A guard is a precondition on the applicability of a rule. The guardeither succeeds or fails. A guard succeeds if the execution succeeds without2 Unlike general committed-choice programs, CHR programs can be given a declarativesemantics since they are only concerned with de�ning constraints, not procedures intheir generality.



causing an instantiation error3 and without touching a variable from the heads.A variable is touched if it takes part in a uni�cation or gets more constrained bya built-in constraint. If the guard succeeds, the rule applies. Otherwise it failsand the next rule is tried.Body. If the �ring CHR is a simpli�cation rule, the matched constraintsare removed from the store and the body of the CHR is executed. Similarly fora �ring simpagation rule, except that the constraints that matched the headspreceding '\' are kept. If the �ring CHR is a propagation rule the body ofthe CHR is executed without removing any constraints. It is remembered thatthe propagation rule �red, so it will not �re again (and again) with the sameconstraints. Since the currently active constraint has not been removed, the nextrule is tried.Suspension. If all rules have been tried and the active constraint has notbeen removed, it suspends (delays) until a variable occurring in the constraintis touched. Here suspension means that the constraint is inserted into the con-straint store as data.3 The CompilerThe compiler is written in (SICStus) Prolog [18] and translates CHR into Pro-log on-the-
y, while the �le is loaded (consulted). Its kernel consists of a de�niteclause grammar that generates the target instructions (clauses) driven by tem-plates. We will use example 1 to explain the three phases of the compiler: (1)Parsing, (2) translating CHR into clauses using templates and (3) partial eval-uation using macros. Of course, phase (2) is the essential one that encodes thealgorithm.3.1 Parsing PhaseUsing the appropriate operator declarations, a CHR can be read and written as aProlog term. Hence parsing basically reduces to computing information from theparse tree and to producing a canonical form of the rules. Information neededfrom the parse tree includes:{ The set of global variables, i.e. those that appear in the heads of a rule.{ The set of variables shared between the heads.In the canonical form of the rules,{ each rule is associated with a unique identi�er,{ rule heads are collected into two lists (named Keep and Remove), and{ guard and body are made explicit with defaults applied.3 A built-in predicate of Prolog complains about free variables where it needs instan-tiated ones.



One list, called Keep, contains all head constraints that are kept when the ruleis applied, the other list, called Remove, contains all head constraints that areremoved. Lists may be empty. As a result of this representation, simpli�cation,propagation and simpagation rules can be treated uniformly.Example 2 (Primes, contd.). The canonical form of the rules for the prime num-ber example is given below.% rule(Id,Keep, Remove, Guard, Body)rule( 1,[], [candidates(1)], true, true).rule( 2,[], [candidates(A)], A>1, (B is A-1,prime(A),candidates(B))).rule( 3,[prime(A)],[prime(B)], B mod A =:= 0, true).3.2 Translation PhaseEach CHR constraint compiles into Prolog clauses that try the constraint withall rules in whose heads it occurs. The resulting compilation process is nonlocal inthe sense that a CHR constraint may appear in various head positions in variousrules. Each occurrence of a CHR constraint in the head of a rule gives rise toone clause for that constraint. The clause head contains the active constraint,while the clause body does the following:{ match formal parameters to actual arguments of head constraint{ �nd and match partner constraints{ check the guard{ commit via cut{ remove matched constraints if required{ execute body of ruleWe �rst illustrate the compilation with a simple example, a single-headedsimpli�cation CHR, then we consider general cases of arbitrary multi-headedrules.Example 3 (Primes, contd.). For the constraint candidates/1 the compiler gen-erates the following intermediate code (edited for readability).% in rule candidates(1) <=> truecandidates(A) :- % 1match([1], [A]), % 2check_guard([], true), % 3!, % 4true. % 5% in rule candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M)candidates(A) :- % 6match([C], [A]), % 7



