
Parallelizing Union-Find in Constraint Handling
Rules Using Confluence Analysis

Thom Frühwirth

Faculty of Computer Science, University of Ulm, Germany
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. Constraint Handling Rules is a logical concurrent committed-
choice rule-based language. Recently it was shown that the classical
union-find algorithm can be implemented in CHR with optimal time
complexity. Here we investigate if a parallel implementation of this algo-
rithm is also possible in CHR. The problem is hard for several reasons:
- Up to now, no parallel computation model for CHR was defined.
- Tarjan’s optimal union-find is known to be hard to parallelize.
- The parallel code should be as close as possible to the sequential one.
It turns out that confluence analysis of the sequential implementation
gives almost all the information needed to parallelize the union-find al-
gorithm under a rather general parallel computation model for CHR.

1 Introduction

Constraint Handling Rules (CHR) [7] is a concurrent committed-choice con-
straint logic programming language consisting of guarded rules that transform
multi-sets of constraints (atomic formulae) until a fixpoint is reached.

CHR was initially developed for writing constraint solvers, but is more and
more used as a general-purpose programming language. Recent applications of
CHR range from type systems and time tabling to ray tracing and cancer diag-
nosis [2, 15]. In these applications, conjunctions of constraints are best regarded
as interacting collections of concurrent agents or processes.

So far, there have been several operational semantics for CHR (standard,
refined and compositional), but none of them explicitely addresses parallelism.
We develop a general parallel execution model for CHR relying on a monotonicity
property (applicable rules cannot become in-applicable during a computation).
Analogous concurrency constructions were suggested for other (constraint) logic
programming languages, e.g. [12].

The clean semantics of CHR facilitates non-trivial program analysis and
transformation. In particular, confluence analysis is an issue in CHR, since rule
application is committed-choice, it is never undone (unlike Prolog). Confluence
aks the question if a program produces the same result no matter which of the
applicable rules are applied in which order. It turns out that this property fa-
cilitates the parallel execution of a CHR program. Since there is a decidable,
sufficient and necessary criterion for confluence [3] that returns the problematic



cases of rules applications that rule out each other, we can use this analysis
to construct a parallel program from a sequential one. Of course, some crucial
insights in the nature of the algorithm to be implemented are still necessary. As
a side-effect of our work, we implemented a practical confluence checker.

We will apply this methodology of parallization to the classical union-find
(also: disjoint set union) algorithm of Tarjan [17]. This essential algorithm effi-
ciently solves the problem of maintaining a collection of disjoint sets under the
operation of union [9]. It is the basis for many graph algorithms and for dealing
with equality, e.g. in unification algorithms. We have chosen union-find, because
it was recently shown that it is possible to implement it with optimal time com-
plexity in CHR [13, 14, 16], something that is not known to be possible in other
pure logic programming languages. The bad news is that union-find is inherently
sequential in most parts, and therefore hard to parallelize. Its worst case time
performance can actually get worse upon parallelization if the sequential algo-
rithm is used as a basis [4]. Often, other data structures and algorithms are used
for the parallel union-find problem [10].

So this is our challenge: Can we come up with an optimal parallel union-find
algorithm that is close to the sequential one? Can confluence analysis help? This
paper gives a preliminary answer tending towards positive.

Outline of the Paper In the next two sections, we introduce union-find
algorithms and CHR. In Section 4 we introduce a parallel execution model for
CHR. In the next section we give a sequential CHR program for the basic union-
find algorithm. Section 6 uses confluence analysis to parallize this implementa-
tion. The next two sections carry this approach over to optimized union-find. At
the end of Section 8, correctness of the parallel version is argued by simulating
the sequential one and vice versa. Section 9 concludes with future work.

2 The Union-Find Algorithm

The union-find algorithm maintains disjoint sets under union. Each set is rep-
resented by a rooted tree, whose nodes are the elements of the set. The root is
called the representative of the set. The representative may change when the tree
is updated by a union operation. With the algorithm come three operations:

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree by repeatedly

going to the parent node of the current node until the root is reached. Return
the root as representative.

