
Soft Constraint Propagation and Solving in CHRs

Stefano Bistarelli
C.N.R. - Istituto per le

Applicazioni Telematiche
Pisa, Italy

bista@iat.cnr.it

Thom Frühwirth
LMU München, Institut für

Informatik
Munich, Germany

fruehwir@informatik.uni-
muenchen.de

Michael Marte
LMU München, Institut für

Informatik
Munich, Germany

marte@informatik.uni-
muenchen.de

ABSTRACT
Soft constraints are a generalization of classical constraints,
where constraints and/or partial assignments are associated
to preference or importance levels, and constraints are com-
bined according to combinators which express the desired
optimization criteria. Constraint Handling Rules (CHRs)
constitute a high-level natural formalism to specify con-
straint solvers and propagation algorithms. In this paper
we present a framework to design and specify soft constraint
solvers by using CHRs. In this way, we extend the range of
applicability of CHRs to soft constraints rather than just
classical ones, and we provide a straightforward implemen-
tation for soft constraint solvers.

Keywords
Constraint reasoning algorithms, constraint programming

1. INTRODUCTION
Many real-life problems are easily described via constraints,

that state the necessary requirements of the problems. How-
ever, usually such requirements are not hard, and could
be more faithfully represented as preferences, which should
preferably be followed but not necessarily. Moreover, in real
life, we are often confronted with over-constrained problems,
which do not have any solution, and this also leads to the
use of soft constraints to find the variable instantiations that
most approximate a complete solution.

Generally speaking, a soft constraint is just a classical
constraint plus a way to associate, either to the entire con-
straint or to each assignment of its variables, a certain el-
ement, which is usually interpreted as a level of preference
or importance. Such levels are usually ordered, and the or-
der reflects the idea that some levels are better than others.
Moreover, one has also to say, via a suitable combination
operator, how to obtain the level of preference of a global
solution from the preferences in the constraints.

Many formalisms have been developed to describe one or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC2002 Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

more classes of soft constraints [6, 7, 3]. In this paper we
refer to one which is general enough to describe most of
the desired classes. This framework is based on a semiring
structure, that is, a set plus two operators: the set contains
all the preference levels, one of the operators gives the or-
der over such a set, while the other one is the combination
operator [2, 1].

It has been shown that constraint propagation and search
techniques, as usually developed for classical constraints,
can be extended also to soft constraints, if certain condi-
tions are met [2]. However, while for classical constraints
there are formalisms and environments to describe search
procedures and propagation schemes [14], as far as we know
nothing of this sort is yet available for soft constraints. Such
tools would obviously be very useful, since they would pro-
vide a flexible environment where to specify and experiment
with different propagation schemes.

In this paper we propose to use the Constraint Handling
Rules (CHRs) framework [8], which is widely used to spec-
ify propagation algorithms for classical constraints, and has
shown great generality and flexibility in many application
fields. CHRs describe propagation algorithms via two kinds
of rules, which, given some constraints, either replace them
(by a simplification rule) or add some new constraints (by
a propagation rule). With such rules, one can specify con-
straint reasoning algorithms, and the repeated application
of the rules implements the desired algorithm.

We describe how to use CHRs to specify propagation al-
gorithms for soft constraints. The advantages of using a
well-tested formalism, as CHRs is, to specify soft constraint
propagation algorithms are manyfold. First, we get an easy
implementation of new solvers for soft constraints starting
from existing solvers for classical constraints. Moreover, we
obtain an easy experimentation platform, which is also flex-
ible and adaptable. And finally, we develop a general im-
plementation which can be used for many different classes
of soft constraints, and also to combine some of them.

2. SOFT CONSTRAINTS
In short, a soft constraint is a constraint where each in-

stantiation of its variables has an associated value from a
partially ordered set. Combining constraints will then have
to take into account such additional values, and thus the
formalism has also to provide suitable operations for com-
bination (×) and comparison (+) of tuples of values and
constraints. This is why this formalization is based on the
concept of semiring, which is a set plus two operations.