check_guard([C], C>1), % 8!, % 9D is C-1, % 10prime(C), % 11candidates(D). % 12% if no rule applied, suspend the constraint on its variablescandidates(A) :- % 13suspend(candidates(A)). % 14The predicate match(L1,L2) matches the actual arguments L2 against theformal parameters L1. The predicate check guard(VL,G) checks the guard G.check guard/2 fails as soon as the global variables (list VL) are touched4.When no rule applied, the last clause inserts the constraint into the constraintstore using a suspension mechanism. It allocates the suspension data structureand associates it with each variable occurring in the constraint. Touching anysuch variable will wake the constraint.The real challenge left is to implement multi-headed CHR. In a naive imple-mentation of a rule, the constraint store is queried for the cross-product of match-ing constraints. For each tuple in the cross-product the guard is checked in thecorresponding environment. If the guard is satis�ed, constraints that matchedheads in the Remove list are removed from the store and the instance of the rule'sbody is executed. Note that the removal of constraints removes tuples from thecross-product.Our implementation computes only those tuples in the cross-product thatare really needed (as in [9]). Moreover, nondeterministic enumeration of theconstraints is preferred over deterministic iteration whenever possible, becauseProlog is good at backtracking [20].For each head constraint in a rule the compiler does the following: It is deletedfrom the Keep or Remove list, respectively, and it is rendered as the active one.Whether the active constraint is removed when the rule applies, and whetherany other head constraints are removed, leads to the following three prototypicalcases, each covered by a code generating template in the compiler:1. Case Active constraint from Remove list2. Case Active constraint from Keep list, Remove list nonempty3. Case Active constraint from Keep list, Remove list emptyInterestingly, the three cases do not directly correspond to the three kinds ofCHR.Case 1. Active constraint from Remove list The active head constraintis to be removed if the rule applies, so the rule under consideration is eithera simpli�cation or simpagation rule. It can be applied at most once with the4 In most Prolog implementations, it is more e�cient to re-execute head matching andguards instead of suspending all of them and executing them incrementally.



current active constraint. The search for the partner constraints in this case canbe done through nondeterministic enumeration. Here is the template as DCGgrammar rule, slightly abridged. The predicate ndmpc generates the code tonondeterministically enumerate and match the partners, one by one.compile(remove(Active), Remove, Keep, Guard, Body, ...) -->% compiler code{ Active =.. [_|Args],same_length(Args, Actual),...ndmpc(Remove, RemoveCode, RemCs, ...),ndmpc(Keep, KeepCode, ...)},% generated code[(constraint(head(F/A,R-N), args(Actual)) :-match(Args, Actual),RemoveCode, % Identify Remove partnersKeepCode, % Identify Keep partnerscheck_guard(Vars, Guard),!,remove_constraints(RemCs),Body)].The variables F,A,R and N stand for functor, arity of the constraint, ruleidenti�er and number of head in rule, respectively.Example 4 (Primes, contd.). The second occurrence of prime/1 in rule 3 of Ex-ample 1 matches this template, and here is its instantiation:% prime(I) \ prime(J) <=> J mod I =:= 0 | true.constraint(head(prime/1,3-2), args([A])) :-match([C], [A]),% RemoveCode (for one partner constraint)get_constr_via([], Constraints),nd_init_iteration(Constraints, prime/1, Candidate),get_args(Candidate, [F]),match([C]-[G], [C]-[F]),% KeepCode (no partner constraints to be kept in this case)true,% Guardcheck_guard([G,C], (C mod G =:= 0)),!,remove_constraints([]), % no constraints to remove here% Bodytrue.