– union(X,Y): to join the two trees, find the representatives of X and Y (they
are roots). Then link them by making one point to the other.

The basic algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two inde-
pendent optimizations that keep the tree shallow and balanced, one can achieve
logarithmic worst-case and quasi-constant (i.e. almost constant) amortized run-
ning time per operation.



The first optimization is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimization is union-by-rank. It keeps the tree shallow by point-
ing the root of the smaller tree to the root of the larger tree. Rank refers to an
upper bound of the tree depth (tree height). If the two trees have the same rank,
either direction of pointing is chosen but the rank is increased by one. With this
optimization, the height of the tree can be bound by log(N). Thus the worst
case time complexity for a single find or union operation is O(log(N)).

Parallelization can worsen the performance of optimized union-find, because
the find operation is inherently sequential and parallel tree updates can counter-
act the effects of path compression and union-by-rank [4] so that deep trees
(with long paths) are generated. In order to achieve logarithmic worst case time
complexity per operation, one has to restrict the parallelism, use special auxiliary
data and operations [4] or has to rely on different special-purpose data structures
and algorithms altogether [10, 5].

3 Constraint Handling Rules (CHR)

In this section we give an overview of syntax and semantics for Constraint Han-
dling Rules (CHR) [7, 8].

Syntax of CHR We use two disjoint sets of predicate symbols for two
different kinds of constraints: built-in (pre-defined) constraint symbols which are
solved by a given constraint solver, and CHR (user-defined) constraint symbols
which are defined by the rules in a CHR program. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B,
Propagation rule: Name @ H ⇒ C B,
Simpagation rule: Name @ H \H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H, H ′ is a
non-empty comma-separated conjunction of CHR constraints, the guard C is a
conjunction of built-in constraints, and the body B is a goal. A goal (query, prob-
lem) is a conjunction of built-in and CHR constraints. A trivial guard expression
“true |” can be omitted from a rule.

Simpagation rules abbreviate simplification rules of the form

Name @ H ∧H ′ ⇔ C H ∧B.

Standard Operational Semantics of CHR The operational semantics of
CHR is given by a transition system (Fig. 1) . States are goals, i.e. conjunctions
of built-in and CHR constraints. In the figure, all upper case letters are meta-
variables that stand for conjunctions of constraints. CT is the constraint theory
for the built-in constraints. Gbi denotes the built-in constraints of G, which is
the remainder of the state/goal.



Simplify

If (H ⇔ C B) is a fresh variant of a rule with variables x̄
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→ (B ∧G ∧H=H ′ ∧ C)

Propagate

If (H ⇒ C B) is a fresh variant of a rule with variables x̄
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→ (H ′ ∧B ∧G ∧H=H ′ ∧ C)

Fig. 1. Computation Steps of Constraint Handling Rules

CHR rules are applied exhaustively, until a fixed-point is reached, to the
initial state. A simplification rule H ⇔ C B replaces instances of the CHR
constraints H by B provided the guard C holds. A propagation rule H ⇒ C B
instead adds B to H. If new constraints arrive, rule applications are restarted.

A rule is applicable, if its head constraints are matched by constraints in the
current goal one-by-one and if, under this matching, the guard of the rule is
implied by the built-in constraints in the goal. Any of the applicable rules can
be applied, and the application cannot be undone, it is committed-choice (in
contrast to Prolog).

When a simplification rule is applied, the matched constraints in the current
goal are replaced by the body of the rule. When a propagation rule is applied,
the body of the rule is added to the goal without removing any constraints.
When a simpagation rule is applied, all constraints to the right of the backslash
are replaced by the body of the rule.

To avoid trivial non-termination, a CHR propagation rule is never applied a
second time to the same constraints. A final state is one where either no compu-
tation step is possible anymore or where the built-in constraints are inconsistent.

The refined operational semantics [6] specializes the CHR standard semantics
as given here to the one that is usally implemented: Similar to Prolog, constraints
in a state are evaluated depth-first from left to right and rules are applied in
textual program order. (The refined semantics thus rules out some computations
that are possible in the standard semantics.)

