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RemarksWe want to adapt and use existing approahes totermination in rule-based languages (logi program-ming and rewriting systems) to prove termination ofatually implemented CHR onstraint solvers.Our approah proves termination of many CHRonstraint solvers, ranging from Boolean and arith-meti to terminologial and path-onsistent onstraints.
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Why Termination?� Good for users� Conuene� Completion� Operational EquivalenePrerequisite in all theoretial results about CHR.
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Related WorkTerm Rewriting� Dershowitz, JSC 1987.Logi Programming� Overview in de Shreye/Deorte, JLP 1994.� Bezem, JLP 1993 and before.� Apt/Pedreshi, ESPRIT CSL 90.Logi Programming with Coroutining� Naish, TR Melbourne 1992.� Marhiori/Teusink, ILPS 95.Constraint Logi Programming� Colussi/Marhiori/Marhiori, PPCP 95.� Mesnard, JICSLP 96.Conurrent Logi Programming� Pl�umer, FGCS 92.� Rao/Kapur/Shyamasundar, NGC 1997.
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RemarksThe main line of work in termination of logiprograms originated from predeessor publiationsof the author of [Bez93℄. Both programs and goalsare haraterized in terms of level mappings, a fun-tion from ground atoms to natural numbers. A logiprogram is reurrent if for every ground instane ofeah rule, the level of the head atom is higher thanthe level of eah body atom. A goal is bounded if forevery ground instane of eah atom in the goal thereis a maximum level whih is not exeeded.[ApPe90℄ and suessive work re�ned this ap-proah: Loal variables and the spei� left-to-rightSLD resolution of Prolog are taken into aount.While [Mes96, MaTe95, Plu92℄ embark on levelmappings, the theoretial work [CMM95℄ providesneessary and suÆient onditions for terminationbased on dataow graphs, the pratial work [Nai92℄disusses informally how terminating proedures anbe ombined ensuring overall termination, and [KKS97℄an use tehniques from TRS diretly sine they trans-late GHC programs into TRS.
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Conurrent ConstraintProgramming?Termination problem even harder.Example. Even Number Constraint:even(X) <=> X=s(Y) | Y=s(Z), even(Z).Queries:� even(N) delays.� even(f(N)) delays.� even(s(N)) leads to N=s(N1),even(N1).� even(N),even(s(N)) does not terminate.Constraint Handling Rules?Not only onurreny and onstraints, but alsopropagation rules and multiple heads.
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Basi IdeaTermination for rule-based languagesProve that head of the rule is larger than body ofthe rule in some well-founded order.Polynomial interpretation:Maps terms to natural numbers.E.g. even(X) <=> X=s(Y) | Y=s(Z), even(Z).rank(even(sn(X))) = nNot enough, must take variables into aount.Modes and types.E.g. even annot be moded.even terminates if ill-typed.Boundedness: Queries must be suÆiently known.E.g. even with ground (variable-free) argument.
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RemarksThe basi idea is to prove that in eah rule, thehead atom is stritly larger than every atom our-ring in the body of the rule. In order to be appli-able, programs and queries usually have to be well-moded or queries suÆiently known.ContentsWe will �rst give syntax and semantis for CHR.In the next setion, we introdue useful terminationorders for CHR. Then we prove termination of a-tually implemented CHR onstraint solvers rangingfrom Boolean and arithmeti to terminologial andpath-onsistent onstraints.
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SyntaxUpper ase letters stand for onjuntions of CHR(user-de�ned) or built-in (prede�ned) onstraints.A simpli�ation CHR is of the form[Name '�'℄ Head '<=>' [Guard '|'℄ Body.A propagation CHR is of the form[Name '�'℄ Head '==>' [Guard '|'℄ Body.Head is a onjuntion of CHR onstraints.Guard is a onjuntion of built-in onstraints.Body is a onjuntion of built-in and CHRonstraints.