Semirings and SCSPs.A semiring is a tuple 〈A, +,×,0,1〉
such that: A is a set and 0,1 ∈ A; + is commutative, asso-
ciative and 0 is its unit element; × is associative, distributes
over +, 1 is its unit element and 0 is its absorbing element.
In reality, we will need some additional properties, leading
to the notion of c-semiring (for “constraint-based”): a c-
semiring is a semiring 〈A, +,×,0,1〉 such that + is idempo-
tent with 1 as its absorbing element and × is commutative.

Let us consider the relation ≤S over A such that a ≤S b iff
a + b = b. Then it is possible to prove that: ≤S is a partial
order; + and × are monotone on ≤S ; 0 is its minimum and
1 its maximum; 〈A,≤S〉 is a complete lattice and + is its
lub. Moreover, if × is idempotent, then: + distributes over
×; 〈A,≤S〉 is a complete distributive lattice and × its glb.
The ≤S relation is what we will use to compare tuples and
constraints: if a ≤S b it intuitively means that b is better
than a.

In this context, a soft constraint is then a pair 〈def , con〉
where con ⊆ V , V is the set of problem variables, and
def : D|con| → A. Therefore, a constraint specifies a set
of variables (the ones in con), and assigns to each tuple of
values of these variables an element of the semiring.

An SCSP constraint problem is a pair 〈C, con〉 where con ⊆
V and C is a set of constraints: con is the set of variables of
interest for the constraint set C, which however may concern
also variables not in con.

Combining and projecting soft constraints.Given two
soft constraints c1 = 〈def 1, con1〉 and c2 = 〈def 2, con2〉,
their combination c1⊗c2 is the constraint 〈def , con〉 defined
by con = con1∪con2 and def (t) = def 1(t ↓concon1)×def (t ↓concon2

), where t ↓X
Y denotes the tuple of values over the variables

in Y , obtained by projecting tuple t from X to Y . In words,
combining two soft constraints means building a new soft
constraint involving all the variables of the original ones,
and which associates to each tuple of domain values for such
variables a semiring element which is obtained by multiply-
ing the elements associated by the original soft constraints
to the appropriate subtuples.

Given a soft constraint c = 〈def , con〉 and a subset I of
V , the projection of c over I, written c ⇓I is the soft con-
straint 〈def ′, con ′〉 where con ′ = con ∩ I and def ′(t′) =P

t/t↓con
I∩con

=t′ def (t). Informally, projecting means eliminat-

ing some variables. This is done by associating to each tuple
over the remaining variables a semiring element which is the
sum of the elements associated by the original constraint to
all the extensions of this tuple over the eliminated variables.

Examples.Classical CSPs are SCSPs where the chosen c-
semiring is Bool = 〈{false, true}, ∨,∧, false, true〉. By using
this semiring we mean to associate to each tuple a boolean
value, with the intention that true is better than false, and
we combine constraints via the logical and.

Fuzzy CSPs [6] can instead be modeled by choosing the
c-semiring Fuzzy = 〈[0, 1], max, min, 0, 1〉. Here each tuple
has a value between 0 and 1, where higher values are better.
Then, constraints are combined via the min operation and
different solutions are compared via the max operation. The
ordering here reduces to the usual ordering on reals. Figure
1 shows a fuzzy CSP. Variables are inside circles, constraints
are represented by undirected arcs, and semiring values are
written to the right of the corresponding tuples. Here we

assume that the domain of the variables contains only ele-
ments a and b.

a ... 0.9

b ... 0.5

a ... 0.9

b ... 0.1

aa ... 0.8

ab ... 0.2

ba ... 0

bb ... 0

X Y

Figure 1: A fuzzy CSP.

Another interesting instance of the SCSP framework is
based on set operations like union and intersection and uses
the c-semiring Sets = 〈℘(A),∪,∩, ∅, A〉, where A is any set.
In this case the order reduces to set inclusion and therefore
is partial. It is also important to notice that the Cartesian
product of two semirings is again a semiring. This allows
one to reason with multiple criteria (one for each semiring)
at the same time.