4 Parallelism for CHR

Intuitively, we expect that in a parallel execution of a CHR program, rules can
be applied to separate parts of the problem in parallel without interference. We
will interpret conjunction as parallel operator and we will use an interleaving
semantics for parallelism in CHR. It means that a parallel computation step can
be performed by a sequence of sequential computation steps. A similar approach
was taken for other concurrent constraint/logic languages, e.g. [11, 12].



To avoid the technicalities of special cases, we relax the operational semantics
of CHR with regard to final states. We allow a finite, bounded number of addi-
tional computation steps from inconsistent states (they will stay inconsistent).

If A 7→ B
and C 7→ D
then A ∧ C 7→ B ∧D

If A ∧ E 7→ B ∧ E
and C ∧ E 7→ D ∧ E
then A ∧ E ∧ C 7→ B ∧ E ∧D

Fig. 2. Weak Parallelism of CHR Strong Parallelism of CHR

We now define two notions of parallelism, weak and strong (Fig. 2). (In
the figures, A,B, C, D and E are conjunctions of arbitrary constraints.) Such
straightforward interleaving semantics for parallelism are not possible for imper-
ative languages, where computations may give raise to conflicting (over-)writes.
However, it is possible for many (constraint) logic programming languages, due
to the monotonicity (or stability) property (left of Fig. 3): Adding constraints to a
state cannot inhibit the applicability of a rule. Monotonicity of CHR was proven
in [3]. The property also implies that constraints can be processed incrementally
in CHR, giving rise to an online algorithm behavior.

We can now justify weak parallelism by a consequence of monotonicity which
we call trivial confluence (right of Fig. 3), because independent of the interme-
diate state, we will arrive at the same successor state.

If A 7→ B
then A ∧ C 7→ B ∧ C

If A 7→ B
and C 7→ D
then A ∧ C 7→ S 7→ B ∧D
(S is either A ∧D or B ∧ C)

Fig. 3. Monotonicity of CHR Trivial Confluence of CHR

The definition of strong parallelism (right of Fig. 2) shows that there is more
potential for parallelism in CHR than working on separate parts of the problem.
Constraints in E may be necessary for rule application, but since both rules
do not alter these constraints, we can still apply them in parallel. With strong
parallelism, rules may work on common constraints at the same time if they
do not change them. (With weak parallelism, we would need two copies of the
constraints E.) Clearly all built-in constraints are common. Propagation rules
only add CHR constraints, so any CHR constraints they match can be common.
Simpagation rules do not remove some of the constraints they match, so these
can be common as well. We will assume strong parallelism in the rest of the
paper.



We assume for now that rule applications (hence, computation steps) are
instantaneous, i.e. the removal and addition of constraints caused by the ap-
plication of a rule is an atomic action. With this requirement, a rule can still
take arbitrary time to check its applicability to constraints in (a snapshot of)
the current state. When a rule is to apply, it will first flag the constraints it
matched. If some are not there anymore, the rule application simply is not done
and flags are reset.

5 Implementing Basic Union-Find in CHR

The CHR program ufd basic (in concrete ASCII syntax) implements the op-
erations and data structures of the basic union-find algorithm optimizations as
CHR constraints [16].

ufd basic

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

The constraints make/1, union/2, find/2 and link/2 define the operations.
The find operation is implemented as a relation find/2 whose second argument
returns the result. link/2 is an auxiliary operation for performing union of two
roots. The tree (data) constraints root/1 and ~>/2 (“points to”) represent the
tree data structure. This program is operationally equivalent for allowed queries
to implementations in imperative languages under the refined sequential CHR
semantics [16]. An allowed query is - as usual for union-find - a sequence of make,
find and union operations. The second argument of a find is a new variable.
Nodes are typically constants. Each node is introduced by one make.

