
Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Parallelizing Union-Find in Constraint Handling
Rules Using Confluence Analysis

Thom Frühwirth

Faculty of Computer Science
University of Ulm, Germany

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

ICLP 2005, Barcelona, October 2005

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Motivation

Classical optimal union-find algorithm [Tarjan+, JACM 31(2)]
implementable in CHR with optimal time complexity [Schrijvers+,
WCLP’05,TPLP].

Parallel implementation? Hard problem:

No parallel computation model for CHR.

Optimal union-find hard to parallelize.

Parallel code close to sequential one.

Semi-automatic confluence analysis of sequential program helps to derive
parallel program.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR)

Constraint programming language for Computational Logic

Multi-headed guarded committed-choice rules
transform multi-set of constraints until exhaustion

Ideal for executable specifications and rapid prototyping

All algorithms implementable with optimal time and space
complexity

Incrementality and concurrency for free (on-line, any-time)

Logical and operational semantics coincide strongly

High-level supports program analysis and transformation:
Confluence/completion, termination/time complexity, correctness...

Implemenations in most Prolog systems, Java, Haskell

100s of applications from types, time tabling to cancer diagnosis

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to Prolog,
CHR constraints evaluated depth-first from left to right and rules applied
top-down in program text order.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to Prolog,
CHR constraints evaluated depth-first from left to right and rules applied
top-down in program text order.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to Prolog,
CHR constraints evaluated depth-first from left to right and rules applied
top-down in program text order.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).

Simplify

If (H ⇔ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ G ∧ H=H ′ ∧ B

Propagate

If (H ⇒ C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin → ∃x̄(H=H ′ ∧ C)
then H ′ ∧ G 7→ H ′ ∧ G ∧ H=H ′ ∧ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to Prolog,
CHR constraints evaluated depth-first from left to right and rules applied
top-down in program text order.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Parallelism for CHR

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps, similar to e.g. [Saraswat+,
POPL’90/’91].

Instantaneous rule applications assumed.

Monotonicity of CHR (Theorem)

A 7→ B
A ∧ C 7→ B ∧ C

Applicable rule remains applicable in any larger context.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Parallelism for CHR

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps, similar to e.g. [Saraswat+,
POPL’90/’91].

Instantaneous rule applications assumed.

Trivial Confluence of CHR (Corollary)

A 7→ B
C 7→ D
A ∧ C 7→ S 7→ B ∧ D
(S either A ∧ D or B ∧ C)

Rule applications on different parts of goal can be exchanged.
Rule applications from different goals can be composed.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Parallelism for CHR

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps, similar to e.g. [Saraswat+,
POPL’90/’91].

Instantaneous rule applications assumed.

Weak Parallelism of CHR (Definition)

A 7→ B
C 7→ D
A ∧ C 7→ B ∧ D

Parallel rule applications to different parts.
Parallel short-cut justified by trivial confluence.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Constraint Handling Rules (CHR)

Parallelism for CHR

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps, similar to e.g. [Saraswat+,
POPL’90/’91].

Instantaneous rule applications assumed.

Strong Parallelism of CHR (Corollary)

A ∧ E 7→ B ∧ E
C ∧ E 7→ D ∧ E
A ∧ E ∧ C 7→ B ∧ E ∧ D

Parallel rule applications to overlapping parts, if overlap kept.
Derived from weak parallelism and monotonicity.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Basic Union-Find in CHR

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Maintain disjoint sets under set union.
- Sets implemented as trees, nodes are set elements.
- Root is representative of the set.
- Union updates root, changes representative.
Tree data constraints: root/1 and ~>/2 (points to).
Allowed query: sequence of make, union operations.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Basic Union-Find in CHR

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

make(a), make(b), union(a,b), find(b,X).
| make
root(a), make(b), union(a,b), find(b,X).

| make
root(a), root(b), union(a,b), find(b,X).

| union
root(a), root(b), find(a,U), find(b,V), link(U,V), find(b,X).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Basic Union-Find in CHR

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

root(a), root(b), find(a,U), find(b,V), link(U,V), find(b,X).
| findRoot

root(a), root(b), U=a, find(b,V), link(U,V), find(b,X).
| findRoot

root(a), root(b), U=a, V=b, link(U,V), find(b,X).
| link

root(a), U=a, V=b, V ~> U, find(b,X).
Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Basic Union-Find in CHR

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

root(a), U=a, V=b, V ~> U, find(b,X).
| findNode

root(a), U=a, V=b, V ~> U, find(a,X).
| findRoot

root(a), U=a, V=b, V ~> U, X=a.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Confluence for Parallelism

Maximize independence, non-intereference of rule applications.
Avoid waiting and deadlocks. Robust against local failures.

make(a), make(b), union(a,b), find(b,X).
| make | make | union
root(a), root(b), find(a,U), find(b,V), link(U,V), find(b,X).

| findRoot | findRoot | findRoot
root(a), root(b), U=a, V=b, link(U,V), X=b.

| link
root(a), U=a, V=b, V ~> U, X=b.