The predicate get constr via(VL,Cs) returns a handle Cs to the constraintssuspended on a free variable occurring in the list VL. If there is no variable in VL,it returns a handle to all the constraints in the store. nd init iteration(Cs,F/A, Candidate) nondeterministically returns a candidate constraint with func-tor F and arity A through the handle Cs.Case 2. Active constraint from Keep list, Remove list nonempty Thiscase applies only if there is at least one constraint to be removed, but the ac-tive constraint will be kept. It can only originate from a simpagation rule. Sincethe active constraint is kept, one has to continue looking for applicable rules,even after the rule applied. However, since at least one partner constraint willhave been removed, the same rule will only be applicable again with anotherconstraint from the store in place of the removed one. Therefore, we can de-terministically iterate over the constraints that are candidates for matching thecorresponding head from Remove, while the remaining partners can be found vianondeterministic enumeration as before. At the end of the iteration, we have tocontinue with the remaining rules for the active constraint.Example 5 (Primes, contd.). For space reasons, we just present a simple instanceof the template, originating from the �rst occurrence of prime/1 in rule 3 (forreadability with the predicate already 
attened, as described in Section 3.3):% rule prime(I) \ prime(J) <=> J mod I =:= 0 | true.prime(A, B) :-get_constr_via([], C), % get constraints from storeinit_iteration(C, prime/1, D), % get partner candidates!,prime(D, B, A). % try to apply the ruleprime(A, B, C) :-iteration_last(A), % no more partner candidateprime_1(C, B). % try next rule headprime(A, B, C) :-iteration_next(A, D, E), % try next partner candidate( get_args(D, [F]),match([C]-[G], [C]-[F]),check_guard([C,G], (G mod C =:= 0))-> % rule appliesremove_constraints([D]), % remove the partner from store; true % rule did not apply), % in any case, try same ruleprime(E, B, C). % with another partner candidateprime_1(C, B) :- ... % code to try next rule headCase 3. Active constraint from Keep list, Remove list empty This caseoriginates from propagation rules. Since no constraint will be removed, all pos-sible combinations of matching constraints have to be tried. The rule under



consideration may apply with each combination. Therefore, all the partners (notjust one as in the previous case) have to be searched through nested determinis-tic iteration. No matter if and how often the rule was applicable, at the end wehave to continue with the remaining rules for the active constraint as in Case 2.Example 6. This propagation rule is part of an interval solver. X::Min:Max con-strains X to be within lower and upper bounds Min and Max.X le Y, X::MinX:MaxX, Y::MinY:MaxY ==> X::MinX:MaxY, Y::MinX:MaxY.The propagation rule produces roughly the following code for X le Y.X le Y :- le_1(X, Y).le_1(X, Y) :- % active constraint (X le Y)get_constr_via([X], CXs), % get constraints on Xinit_iteration(CXs, ::/2, PCXs), % get partner candidates!,le_1_0(PCXs, X, Y). % try to apply the rulele_1(X, Y) :- % rule was not applicable at allle_2(X, Y). % continue with next rulele_2(X, Y) :- % no next rulesuspend(X le Y). % done, suspend the constraintle_1_0(PCXs, X, Y) :- % outer loop for X::MinX:MaxXiteration_last(PCXs), % no more partner candidatele_2(X, Y). % continue with next rulele_1_0(PCXs, X, Y) :-iteration_next(PCXs, CX, PCXs1), % try next partner candidate for X( get_args(CX,...), match(...),% match argumentsget_constr_via([Y], CYs), % constraints on Y for next headinit_iteration(CYs, ::/2, PCYs)-> le_1_1(PCYs, PCXs1, X, Y) % try to apply the rule; le_1_0(PCXs1, X, Y) % try next partner candidate for X).le_1_1(PCYs, PCXs, X, Y) :- % inner loop for Y::MinY:MaxYiteration_last(PCYs), % no more partner candidate for Yle_1_0(PCXs, X, Y). % continue with outer loop for Xle_1_1(PCYs, PCXs, X, Y) :-iteration_next(PCYs, CY, PCYs1), % try next partner candidate for Y( get_args(CY,...), match(...),% match arguments-> % rule applies finallyX::MinX:MaxY, Y::MinX:MaxY,% rule bodyle_1_1(PCYs1, PCXs, X, Y) % continue, find another Y partner; % rule did not applyle_1_1(PCYs1, PCXs, X, Y) % continue, find another Y partner).