Now we discuss parallel execution of the above rules for allowed queries. We
can accomodate different find operations on the same node, since the tree con-
straints are not altered by a find. The link rule replaces root(B) by B~>A. Since
rule application is instantaneous and atomic in our model, there will always be a
tree constraint for each node that has been introduced. So if one of the processes
performing an operation fails, it can do no harm to the overall computation,
since each rule defines exactly one operation. Actually, the operations make,
union and find can always proceed at their own speed. The link operation ob-
viously has to wait for the result of the find operations. Moreover, when we are
about to apply the link rule, another link operation may remove one of the
roots that we need for linking. The next section explains how we can detect and
avoid such problematic situations using confluence analysis and additional rules.



6 Confluence for Parallelism

We already have used trivial confluence to justify our model of parallelism. But
the relationship is deeper. The interleaving semantics of a parallel execution can
be given as the semantics of all its possible interleavings, i.e. sequential execu-
tions that lead to the same resulting state. For analysis, we then have to consider
all possible sequential execution orders. These different orders of constraints in
a goal may mean that different rules are applied. Confluence tells us that no
matter which of the applicable rules we apply, we always can reach the same re-
sulting state. In other words, a particular parallel execution cannot go “astray”,
resulting in a different state (that may well correspond to a deadlock). We will
see that such deadlocks actually can occur in the basic union-find algorithm.

Confluence Analysis in CHR Before we discuss confluence of the union-
find algorithm, we introduce the basic idea behind confluence analysis. The pa-
pers [1, 3] give a decidable, sufficient and necessary condition for confluence for
terminating CHR programs.

For checking confluence, one takes two rules (not necessarily different) from
the program. The heads of the rules are overlapped by equating at least one
head constraint from one rule with one from the other rule. For each overlap, we
consider the two states resulting from applying one or the other rule. These two
states form a so-called critical pair. One tries to join the states in the critical
pair by finding two computations starting from the states that reach a common
state. If the critical pair is not joinable, we have found a counterexample for
confluence of the program.

6.1 Confluence of Basic Sequential Union-Find for Parallelization

A detailed confluence analysis of the sequential union-find algorithms in CHR is
in [13, 14]. Union-find is not confluent under the standard sequential operational
semantics. The relative order of find and union (link) operations matters for the
outcome of find. This behavior is inherent in the union-find algorithm due to its
update of the tree structure and the resulting changes of the representatives.

But non-confluence can also be caused by incompatible tree constraints such
as root(A), A~>B (that can be shown not to occur when computing with allowed
queries), and due to competing link operations for the same roots (that cannot
occur in the left-to-right execution order of the refined semantics, but in parallel
execution). A deadlock means that an operation cannot finish. In the last case,
link operations deadlock, and the restoration of confluence by adding proper
rules can avoid or break these deadlocks.

Since there is a combinatorial explosion in the number of critical pairs with
program size, it is important to filter out “trivial” non-joinable critical pairs that
either stem from overlaps that are not possible for allowed queries or that we
would like to consider equivalent for our purposes. For union-find, the former
means e.g. to detect incompatible tree constraints, the latter means to regard tree
constraints that describe the same sets as equivalent. We revised the confluence



checker of [13] so that it performs the necessary additional checks before and nor-
malization after computation of a critical pair. These program-specific filters are
encoded as Prolog or CHR rules, e.g. check, root(A, ), A~> <=> fail. The
confluence checker and its results for the union-find programs of this paper are
available at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/union-find/.

For the union-find implementation ufd basic, there are 8 non-joinable crit-
ical pairs [13, 14]. Three non-joinable critical pairs, between the pairs of rules
findNode-findNode, findNode-findRoot, and linkEq-link, feature incompat-
ible tree constraints. We avoid the remaining non-trivial critical pairs by modi-
fying the given program.

The critical pair between find and link reveals that the relative order of
find and link operations matters for the outcome of the find.

find(B,A),root(B),root(C),link(C,B)
findRoot link

root(C),B~>C,A=B root(C),B~>C,A=C

The first line gives an overlap of the two rules mentioned in the second line.
The third line gives the critical pair, i.e. the two final states reachable when the
corresponding rule from the second line is applied to the overlap.