Solutions.The solution of an SCSP problem P = 〈C, con〉
is the constraint Sol(P) = (

N
C) ⇓con . In words, we com-

bine all constraints and then we project the resulting con-
straint onto the variables of interest. For example, each
solution of the fuzzy CSP of Figure 1, where we assume
that all variables are of interest, consists of a pair of domain
values (that is, a domain value for each of the two variables)
and an associated semiring element. Such an element is ob-
tained by looking at the smallest value for all the subtuples
(as many as the constraints) forming the pair. For example,
for tuple 〈a, a〉 (that is, x = y = a), we have to compute
the minimum of 0.9 (which is the value for x = a), 0.8 (the
value for 〈x = a, y = a〉) and 0.9 (for y = a). Hence, the
result is 0.8.

Soft constraint propagation.SCSP problems can be solved
by extending and adapting the techniques used for classical
CSPs, like arc- and path-consistency [12]. To find the best
solution, we can employ a branch-and-bound search algo-
rithm.

The kind of soft constraint propagation we will consider
in this paper amounts to combining, at each step, a subset
of the soft constraints and then projecting over some of their
variables. This is not the most general form of constraint
propagation, but it strictly generalizes the usual propaga-
tion algorithms like arc- and path-consistency, therefore it
is reasonably general. More precisely, each constraint prop-
agation rule can be uniquely identified by just specifying a
subset C of the constraint set, and one particular constraint
in C, say c. Then, applying such a rule consists in per-
forming the following operation: c := (

N
C) ⇓var(c). That

is, c is replaced by the projection, over its variables, of the
combination of all the constraints in C.

A soft constraint propagation algorithm operates on a
given set of soft constraints, by applying a certain set of
constraint propagation rules until stability. In [2] it was
proven that any constraint propagation algorithm defined
in this way terminates and, if × is idempotent, then the
final constraint set is equivalent to the initial one and the
result does not depend on the order of application of the
propagation rules.

3. CONSTRAINT HANDLING RULES
CHR (Constraint Handling Rules) [8] are a committed-

choice concurrent constraint logic programming language
consisting of multi-headed guarded rules. CHRs define both
simplification of and propagation over user-defined constraints.
Simplification replaces constraints by simpler constraints while
preserving logical equivalence. Propagation adds new con-
straints which are logically redundant but may cause further
simplification. CHRs have been used in dozens of projects
worldwide to implement various constraint solvers, includ-
ing novel ones such as terminological, spatial and temporal
reasoning [8].

In this section we quickly give syntax and semantics for
CHRs, for details see [8]. We assume some familiarity with
(concurrent) constraint (logic) programming [10, 13, 11]. A
constraint is a predicate (atomic formula) in first-order logic.
We distinguish between built-in (predefined) constraints and
CHR (user-defined) constraints. Built-in constraints are those
handled by a predefined, given constraint solver.

Abstract syntax.In the following, upper case letters stand
for conjunctions of constraints. A CHR program is a fi-
nite set of CHRs. There are two kinds of CHRs. Simpli-
fication and propagation CHR are respectively of the form
N @ H <=> G | B and N @ H ==> G | B, where the rule
has an optional name N followed by the symbol @. The
multi-head H is a conjunction of CHR constraints. The op-
tional guard G followed by the symbol | is a conjunction of
built-in constraints. The body B is a conjunction of built-in
and CHR constraints.

A simpagation CHR is a combination of the above two
kinds of rule, with the form N @ H1\H2 ==> G | B, where
the symbol \ separates the head constraints into two nonempty
conjunctions H1 and H2. In this paper, a simpagation rule
can be regarded as concise abbreviation of the simplification
rule N @ H1, H2 ==> G | H1, B.

Operational semantics.The operational semantics of CHR
programs is given by a state transition system. With deriva-
tion steps (transitions, reductions) one can proceed from one
state to the next. A state (or: goal) is a conjunction of
built-in and CHR constraints. An initial state (or: query)
is an arbitrary state. In a final state (or: answer) either the
built-in constraints are inconsistent or no derivation step is
possible anymore.