3.3 Partial Evaluation PhaseThe translation granularity was chosen so that the generated code would roughlyrun as is, with little emphasis on e�ciency coming from local optimizations andspecializations. These are performed in the �nal, third phase of the compilerusing a simple instance of partial evaluation (PE). It is performed by usingmacros as they are available in most Prolog systems, e.g. [4]. In contrast toapproaches that address all aspects of a language in a partial evaluator such asMixtus [27], our restricted form of PE can be realized with an e�ciency thatmeets the requirements of a production compiler.The functionalities of the main compiler macros:{ The generic predicates steering the iteration over partner constraints arespecialized with respect to a particular representation of these multi sets.{ Recursions (typically iterations over lists) that are de�nite at compile timeare unfolded at compile time.{ As in [33], head matching is specialized into uni�cation instructions guardedby nonvar/1 tests.{ The intermediate code uses redundant function symbols for the convenienceof the compiler writers, e.g. to keep object, compiler and runtime-systemvariables visually apart. The redundant function symbols also help in type-checking the compiler. Redundant function symbols are absent in the targetcode. In particular, clause heads are 
attened to facilitate clause indexing.For example, constraint(head(prime/1,3-2), args([A])) will be trans-formed into something like prime1 3 2(A).Example 7 (Primes, contd.). The macro expansion phase results in the followingcode for our example 3. The code for matching and guard checking has been in-lined. The resulting trivial matchings (line 7), guards (line 3) and bodies (line5) have been removed by PE.% rule candidates(1) <=> true.candidates(A) :- % 1A==1, % 2!. % 4% rule candidates(N) <=> N>1 | M is N-1, prime(N), candidates(M).candidates(A) :- % 6nonvar(A), % 8A>1, % 8!, % 9B is A-1, % 10prime(A), % 11candidates(B). % 12candidates(A) :- % 13suspend(candidates(A)). % 14



4 The Runtime SystemThe code generated by the compiler utilizes Prolog since CHR compile intoclauses. Thus e.g. memory management is already taken care of. There are how-ever functionalities that are not provided directly by most Prolog implementa-tions:{ We need means to suspend, wake and re-suspend constraint predicates.{ We need e�cient access to suspended constraints in the store through dif-ferent access paths.The vanilla suspension mechanisms used by earlier CHR implementations ad-dressed the �rst issue above, but did not optimize re-suspension. The secondissue was partially ignored in that plain linear search in (parts of) the constraintstore was used.4.1 SuspensionsTypically, the attributes of variables are goals that suspend on that variable.They are re-executed (woken) each time one of their variables is touched. Viathe attributed variables interface as found in SICStus or ECLiPSe Prolog the be-haviour of attributed variables under uni�cation is speci�ed with a user-de�nedpredicate. In the CHR implementation, suspended goals are our means to storeconstraints.In more detail, the components of the CHR suspension data structure are:{ Constraint goal{ State of constraint{ Unique identi�er{ Propagation history{ Re-use counterThe state indicates if the constraint is active or passive.5 The unique iden-ti�er is used, together with the propagation history, to ensure termination forpropagation rules. Each propagation rule �res at most once for each tuple formedby the set of matched head constraints. The re-use counter is incremented withevery re-use of the suspension. It is used for pro�ling and some more subtleaspects of controlling rule termination outside the scope of this paper.To optimize re-suspensions, we made the suspension itself an argument of there-executed goal. Internally, each constraint has an additional argument. When�rst executed, the argument is a free variable. When the constraint suspends,this extra argument is bound to the suspension itself. When it runs again, thesuspension mechanism now has a handle to the suspension and can update itsstate. Traces of this mechanism were removed from the listed code samples inthis paper to avoid confusion.5 In actuality the granularity of states and transitions is more copious. The additionalmechanics mainly address lazy constraint removal to anticipate the possibility ofsubsequent constraint re-introduction.