The last four non-joinable critical pairs come from overlapping the link with
itself. They feature pending competing links. Two link operations have at least
one tree node in common. So when one link is performed, at least one node in
the other link operation is not a root anymore, and so this link operation will
deadlock, for example:

root(A),root(B),link(B,A),link(A,B)
link link

root(B),A~>B,link(A,B) root(A),link(B,A),B~>A

Insight #1 To handle these non-confluences, we first concentrate on the
critical pair between findRoot and link. We replace the culprit built-in equality
constraint =/2 by our own new CHR constraint found/2, that we can tailor to
our needs. In the findRoot rule, X=A becomes found(A,X). It holds the result of
the find operation in the first argument. Now we can add a rule for found (given
below) that joins the corresponding critical pair. (The rule mimics findNode so
that the found constraint keeps track of the updates of the tree.)

find(B,A),root(B),root(C),link(C,B)
findRoot link

root(C),B~>C,found(C,A)

The link rules are modified by replacing instances of link(A,B) in the head of
a rule by the proper instances of link(X,Y), found(A,X), found(B,Y). The
resulting program is ufd basic1. Also the critical pairs of the link rules can be
joined now, because found can update itself so that its result argument is a root.



ufd basic1

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot1 @ root(A) \ find(A,X) <=> found(A,X).

found @ A ~> B \ found(A,X) <=> found(B,X).

linkEq1 @ link(X,Y), found(A,X), found(A,Y) <=> true.
link1 @ link(X,Y), found(A,X), found(B,Y),

root(A), root(B) <=> B ~> A, root(A).

Confluence of Basic Parallel Union-Find The
confluence analysis lead us to a revised, parallel ver-
sion ufd basic1 of the basic algorithm. There are
now many more non-joinable critical pairs, because
the introduction of the found constraints gives rise
to many possible overlaps for the link rules. All the
critical pairs are trivial, because they either cannot
occur for allowed queries or they feature different tree
constraints that represent the same set of nodes.

findNode findNode 1
findNode findRoot 1
linkEq linkEq 6
link linkEq 13
link link 65
found link 2
found found 1
Number of crit. pairs
between pairs of rules

7 Optimized Union-Find

The CHR program ufd rank from [16] implements the optimized classical union-
find algorithm, derived from the basic version by adding path compression for
find and union-by-rank [17].

ufd rank

make @ make(A) <=> root(A,0).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.
findRoot @ root(A,_) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
linkLeft @ link(A,B), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).
linkRight @ link(B,A), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).



When compared to the basic version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. (The
first two rules, make and union, will stay the same for all remaining programs
in this paper, they are therefore omitted from now on.)

The rule findNode has been extended for immediate path compression: the
logical variable X serves as a place holder for the result of the find operation. The
link rule has been split into two rules linkLeft and linkRight to reflect the
optimization of union-by-rank: The smaller ranked tree is added to the larger
ranked tree without changing its rank. When the ranks are the same, either tree
is chosen (both rules are applicable) and the rank is incremented.

Confluence The non-joinable critical pairs are in principle analogous to the
ones discussed for ufd basic in Section 6, but their numbers significantly in-
crease due to the optimizations of path compression and union-by-rank that
complicate the rules for the find and link operations. The confluence checker
found 73 non-joinable critical pairs [13, 14]. The number of critical pairs is dom-
inated by those 68 of the link rules.

Unlike the basic versions, in the optimized algorithm, two findNode rule
applications on the same node will interact, because one will compress, and then
the other cannot proceed until the first find operation has finished:

find(B,A),B~>C,find(B,D)
findNode findNode

find(A,D),find(C,A),B~>D find(D,A),find(C,D),B~>A

The critical pairs for the find rules tell us that parallel finds have to wait for
the result of path compression from one of the finds. In the worst case, if that
find process fails, other finds will deadlock (which was not the case in the basic
version of the algorithm). As a remedy we introduce an explicit compression
operation that runs in parallel to the other operations.

8 Optimal Union-Find Parallelized

We first introduce found into the program of optimal union-find as for the basic
algorithm.