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Operational SemantisA state (goal): onjuntion of onstraints.Upper ase letters: onjuntions of onstraints.CT : onstraint theory for the built-in onstraints.SimplifyH 0 ^D 7�! (H = H 0) ^G ^B ^Dif (H <=> G j B) variant of rule in PCT j= Dbi ! 9�x(H = H 0 ^G)
PropagateH 0 ^D 7�! (H = H 0) ^G ^B ^H 0 ^Dif (H ==> G j B) variant of rule in PCT j= Dbi ! 9�x(H = H 0 ^G)
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RemarksAn initial state (query). A �nal state (answer):No fair omputation step is possible anymore or thestate is inonsistent.�x denotes the fresh variables ourring in thevariant of the rule hoosen from P .A rule is appliable to CHR onstraints H 0 when-ever these onstraints math the head atoms H ofthe rule and the guard G is entailed (implied) bythe built-in onstraint store.If a simpli�ation rule (H <=> G | B) appear-ing in the given CHR program P is appliable tothe CHR onstraint H 0, the Simplify transition re-moves H 0 from the state, adds B and also adds theequation H = H 0 and the guard G to the state. If apropagation rule (H ==> G | B) is appliable toH 0, the Propagate transition adds B and also addsthe equation H = H 0 and the guard G.We require that the rules are applied fairly, i.e.that every rule that is appliable is applied eventu-ally. Fairness is respeted and trivial non-terminationis avoided by applying a propagation rule at mostone to the same onstraints.
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Termination of CHRConstraint SolversTermination in all ontexts under any shedulingwhih prefers built-in onstraints.A CHR program P is terminating for a lass ofgoals G, if there are no in�nite derivationsstarting from any goal in G using rules from P .
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CHR Termination OrdersLinear polynomial interpretation: Rank of a termor atom is de�ned by a linear positiveombination of the rankings of its arguments.rank(f(t1; : : : ; tn)) =af0 + af1 � rank(t1) + : : :+ afn � rank(tn)where the afi are natural numbers.For eah variable X, rank(X) � 0.Rank orders are stable under substitution andwell-founded for ground terms or atoms.Example. Size of a term.size(f(t1; : : : ; tn)) = 1 + size(t1) + : : :+ size(tn)size(f(a; g(b; )) = 5.size(f(a;X)) = 2 + size(X) with size(X) � 0.size(f(g(X); X)) � size(f(a;X)) sine2 + 2 � size(X) � 2 + size(X):
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CHR Termination Orders 2� Rank of built-in onstraints is zero.� Rank onstraints: Built-in onstraints mayimply order onstraints on arguments, e.g.s = t! rank(s) = rank(t).� Ranking formula of a rule H <=> G | B:RC(G;B)! rank(H) > rank(B),where RC(G;B) is the onjuntion of therank onstraints derived from the built-inonstraints in the guard and body of the rule.� Boundedness of a goal G: The rank of anyinstane of G is bounded from above by someonstant k.
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RemarksObviously, the rank of a ground (variable-free)term is always bounded.
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CHR Termination TheoremGiven a CHR termination order whererank((A ^B)) = rank(A) + rank(B).and a CHR program P without propagation rules.If for eah rule in P the ranking formula holds,then P is terminating for all bounded goals.Proof Sketh. Applying a rule (H <=> G j B) toa state H 0 ^D leads to (H = H 0) ^G ^B ^D.1. Show thatrank(H 0 ^D) > rank(((H = H 0) ^G ^B ^D)).We know (H = H 0)! rank(H) = rank(H 0),rank(G) = 0, rank(H = H 0) = 0 andRC(G;B)! rank(H) > rank(B).rank(H 0 ^D) = rank(H 0) + rank(D) =rank(H) + rank(D).rank(((H = H 0) ^G ^B ^D)) =rank(B) + rank(D).2. Show that ranks of states are always bounded.
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RemarksTo show that the ranks of all states are bounded,note the following: Any ranking is well-founded andhas the stability property. Sine goals are bounded,the rank of a state is bounded. Due to the rank-ing ondition, the boundedness of the soure state ispropagated to target state. Thus no in�nite ompu-tations are possible, hene P is terminating.The Theorem also holds for CHR termination or-ders extended to multi-sets whererank((A ^B)) = rank(A) [ rank(B).