Let P be a CHR program for the CHR constraints and
CT be a constraint theory for the built-in constraints. The
transition relation 7−→ for CHR is as follows.

Simplify
H ′ ∧D 7−→ (H = H ′) ∧G ∧B ∧D
if (H <=> G | B) in P
and
CT |= D → ∃x̄(H = H ′ ∧G)
Propagate
H ′ ∧D 7−→ (H = H ′) ∧G ∧B ∧H ′ ∧D
if (H ==> G | B) in P
and
CT |= D → ∃x̄(H = H ′ ∧G)

When we use a rule from the program, we will rename its
variables using new symbols, and these variables are denoted
by the sequence x̄. A rule with head H and guard G is ap-
plicable to CHR constraints H ′ in the context of constraints

D, when the condition CT |= D → ∃x̄(H = H ′ ∧G) holds.
The equation (H = H ′) is a notational shorthand for

equating the arguments of the CHR constraints that occur
in H and H ′. Operationally, we first check if H ′ matches H.
When matching, we take the context D into account since
its built-in constraints may imply that variables in H ′ are
equal to specific terms. This means that there is no distinc-
tion between, say, c(X) ∧ X = 1 and c(1) ∧ X = 1. If H ′

matches H, we equate H ′ and H. Finally, using the variable
equalities from D and H ′ = H, we check the guard G.

Any of the applicable rules can be applied, but, since CHR
is a committed choice language, it cannot be undone. If an
applicable simplification rule (H <=> G | B) is applied to
the CHR constraints H ′, the Simplify transition removes
H ′ from the state and adds the body B, the equation H =
H ′, and the guard G. If a propagation rule (H ==> G | B)

is applied to H ′, the Propagate transition adds B, H = H ′,
and G but does not remove H ′. Trivial non-termination is
avoided by applying a propagation rule at most once to the
same constraints.

4. IMPLEMENTATION
Typically, CHRs are used within a CLP environment such

as Eclipse or Sicstus Prolog [4]. This means that propaga-
tion algorithms are described via CHRs, while the underly-
ing CLP language is used to define search procedures and
auxiliary predicates. This is the case in our implementation
of soft constraints, where the underlying language is Sicstus
Prolog. The actual code has been slightly edited to abstract
away from technicalities like cuts and term copying.

Choice of the semiring.The implementation is parametric
w.r.t. the semiring. To choose one particular semiring S,
the user states (that is, asserts) the fact semiring(S) using
the predicate use semiring(S).

Recall that a semiring is characterized by 〈A, +,×,0,1〉.
While the definition of the set A is implicit through the oper-
ations, the operations and remaining parameters are defined
by CLP clauses. The two operators of the chosen semiring
are defined via predicate plus/4 for the additive operator
+ and times/4 for the multiplicative operator ×. The par-
tial order is defined via leqs/2, in terms of the additive
operator, as in the definition of the semiring structure. Fi-
nally, the top and bottom element are defined via predicates
one/1 and zero/1. For example, for the classical semiring
(for hard constraints), we have the following clauses:

plus(classical,W1,W2,W3) :- or(W1,W2,W3).
times(classical,W1,W2,W3) :- and(W1,W2,W3).

and(t,t,t). and(f,_,f). and(_,f,f).
or(f,f,f). or(t,_,t). or(_,t,t).

one(t) :- semiring(classical).
zero(f) :- semiring(classical).

For the fuzzy semiring and cartesian product we have:

plus(fuzzy,W1,W2,W3):- W3 is max(W1,W2).
times(fuzzy,W1,W2,W3):- W3 is min(W1,W2).
one(1) :- semiring(fuzzy).
zero(0) :- semiring(fuzzy).
plus((S1,S2),W1,W2,W3) :- W1=(A1,B1), W2=(A2,B2), W3=(A3,B3),

plus(S1,A1,A2,A3), plus(S2,B1,B2,B3).
times((S1,S2),W1,W2,W3) :- W1=(A1,B1), W2=(A2,B2), W3=(A3,B3),

times(S1,A1,A2,A3), times(S2,B1,B2,B3).