Insight #2 We make compression explicit by a new operation compr/2. We
modify the findNode rule to call compr(A,X) instead of immediately producing a
tree data constraint that points to a yet free variable. As a consequence, the rule
for explicit compression should take the found root node and the corresponding
tree constraint to be compressed and replace it by the compressed tree constraint
that points to the root. We should not forget to add compression also for found.
The result are the following tentative rules.

findNode1?@ A ~> B \ find(A,X) <=> find(B,X), compr(A,X).
found1? @ A ~> B \ found(A,X) <=> found(B,X), compr(A,X).
compress? @ root(C,_),found(C,X) \ A ~> B,compr(A,X) <=>A ~> C.



Compression is performed in parallel to the main part of the algorithm that
performs the find and link operations. But since both linking and compression
update the tree data structure, we may expect interferences. These are revealed
by our confluence analysis. First of all, linking takes away found, so compression
deadlocks after linking. We may compress to a root different from what has been
used for linking. We may compress too early and thus too little: Consider parallel
unions on different new nodes: all find and compress operations can immediately
finish, because they are on roots. No compression is performed. But linking is
sequentialized because roots change. found constraints handle these changes,
but again no compression is performed.

The real problem is the interference between different compressions along the
same sub-path, because roots change and because compression destroys paths.
An old compress performed after a new one on the same node may “undo” the
new compression, the overall result may be worse than without compression.
Competing compressions may destroy the tree, even lead to cycles in the tree.
These problems are well-known in the literature, different solutions have been
proposed like comparing certain counters for nodes or time-stamps, or using
a different compression technique like path halving [4]. We prefer a solution
that does not introduce additional auxiliary operations or data and that is as
close as possible to the original sequential optimal code. We do not want to
be “too clever”1. This will also make it easier to verify the correctness of the
implementation.

Insight #3 Our solution is to compress the nodes of a path to the root that
was used for linking. So compression is performed after the corresponding linking
operation. We do not think that this sequentiality is a disadvantage given the
fact that before linking the roots of the tree may frequently change due to other
link operations.

In the program ufd foundc compr, the rule compress now uses its own found
named foundc. The program will leave the foundc constraints in the store.
They represent the result of a find computation. If necessary, the foundc con-
straints can be garbage collected, when their second variable does not occur in
any other constraint. Alternatively, their removal can be accommodated by keep-
ing a counter on how often foundc will be used in path compression. When the
counter is zero, the foundc constraint is removed.

ufd foundc compr

findNode1 @ A ~> B \ find(A,X) <=> find(B,X), compr(A,X).
findRoot1 @ root(A,_) \ find(A,X) <=> found(A,X).

found1 @ A ~> B \ found(A,X) <=> found(B,X), compr(A,X).

compress @ foundc(C,X) \ A ~> B, compr(A,X) <=> A ~> C.

1 Actually, we tried, investigated many variants, but confluence analysis usually re-
vealed one of the problems mentioned here.



linkEq1c @ found(A,X), found(A,Y), link(X,Y) <=>
foundc(A,X), foundc(A,Y).

linkLeft1c @ found(A,X), found(B,Y), link(X,Y),
root(A,N), root(B,M) <=> N>=M |
foundc(A,X), foundc(B,Y),
B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight1c @ found(A,X), found(B,Y), link(Y,X),
root(A,N), root(B,M) <=> N>=M |
foundc(A,X), foundc(B,Y),
B ~> A, N1 is max(N,M+1), root(A,N1).

8.1 Confluence of Parallelized Optimal Union-Find

The confluence analysis of this program finds several hundred non-joinable crit-
ical pairs, of the same nature as for the parallel basic version. The table shows
that almost all critical pairs are between the rules for the link operations. 35
of them are joinable modulo equivalence of the nodes in the trees that are pro-
duced. All but one of the remaining critical pairs can be shown not to occur for
allowed queries.

findNode1 findNode1 1
findNode1 findRoot1 1
findRoot1 findRoot1 1
found1 found1 1
found1 linkEq1c 2
found1 linkLeft1c 2
found1 linkRight1c 2
compress findNode1 1
compress found1 1
compress compress 3

linkEq1c linkEq1c 18
linkEq1c linkLeft1c 39
linkEq1c linkRight1c 39
linkLeft1c linkLeft1c 191
linkLeft1c linkRight1c 193
linkRight1c linkRight1c 191