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Boolean Algebra,Propositional LogiThe Boolean ardinality onstraint #(L,U,BL,N)holds if between L and U Boolean variables in thelist BL are equal to 1. N is the length of BL.Boolean ardinality an expressnegation #(0,0,[C℄,1),exlusive or #(1,1,[C1,C2℄,2),onjuntion #(N,N,[C1,...,Cn℄,N)and disjuntion #(1,N,[C1,...,Cn℄,N).triv_sat� #(L,U,BL,N) <=> L=<0,N=<U | true.pos_sat � #(L,U,BL,N) <=> L=N | all(1,BL).neg_sat � #(L,U,BL,N) <=> U=0 | all(0,BL).pos_red � #(L,U,BL,N) <=> delete(1,BL,BL1) |0<U, #(L-1,U-1,BL1,N-1).neg_red � #(L,U,BL,N) <=> delete(0,BL,BL1) |L<N, #(L,U,BL1,N-1).
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RemarksIn the ode, all onstraints exept ardinality #are built-in.all(T,L) binds all elements of the list L to T.delete(X,L,L1) deletes the element X from thelist L resulting in the list L1.When delete/3 is used in the guard, it will onlysueed if the element to be removed atually oursin the list. E.g. delete(1,BL,BL1) will delay if ittries to bind a variable in BL to 1. It will only sueedif there atually is a 1 in the list. It will fail, if allelements of the list are zeros.
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TerminationCHR termination order:rank(#(L;U;BL;N)) = length(BL)length([℄) = 0length([XjL℄) = 1 + length(L)delete(X;L;L1)! length(L) = length(L1) + 1Termination proof:Frompos_red � #(L,U,BL,N) <=> delete(1,BL,BL1) |0<U, #(L-1,U-1,BL1,N-1).we get to provelength(BL) = length(BL1) + 1 !length(BL) > length(BL1).Boundedness: �nite losed list BL.
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RemarksSine the ardinality onstraint is either simpli-�ed into a built-in onstraint (satisfation rules) orredued to a ardinality with a shorter list (redutionrules), this implementation terminates.Due to the ranking, a goal onsisting of built-inand ardinality onstraints is bounded if the lengthsof the lists in the ardinality onstraints are known,i.e. if the lists are losed. If a list was open(-ended),there ould be produers of an in�nite list, and thenthe assoiated ardinality onstraint would not ne-essarily terminate.
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Linear Polynomial EquationsLinear polynomial equation:a1 � x1 + : : :+ an � xn + b = 0.Variables appear in stritly desending order.Variable Eliminationempty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.
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RemarksA linear polynomial equation is of the form p +b = 0 where b is a onstant and the polynomial pis the sum of monomials of the form ai � xi withoeÆient ai 6= 0 and xi is a variable. Constantsand oeÆients are numbers.The empty rule says that if the polynomial on-tains no more variables, the onstant B must be (ap-proximate to) zero.The eliminate rule performs variable elimina-tion. It takes two equations that start with thesame variable. The �rst equation is left unhanged,it is used to eliminate the ourrene of the om-mon variable in the seond equation. The auxiliarybuilt-in onstraint ompute simpli�es a polynomialarithmeti expression into a new polynomial.Note that no variable is made expliit, i.e. nopivoting is performed. Any two equations with thesame �rst variable an reat with eah other.The solver an be extended by a few rules toreate expliit variable bindings, to make impliitequalities between variables expliit, to deal with in-equations using slak variables or fouriers algorithm.
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TerminationCHR termination order:Extend termination order to multi-sets.rank((A ^B)) = rank(A) [ rank(B)rank(A) = vars(A) if A is a CHR onstraintrank(A) = fg if A is a built-in onstrainta1 �X1 : : : an �Xn + b = 0! Xi � Xj if i > jrank(ompute(E;P )! vars(E) � vars(P )Termination proof:A1*X+P1 eq 0, A2*X+P2 eq 0 <=>ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.Prove (P2 [ P1 � P3)!(fXg [ P1 [ fXg [ P2) > (fXg [ P1 [ P3).Boundedness: Order is on sets of variables.