Domains and constraints.Variable domains are described
as lists of pairs, where each pair contains a domain element
and an associated preference. The operator in allows one
to state the unary constraint that a variable is in a certain
domain. For example: [X] in [a-2,b-3].

The operator in can also be used for stating n-ary con-
straints. For example: [X,Y] in [(a,b)-3,(b,c)-4]. We
call such a definition extensional. N-ary constraints can
also be defined intensionally, which comes handy in the
case of infinite relations. For example, [X,Y] in leq-3-1

associates importance value 3 to all tuples satisfying the
constraint leq/2 and value 1 to the others. In extensional
definitions, preferences are assigned to variable assignments
while in intensional definitions preferences are assigned to
constraints.

Constraint combination.Two extensionally defined soft
constraints are combined via the predicate combination/3,
which takes two constraints and returns a third constraint
which is their combination.

combination(Con1 in Def1, Con2 in Def2, Con3 in Def3):-
isExtensional(Def1), isExtensional(Def2),
union(Con1, Con2, Con3), semiring(S), zero(Z),
findall(Con3-W3, (member(Con1-W1, Def1), member(Con2-W2, Def2),

times(S, W1, W2 ,W3), W3 \== Z), Def3).

The combined constraint Con3 in Def3 is computed as
follows: the variables involved in the constraint are com-
puted by the union operator. Then findall/3 collects all
tuples Con3-W3 of the new constraint in the list Def3, where
each tuple is found by computing all pairs of consistent tu-
ples from Con1 and Con2 using member/2 and by computing
their preference value W3 using the times operator of the
specified semiring S. For performance reasons and to enable
pruning of the search space, the tuples with zero preference
value are deleted.

In order to deal with intensionally defined constraints, a
variation of combination/3 is defined, called longcombination/4.
It takes an intensionally defined constraint and two exten-
sional domain constraints, and computes a new extension-
ally defined constraint, which represents the combination of
the three original constraints.

longcombination(A in L1, B in L2, E in L4, C in L3):-
isIntensional(L1), isExtensional(L2), isExtensional(L4),
union(A, B, AB), union(AB, E, C), semiring(S), zero(Z),
findall(C-W3, (member(B-W2, L2), member(E-W4, L4),

checkConstraint(L1, A, W1), times(S, W1, W2, W12),
times(S, W12, W4, W3), W3 \== Z), L3).

To assign a level of preference to each tuple, by starting
from an intensional defined constraint, we use the predicate
checkconstraint/3, which takes the relation to check (L1),
the variables involved (A), the preference parameters of L1,
and returns the level of preference for the tuple (W1), e.g.:

checkConstraint(leq-W-WA,[X,Y],W1):- X=<Y -> W1 is W ; W1 is WA.
checkConstraint(slq-W-WA,[X,Y],W1):- X=<Y -> W1 is W ; W1 is

max(WA,1/(X-Y)*W1).

The first relation assigns weight W to each tuple that satis-
fies the relation X=<Y, and W1 to the other tuples. The second
relation assigns to each tuple a weight which depends on the
distance between X and Y.

Constraint projection.Predicate projection/3 implements
the projection operator for an extensionally defined soft con-
straint and a list of variables Con2, resulting in a new con-
straint Con2 in Def2.

projection(Con1 in Def1, Con2, Con2 in Def2):-
isExtensional(Def1), findall(Con2-W1, (member(Con1-W1, Def1)), Def3),
keysort(Def3, Def4), semiring(S), allplus(Def4, Def2, S).

First findall/3 finds all tuples in terms of the variables
of interest Con2 using the tuples from the original constraint
Con1 in Def1. These tuples are sorted so that tuples with
the same domain element are neighboring. Then predicate
allplus/3 sums all the semiring values whose domain ele-
ment is the same to compute the final new domain Def2.

allplus([], [], _).
allplus([A-W1, A-W2|Def0], Def, S) :-

!, plus(S, W1, W2, W3), allplus([A-W3|Def0], Def, S).
allplus([A-W1|Def0], [A-W1|Def], S):- allplus(Def0, Def, S).