Note that X=b, it was X=a before.
Result depends on order of rule applications.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Confluence

Result of a query is always the same, no matter which of the applicable
rules are applied.

A 7→ B
A 7→ C
B 7→∗ D
C 7→∗ D

⇒ Independence from the order in which constraints processed.
⇒ Consistency of logical reading of the program.
Decidable, sufficient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

Critical pair results from applying two rules to an overlap.
Overlap takes both rule heads and guards, shares some CHR constraints.
Confluence checker available.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Non-Confluence of Basic Sequential Union-Find

Found 8 non-joinable critical pairs [Schrijvers+, WCLP’05].

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Incompatible tree constraints, trivial (3), e.g.

root(A),A~>B,find(A,X)
findRoot / \ findNode

root(A),A~>B,X=A root(A),A~>B,find(B,X)

Not possible for allowed queries.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Non-Confluence of Basic Sequential Union-Find

Found 8 non-joinable critical pairs [Schrijvers+, WCLP’05].

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Pending competing links, non-trivial (4), e.g.

root(A),root(B),link(B,A),link(A,B)
link / \ link

root(B),A~>B,link(A,B) root(A),link(B,A),B~>A

Deadlock for linking possible.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Non-Confluence of Basic Sequential Union-Find

Found 8 non-joinable critical pairs [Schrijvers+, WCLP’05].

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Relative order of find and link, non-trivial (1)

find(B,A),root(B),root(C),link(C,B)
findRoot / \ link

link / \ findNode
/ \ findRoot

root(C),B~>C,A=B root(C),B~>C,A=C

Find wrongly returns interior node instead of root.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Trivial Non-Confluence

Same non-joinable critical pairs are less cumbersome.
Combinatorial explosion in the number of critical pairs with program size.

⇒ Ignore “trivial” non-joinable critical pairs:

not possible for allowed queries: incompatible tree constraints.

results that are considered equivalent: tree constraints that describe
the same sets are equivalent.

not possible with refined semantics, but with parallel: competing
link operations, different orders for find and link.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Insight #1 - Replace = by found

Replace built-in by CHR constraint.

find(B,A),root(B),root(C),link(C,B)
findRoot / \ link

link / \ findNode
/ \ findRoot

root(C),B~>C,A=B root(C),B~>C,A=C

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Insight #1 - Replace = by found

Replace built-in by CHR constraint.

find(B,A),root(B),root(C),link(C,B)
findRoot / \ link

link / \ findNode
/ \ findRoot

root(C),B~>C,found(B,A) root(C),B~>C,found(C,A)

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot1 @ root(A) \ find(A,X) <=> found(A,X).

linkEq1 @ link(X,Y),found(A,X),found(A,Y) <=> true.
link1 @ link(X,Y),found(A,X),found(B,Y),root(A),root(B) <=>

B ~> A, root(A).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence

Insight #1 - Replace = by found

Replace built-in by CHR constraint.

find(B,A),root(B),root(C),link(C,B)
findRoot / \ link

link / \ findNode
found / \ findRoot

root(C),B~>C,found(C,A) root(C),B~>C,found(C,A)

found @ A ~> B \ found(A,X) <=> found(B,X).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot1 @ root(A) \ find(A,X) <=> found(A,X).

linkEq1 @ link(X,Y),found(A,X),found(A,Y) <=> true.
link1 @ link(X,Y),found(A,X),found(B,Y),root(A),root(B) <=>

B ~> A, root(A).

Practically Confluent! 89 non-joinable critical pairs, 84 between link rules,
all are trivial. ⇒ Parallel version with just one more rule!

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Optimal Union-Find

[Tarjan+, JACM 31(2)]
Optimizations:
Path compression for find: point nodes on find path directly to the root.
Union-by-rank for link: point root of smaller tree to higher tree. Rank.