In the only non-trivial critical pair of the compress rule with itself, competing
compressions may produce different trees, but the nodes are the same as the
nodes A, B, C and D must be on the same path. In particular, trees are not
destroyed and compression always improves the tree.

foundc(C,X),compr(A,X), A~>B, foundc(D,Y),compr(A,Y)
compress compress

foundc(C,X),foundc(D,Y),A~>D foundc(C,X),foundc(D,Y),A~>C

8.2 Correctness

We show that the new parallel CHR implementation and the optimal sequen-
tial implementation which was proven correct [16] simulate each other - to some



extent - by mapping computations between the two. We use the refined opera-
tional semantics of CHR for the sequential computations as in [13, 14, 16]2 and
our proposed parallel semantics for CHR for the parallel computations.

We map states (constraints) and computation steps (rule applications). The
mapping is inspired by the program transformation that we have performed to
arrive at the parallel program: first, introduction of found that behaves like
find until it is involved in a link (then it behaves like built-in equality), and
second, replacement of implicit immediate path compression by an explicit one
with compr that relies on foundc (which behaves like built-in equality) that is
produced by linking.

In principle, the rule applications of parallel ufd foundc compr, i.e.
make,union,findNode1,findRoot1,linkEq1c,linkLeft1c,linkRight1c,
are mapped into the rule applications of sequential optimal ufd rank, i.e.
make,union,findNode, findRoot, linkEq, linkLeft, linkRight,
and vice versa. (The rules make and union are identical in both programs, there
is no need to further discuss them.)

Sequential to Parallel The mapping from a sequential to a parallel execu-
tion is as follows. Under the refined semantics, the sequential program for each
union will do the two find operations and then the linking. A find operation
is a sequence of findNode rule applications followed by a single application of
findRoot. In the mapping, immediate path compression by rule findNode is re-
placed by explicit path compression with compr constraints. The built-in equality
constraints produced by findRoot in the sequential computation are replaced
by found constraints until they are involved in a link operation. From then on,
the equalities are replaced by foundc. Immediately after linking, we have to in-
sert applications of the compress rule into the resulting parallel computation,
so that compression is actually performed (removing all compr constraints).

Parallel to Sequential Due to the interleaving semantics we have intro-
duced for parallel CHR, any parallel computation can be described by a set of
sequential computations involving the same rules and same result. Given such a
sequentialized parallel computation, the following partial mapping will give us a
computation of the sequential program.

By intended construction, not every execution of the parallel program can be
mapped into one of the sequential program. Consider the critical pair for com-
peting compressions (Subsect. 8.1): Since compression is immediate and implicit,
only one of the computations can be simulated by the sequential program.

If we rule out these competing compressions (i.e. find or found constraints
operating on the same nodes concurrently), parallel executions can be simulated
by the sequential program: We map constraints A~>B,compr(A,X) into A~>X to
achieve immediate compression. As a consequence, the compress rule applica-
tions become obsolete, because they do not change any constraints under the
mapping.

We also map found into find constraints and thus applications of the rule
found1 into applications of findNode. Under the mapping, applications of the

2 The correctness and optimality of the code was proven under the refined semantics.



rule findRoot1 do not change constraints, they are therefore removed. Just
before a link rule is applied, we insert two rule applications of the rule findRoot
that apply to the two involved find constraints that come from mapping found.
Finally, we map foundc constraints into built-in equalities. The result of the
transformation is a correct computation of the sequential implementation of the
optimal union-find algorithm in the standard semantics. Hence we claim that our
parallel program for union-find is correct for computations without competing
compressions.

9 Conclusion

In this exploratory paper, we introduced a parallel execution model for CHR.
We parallelized basic and optimal sequential versions of the classical union-find
algorithm with the help of confluence analysis and three insights. The resulting
code is close to the original one and promises to be as efficient, even though it
is acknowledged in the literature that this is hard to achieve due to the inherent
sequential nature of the algorithm when it comes to tree updates.