4.2 Access PathsWhen a CHR searches for a partner constraint, a variable common to twoheads of a rule considerably restricts the number of candidate constraints tobe checked, because both partners must be suspended on this variable. Thuswe usually access the constraint store by looking at only those constraints (cf.get constr via/2). We also know functor and arity of the partner. Conse-quently, we want direct access to the set of constraints of given functor/arity.Earlier implementations performed this selection by linear search over a part ofthe suspended constraints.Access to data through a variable, and then functor/arity, is exactly thefunctionality provided e�ciently by attributed variables. In our runtime systemwe map every functor/arity pair to a �xed attribute slot of a variable at com-pile time yielding constant time access to the constraints of one type. Only thearguments need to be matched at runtime.5 Preliminary EmpiricsBenchmarks are di�cult, because the new implementation is in SICStus Pro-log, while the previous one was in ECLiPSe Prolog. Attributed variables areimplemented di�erently in these Prologs. That said, our inchoate measurementsindicate that the new compiler produces code that is roughly twice as fast. Specif-ically, we compared our new SICStus 3#7 CHR implementation with the onein distribution with ECLiPSe 3.5.2, measuring the variation between the twoProlog implementations together with the actual CHR implementation di�er-ences. Times are given in seconds. ECLiPSe and SICStus were run on the samemachine (a Sun workstation). In ECLiPSe, the solvers were compiled withoutdebugger hooks6. We have two columns for SICStus: one for native code, one foremulated code. The last column relates emulated SICStus and ECLiPSe.Benchmark SICStus a) SICStus b) ECLiPSe ratio a=bnative emulatedsolver booldeussen1 ulm027r1, all solutions 0.370 0.470 0.900 0.52schur(10, ), all solutions 1.020 1.300 2.584 0.50schur(13, ), 1st solution 0.230 0.290 1.233 0.24schur(13, ), all solutions 2.040 2.520 7.483 0.34bnqueens(8,L), 1st solution 1.240 1.500 9.817 0.15testbl(5,L), all solutions 0.750 0.900 1.467 0.61solver listsword problem, 1st solution 0.380 0.460 0.633 0.73word problem, 2nd solution 2.940 3.660 4.717 0.78The new CHR version was faster on all examples, the ratio new vs. old rangingfrom 0:15 to 0:78, averaging 0:5 with a standard deviation of 0:2. The boolean6 Option nodbgcomp.



constraint solver features several di�erent kinds of constraints and consequentlybene�ts more from the new data structures than the solver for lists (that basicallyallows for equality between concatenations of lists).Most problems are well-known from the literature: The Deussen problemulm027r1 was originally provided by Mark Wallace, Schur's lemma and Booleann-queens by Daniel Diaz. The �nal one is a puzzle of unknown origin postedby Bart Demoen in the newsgroup comp.lang.prolog. The word problem wasprovided by Klaus Schulz.6 ConclusionsWith the CHR system outlined in this paper we aimed at improvements in termsof completeness, 
exibility and e�ciency.With regard to completeness some former limitations were removed:{ The number of heads in a rule is no longer limited to two. The restrictionwas motivated originally by e�ciency considerations since more heads needmore search time. One can encode rules with more than two heads usingadditional auxiliary intermediate constraints. But then, the resulting rulesare not only hard to understand, they are also less e�cient than a true multi-headed implementation. In addition, rules apply now in textual order, whichgives the programmer more control.{ Guards now support Ask and Tell [28]. In this way, CHR can also be usedas a general-purpose concurrent constraint language. (In this paper we onlyconsidered Ask parts of guards.){ Due to space limitations we also have not discussed options and pragmasin this paper - these are annotations to programs, rules or constraints thatenable the compiler to perform powerful optimizations, that can sometimesmake programs terminate or reduce their complexity class.The gain in 
exibility of the implementation proper can be attributed to thefollowing facts:{ The CHR compiler has been \orthogonalized" by introducing three clearlyde�ned compilationphases. Compilation is now on-the-
y, while loading. Thetemplate-based translation with subsequent macro-based partial evaluationallows for easy experimentation with di�erent translation schemata. It cre-ated the elbow room for a rather quick implementation of various compileroptions and pragmas. The system was implemented in four man-months.The compiler is 1100 lines of Prolog, the runtime system around 600, whichtogether is less than half of the ECLiPSe implementation.{ CHR speci�c demands, such as access paths and suspension recycling, aretaken care of explicitly through customized versions of the suspension mech-anism.{ Attributed variables let us e�ciently implement the generalized suspensionmechanism needed for CHR at the source level. In particular, constant time
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