Logarithmic worst-case time complexity per operation.
Amortized almost constant time complexity per operation.

Parallelization problem:
Mingled tree updates result in high, even cyclic trees, undo optimizations.
- Restrict parallelism, auxiliary data/operations [Anderson+, STOC’91]:

Counters for nodes or time-stamps, or using path halving compression.
- Use other algorithm [Atallah+, JACM 41(6)].

Our solution: Explicit compression after linking to node used for linking.
Correct and deadlock-free.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Union-Find in CHR

Basic union-find

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Union-Find in CHR

Basic union-find parallelized

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot1 @ root(A) \ find(A,X) <=> found(A,X).

linkEq1 @ link(X,Y),found(A,X),found(A,Y) <=> true.
link1 @ link(X,Y),found(A,X),found(B,Y),root(A),root(B) <=>

B ~> A, root(A).

found @ A ~> B \ found(A,X) <=> found(B,X).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Union-Find in CHR

Optimal union-find [Schrijvers+, WCLP’05,TPLP]

make @ make(A) <=> root(A,0).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.
findRoot @ root(A,N) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
linkLeft @ link(A,B), root(A,N), root(B,M) <=>

N>=M | B ~> A, N1 is max(N,M+1), root(A,N1).
linkRight @ link(B,A), root(A,N), root(B,M) <=>

N>=M | B ~> A, N1 is max(N,M+1), root(A,N1).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Union-Find in CHR

Optimal union-find parallelized according to basic version

make @ make(A) <=> root(A,0).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.
findRoot @ root(A,N) \ find(A,X) <=> found(A,X).

linkEq @ link(X,Y),found(A,X),found(A,Y) <=> true.
linkLeft @ link(X,Y),found(A,X),found(A,Y),root(A,N),root(B,M) <=>

N>=M | B ~> A, N1 is max(N,M+1), root(A,N1).
linkRight @ link(Y,X),found(A,X),found(A,Y),root(A,N),root(B,M) <=>

N>=M | B ~> A, N1 is max(N,M+1), root(A,N1).

found @ A ~> B \ found(A,X) <=> found(B,X).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Confluence

For sequential optimal union-find program, confluence checker finds 73
non-joinable critical pairs, 68 of the link rules, analogous to the ones for
the basic program.

Only one non-trivial critical pair for competing find operations:

find(A,X),A~>B,find(A,Y)
findNode / \ findNode
findNode / \ findNode

find(X,Y),find(B,X),A~>Y find(Y,X),find(B,Y),A~>X

Parallel finds must wait for result of compression from one of the finds.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Insight #2 - Explicit Compression

Keep tree constraint, postpone compression until root.
All finds can proceed, first one finished can compress.

findNode1 @ A~>B \ find(A,X) <=> find(B,X), compr(A,X).
found1 @ A~>B \ found(A,X) <=> found(B,X), compr(A,X).
compress1 @ root(C,N),found(C,X) \ A~>B,compr(A,X) <=> A~>C.

Compression only immediately before linking, deadlocks after linking.
Keeping found would be too expensive because of rule found1.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Insight #3 - Compress to Linking Root

Compress the nodes of a path to the root used for linking.
⇒ Compression is performed after linking.
Implementation: Linking replaces found by new foundc.

linkEq2 @ link(X,Y),found(A,X), found(A,Y) <=>
foundc(A,X),foundc(A,Y).

linkLeft2 @ link(X,Y),found(A,X),found(B,Y),root(A,N),root(B,M) <=>
N>=M | foundc(A,X),foundc(B,Y),

B ~> A, N1 is max(N,M+1), root(A,N1).

Compression cannot deadlock anymore.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Optimal Union-Find Parallelized

findNode1 @ A ~> B \ find(A,X) <=> find(B,X), compr(A,X).

findRoot1 @ root(A,N) \ find(A,X) <=> found(A,X).

found1 @ A ~> B \ found(A,X) <=> found(B,X), compr(A,X).

compress @ foundc(C,X) \ A ~> B, compr(A,X) <=> A ~> C.

linkEq2 @ link(X,Y),found(A,X), found(A,Y) <=>

foundc(A,X),foundc(A,Y).

linkLeft2 @ link(X,Y),found(A,X),found(B,Y),root(A,N),root(B,M) <=>

N>=M | foundc(A,X),foundc(B,Y),

B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight2@ link(Y,X),found(A,X),found(B,Y),root(A,N),root(B,M) <=>

N>=M | foundc(A,X),foundc(B,Y),

B ~> A, N1 is max(N,M+1), root(A,N1).