4.1 Node- and arc-consistency
A variable is node-consistent if for every value in the cur-

rent domain of the variable, each unary constraint on the
variable is satisfied. The following CHR rule achieves node-
consistency by intersecting the domains associated with the
variable X using combination/3:

node_consistency @ Con in Def1, Con in Def2 <=>
Con=[X], isExtensional(Def1), isExtensional(Def2) |
combination(Con in Def1, Con in Def2, Con in Def3),
Con in Def3.

Actually, we can drop Con=[X] from the guard of the rule,
so that Con can be any list of variables. Thus the generalized
rule now performs intersection of the domains of two soft
constraints over the same variables.

The following simpagation rule implements arc-consistency,
by combining binary and unary constraints involving two
variables X and Y and then projecting onto each of the two
variables. In effect, the two unary constraints on X and Y

are tightened taking into account the binary constraint.

arc_consistency @ [X,Y] in C \ [X] in A, [Y] in B <=>
isExtensional(C), isExtensional(A), isExtensional(B),
semiring(S), idempotent(S) |

combination([X,Y] in C, [X] in A, [X,Y] in D),
combination([X,Y] in D, [Y] in B, [X,Y] in E),
projection([X,Y] in E, [X], [X] in F),
projection([X,Y] in E, [Y], [Y] in G),

[X] in F, [Y] in G.

We recall here that soft arc-consistency can be applied
only when the (multiplicative operation of the) semiring is
idempotent. Otherwise, in our implementation, we apply
a variation of arc-consistency that uses another projection
predicate. It eliminates from the domains only those ele-
ments with zero as associated preference level.

Another version of the arc-consistency rule dealing with
intensionally defined constraint has also been implemented.
It basically differs from the rule above only in that it uses the
goal longcombination([X,Y] in C, [X] in A, [Y] in B,

[X,Y] in E) instead of the two goals involving combination/3.

4.2 Complete solvers

Naive solver.Predicate solve/2 implements the notion of
solution, by combining all the constraints in Cs and then
projecting over the variables of interest (those in Con) (here
predicate globalCombination/2 folds combination/3 over
a list of constraints).

solve(Cs, Con, Solution) :-
globalCombination(Cs, C), projection(C, Con, Solution).

Dynamic programming.This solver, called dp, incremen-
tally eliminates a set of variables from the constraint store.
It is working on one variable at a time. First, it selects
a variable X to eliminate (but not one from those given in
the list Xs). Second, it identifies the constraints involving
X and combines them into a single constraint Cs. Third,
it eliminates X from Cs by projection obtaining C. Finally,
the constraints involving X are replaced by C and the solver
iterates to eliminate the remaining variables.

dp(Xs) :- (selectVariable(X,Xs)
-> findall_constraints(X, _ in _, Cs), globalCombination(Cs, C0),

C0 = (Con0 in _), delete(X, Con0, Con1),
projection(C0, Con1, C), removeConstraints(Cs0),
addConstraints(C), dp(Xs)

; true).

Branch & bound with variable labeling.This solver,
called varbb, performs branch and bound with variable la-
beling in the search for a solution with maximal weight.
Given a list of variables Xs and constraints Con, the solu-
tion Solution is found in the following way: first a variable
X is selected deterministically from Xs according to some
built-in strategy. Second, a value-weight pair is chosen non-
deterministically from the domain of X according to some
built-in strategy. Then the resulting unary constraint [X]

in [A-AW] is imposed. If there is already a current bound
(weight), the constraints Con are solved using solve and it is
made sure that there is at least one possible value in the so-
lution domain whose weight is lower than the current weight.
Finally, the recursive call continues with the remainder of
the variables Xs1.

If the list of variables is empty, the second clause for varbb
computes a solution and updates the bound to be the weight
occurring in the solution.

varbb(Xs, Con, Solution) :-
selectVariable(Xs, X, Xs1),
selectValue(X, A-AW), [X] in [A-AW],
(bound(LB)
-> solve(Con, _ in Def), once((member(_-W, Def), less(LB, W)))
; true), varbb(Xs1, Con, Solution).

varbb([], Con, Solution) :- solve(Con, Solution),
Solution = (_ in [_-B]), update(bound(B)).