The URL www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/union-find

contains a list of programs, confluence checkers and results of confluence analysis
used for this paper.

It was beyond the scope of the paper to give a time complexity analysis, but
let us speculate shortly on the topic. We showed that each rule application in one
program corresponds to a rule application in the other program, with exception
of the compress rule applications that only occur in the parallel program. But
their number is bounded by the number of findNode rule applications. Hence
if rule applications cost the same in sequential and parallel CHR, the optimal
worst-case time complexity is preserved. Since find operations can run in parallel
(but not linking), we can expect a reduction in latency for simultaneous queries
and updates.

The preliminary, exemplary findings in this paper can just be the starting
point for a number of challenging research topics:

– parallel union-find correctness and time complexity analysis,
– parallel model for CHR, its implementation and empirical evaluation,
– more practical confluence analysis, including automatic detection of critical

pairs that cannot occur for allowed queries,
– development of a confluence-based parallelization methodology and its ap-

plication to other CHR programs, in particular constraint solvers.

As pointed out by a reviewer, our confluence-based parallelization could also be
used to convert a program using the refined semantics to a program using the
standard semantics (where parallelization is straightforward).

Acknowledgements We would like to thank Marc Meister and Tom Schri-
jvers for helpful discussions. We also thank the referees that provided us with
detailed comments.



References

1. S. Abdennadher. Operational Semantics and Confluence of Constraint Propagation
Rules. In Third International Conference on Principles and Practice of Constraint
Programming, CP97, LNCS 1330. Springer, 1997.

2. S. Abdennadher, T. Frühwirth, and C. H. (Eds.). Special Issue on Constraint
Handling Rules, Journal of Theory and Practice of Logic Programming (TPLP).
Cambridge University Press, to appear 2005.

3. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and Semantics of Con-
straint Simplification Rules. Constraints Journal, 4(2), 1999.

4. R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-find
problem. In STOC ’91: Proceedings of the twenty-third annual ACM symposium
on Theory of computing, pages 370–380. ACM Press, Revision of November 1994.

5. M. J. Atallah, M. T. Goodrich, and S. R. Kosaraju. Parallel algorithms for evalu-
ating sequences of set-manipulation operations. J. ACM, 41(6):1049–1088, 1994.

6. G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The Refined Op-
erational Semantics of Constraint Handling Rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
2004.

7. T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming, pages 95–138,
October 1998.

8. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

9. Z. Galil and G. F. Italiano. Data Structures and Algorithms for Disjoint Set Union
Problems. ACM Comp. Surveys, 23(3):319ff, 1991.

10. M. C. Pinotti, V. A. Crupi, and S. K. Das. A parallel solution to the extended
set union problem with unlimited backtracking. In IPPS ’96: Proceedings of the
10th International Parallel Processing Symposium, pages 182–186, Washington,
DC, USA, 1996. IEEE Computer Society.

11. V. A. Saraswat and M. Rinard. Concurrent constraint programming. In POPL
’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 232–245, New York, NY, USA, 1990. ACM Press.

12. V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of
concurrent constraint programming. In POPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
333–352, New York, NY, USA, 1991. ACM Press.

13. T. Schrijvers and T. Frühwirth. Union-Find in CHR. Technical Report CW389,
Department of Computer Science, K.U.Leuven, Belgium, July 2004.

14. T. Schrijvers and T. Frühwirth. Analysing the CHR Implementation of Union-
Find. In 19th Workshop on (Constraint) Logic Programming (W(C)LP 2005).
Ulmer Informatik-Berichte 2005-01, University of Ulm, Germany, February 2005.

15. T. Schrijvers and T. Frühwirth. CHR Website, www.cs.kuleuven.ac.be/~dtai/
projects/CHR/, May 2005.

16. T. Schrijvers and T. Frühwirth. Optimal Union-Find in Constraint Handling
Rules, Programming Pearl. Journal of Theory and Practice of Logic Programming
(TPLP), to appear.

17. R. E. Tarjan and J. van Leeuwen. Worst-case Analysis of Set Union Algorithms.
J. ACM, 31(2):245–281, 1984.