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Confluence of Parallelized Optimal Union-Find

Confluence checker finds 686 non-joinable critical pairs, 671 of the link rules.
35 trivial critical pairs due to equivalence of the nodes in the trees.

Only one non-trivial critical pair for competing compressions:

compress @ foundc(C,X) \ A ~> B, compr(A,X) <=> A ~> C.

foundc(C,X),compr(A,X), A~>B, foundc(D,Y),compr(A,Y)
compress / \ compress

compress / \ compress
foundc(C,X),foundc(D,Y), A~>D foundc(C,X),foundc(D,Y), A~>C

Different trees denote same set, as nodes A, B, C, D on the same path.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Correctness of Union-Find in CHR

Optimal sequential union-find proven correct under refined semantics
[Schrijvers+, TPLP].

Show that parallel and sequential programs simulate each other.
Map computations between them:
Map states (constraints) and computation steps (rule applications).

Mapping based on transformation from sequential to parallel
program:
Built-in = replaced by CHR constraints.
found behaves like find until link,
then replaced by foundc that is like = and
used by compr for explicit compression.

⇒ Parallel program simulates sequential program.
⇒ Sequential program simulates parallel program for non-competing
compressions.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Sequential to Parallel

Result of find and path compression are made explicit.

Built-in = produced by findRoot replaced by found constraints
until involved in linking. From then on, replaced by foundc.

Immediately after linking, insert applications of the compress rule
into the resulting parallel computation, so that compression is
actually performed (removing all compr constraints).

⇒ Parallel program simulates sequential program.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Parallel to Sequential

Interleaving semantics gives sequentialized parallel computation.
Map found into find and thus rule found1 into findNode. So rule
findRoot1 rule becomes obsolete, because it does not change any
constraints under the mapping.
Just before linking, insert two findRoot rule applications for the
two involved find.
After linking, map foundc constraints into =.
Map constraints A~>B,compr(A,X) into A~>X. So compress rule
becomes obsolete.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Parallel to Sequential

Interleaving semantics gives sequentialized parallel computation.
Map found into find and thus rule found1 into findNode. So rule
findRoot1 rule becomes obsolete, because it does not change any
constraints under the mapping.
Just before linking, insert two findRoot rule applications for the
two involved find.
After linking, map foundc constraints into =.
Map constraints A~>B,compr(A,X) into A~>X. So compress rule
becomes obsolete.

But consider critical pair for competing compressions:

foundc(C,X),compr(A,X), A~>B, foundc(D,Y),compr(A,Y)
compress / \ compress

compress / \ compress
foundc(C,X),foundc(D,Y),A~>D foundc(C,X),foundc(D,Y),A~>C

Only one of the computations simulated by the sequential program.
Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Confluence
Correctness

Parallel to Sequential

Interleaving semantics gives sequentialized parallel computation.
Map found into find and thus rule found1 into findNode. So rule
findRoot1 rule becomes obsolete, because it does not change any
constraints under the mapping.
Just before linking, insert two findRoot rule applications for the
two involved find.
After linking, map foundc constraints into =.
Map constraints A~>B,compr(A,X) into A~>X. So compress rule
becomes obsolete.

⇒ Sequential program simulates parallel program for non-competing com-
pressions.

Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

Introduction
Basic Union-Find

Optimal Union-Find
Conclusion

Conclusion

Exploratory Paper

Parallel execution model for CHR.

Parallelized basic and optimal sequential classical union-find
algorithm in CHR using confluence analysis and three insights.

Code is close to the original, promises to be as efficient:
- Find operations can run in parallel but not competing linking.
- Additional parallel work for found and compr.

Future Work

more parallel union-find correctness and time complexity analysis,

more parallel CHR model, its implementation and empirical
evaluation,

more practical confluence analysis: triviality of critical pairs,

confluence-based parallelization methodology,
apply to more CHR programs, in particular constraint solvers,
can also transform refined into standard semantics programs.

Acknowledgements Marc Meister, Tom Schrijvers, referees.
Thom Frühwirth Parallelizing Union-Find in Constraint Handling Rules Using Confluence

	Introduction
	Constraint Handling Rules (CHR)

	Basic Union-Find
	Confluence

	Optimal Union-Find
	Confluence
	Correctness

	Conclusion