5. CONCLUSIONS
We have implemented a generic soft constraint environ-

ment where it is possible to work with any class of soft
constraints, if they can be cast within the semiring-based
framework: once the semiring features have been stated
via suitable clauses, the various solvers we have developed
in CHRs and Sicstus Prolog will take care of solving such
soft constraints. We have implemented semi-rings for classi-
cal, fuzzy, set, and Cartesian-product soft constraints. Our
solvers include propagation-based node- and arc-consistency
solvers as well as the several complete solvers using branch
and bound with variable or constraint labeling, or dynamic
programming. The solvers are available online at
http://www.pms.informatik.uni-muenchen.de/~webchr/

We plan to predefine more classes of soft constraints (such
as vector-costs with lexicographical orderings for hierarchi-
cal CSPs) and to develop other soft propagation algorithms

and solvers for soft constraints. We also plan to compare
our approach to the one followed by the soft constraint pro-
gramming language clp(fd,S) [9]. Of course we do not ex-
pect to show the same efficiency as clp(fd,S), but we claim
the same generality, and a very natural environment to de-
velop new propagation algorithms and solvers for soft con-
straints. Moreover, we did not need to add anything, ex-
cept the clauses and CHR rules shown in this paper, w.r.t.
the existing CHR environment and CLP language of choice.
On the other hand, clp(fd,S) needed a new implementation
and abstract machine w.r.t. clp(fd) [5], from which it origi-
nated.

6. ADDITIONAL AUTHORS
Francesca Rossi, Università di Padova, Dipartimento di

Matematica Pura ed Applicata, Via G. B. Belzoni 7, Padova,
Italy. E-mail: frossi@math.unipd.it

7. REFERENCES
[1] S. Bistarelli. Soft Constraint Solving and

programming: a general framework. PhD thesis,
Dipartimento di Informatica, Università di Pisa, Italy,
mar 2001. TD-2/01.

[2] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based Constraint Solving and Optimization.
Journal of the ACM, 44(2):201–236, Mar 1997.

[3] A. Borning, M. Maher, A. Martindale, and M. Wilson.
Constraint hierarchies and logic programming. In
Proc. 6th International Conference on Logic
Programming, pages 149–164. MIT Press, 1989.

[4] M. Carlsson and J. Widen. SICStus Prolog User’s
Manual. on-line version at
http://www.sics.se/sicstus/. Technical report,
Swedish Institute of Computer Science (SICS), 1999.

[5] P. Codognet and D. Diaz. Compiling constraints in
clp(fd). The Journal of Logic Programming, 27(3),
1996.

[6] D. Dubois, H. Fargier, and H. Prade. The calculus of
fuzzy restrictions as a basis for flexible constraint
satisfaction. In Proc. IEEE International Conference
on Fuzzy Systems, pages 1131–1136. IEEE, 1993.

[7] E. C. Freuder and R. J. Wallace. Partial constraint
satisfaction. Artificial Intelligence, 58(1–3):21–70, dec
1992.

[8] T. Frühwirth. Theory and practice of constraint
handling rules. Journal of Logic Programming -
Special Issue on Constraint Logic Programming,
37(1–3):95–138, oct–dec 1998.

[9] Y. Georget and P. Codognet. Compiling
semiring-based constraints with clp(fd,s). In Proc.
CP98, number 1520 in LNCS. Springer-Verlag, 1998.

[10] K. Marriott and P. Stuckey. Programming with
Constraints. MIT Press, 1998.

[11] V. Saraswat. Concurrent Constraint Programming.
MIT Press, 1993.

[12] E. P. K. Tsang. Foundations of Constraint
Satisfaction. Academic Press, 1993.

[13] P. van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

[14] P. van Hentenryck, L. Perron, and J.-F. Puget. Search
and strategies in OPL. ACM Transactions on
Computational Logic, 1(2):285–320, 2000.