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RemarksFor better readability, we write just P instead ofvars(P ).The rank onstraint (1) says that the monomialsin the equations are ordered by their variables. Therank onstraint (2) says that the built-in onstraintompute does not introdue new variables, but mayeliminate ourenes of some.Hene the body rank multiset ontains only vari-ables from the head rank multiset. Due to (1) weknow that the variable X does not our in P1; P2and P3, and that it omes before all other variablesin P1; P2 and P3 in the variable order.Therefore the head rank multiset is stritly greaterin the multiset order than the body rank multiset,beause in the former X ours twie and in the lat-ter X ours only one.
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Path ConsistenyA disjuntive binary onstraint(I,K,f r1,..., rng) denotes a �nitedisjuntion (X r1 Y ) _ : : : _ (X rn Y ).Path onsisteny algorithm(I,K,C1), (K,J,C2), (I,J,C3) <=>omposition(C1,C2,C12),intersetion(C12,C3,C123),C123=\=C3|(I,K,C1), (K,J,C2), (I,J,C123).
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RemarksA binary onstraint network onsists of a set ofvariables and a set of (disjuntive) binary onstraintsbetween them. The network an be represented bya direted onstraint graph, where the nodes denotevariables and the ars are labeled by binary on-straints. Logially, a network is a onjuntion ofbinary onstraints.A disjuntive binary onstraint xy between twovariables X and Y , also written X fr1; : : : ; rng Y , isa �nite disjuntion (X r1 Y )_ : : :_ (X rn Y ), whereeah ri is a relation that is appliable to X and Y .The ri are alled primitive onstraints. They areassumed to be pairwise disjoint.A network is path onsistent if for pairs of nodes(i; j) and all paths i� i1� i2 : : : in�j between them,the diret onstraint ij is at least as tight than theindiret onstraint along the path, i.e. the omposi-tion of onstraints ii1 
 : : :
 inj along the path.Composition of disjuntive onstraints an be om-puted by pairwise omposition of its primitive on-straints. Intersetion for disjuntive onstraints anbe implemented by set intersetion.
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TerminationCHR termination order:rank((I;K;C)) = ardinality(C)rank(A) = 0 otherwise.intersetion(C1; C2; C3)!rank(C3) � rank(C1) ^ rank(C3) � rank(C2)intersetion(C1; C2; C3) ^ C3 6= C2!rank(C3) 6= rank(C2)Termination proof:In the guard, C123=n=C3 is heked to make surethe new onstraint C123 is di�erent from the oldone C3. Hene the ardinality of C123 must bestritly less than that of C3.Boundedness: Ci must be known �nite set.
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RemarksTo prove termination we rely on the ardinalityof the sets representing the disjuntive onstraintsand the properties of set intersetion.Hene the body is ranked stritly smaller thanthe head of the rule. Goals are bounded, sine C isalways a known, �nite set of primitive onstraints.Any solver derived from this generi path onsis-teny solver will terminate, too.
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Interval Domain Constraintsinonsistent � X in A:B <=> A>B | false.intersetion � X in A:B, X in C:D <=> A=<B |X in max(A,C):min(B,D).le � X le Y, X in A:B, Y in C:D <=>A=<B,B>D |X le Y, X in A:D, Y in C:D.eq � X eq Y, X in A:B, Y in C:D <=>A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.add � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F<=>A=<B,C=<D,\+(A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)|add(X,Y,Z),X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).17



RemarksAr onsisteny an be seen as speial ase ofpath onsisteny, where all but one onstraint is unaryinstead of binary.The interval onstraint X in A:B means that Xis a number between the bounds A and B.
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TerminationCHR termination order:rank(X in A : B) = B � A+ 1 if B � Arank(C) = 0 otherwiseTermination proof:In eah rule, at least one interval in the head isstritly larger than the orresponding interval inthe body, while the other intervals remainunhanged or will be removed. Proved using theinequalities in the guards.eq � X eq Y, X in A:B, Y in C:D <=>A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.Boundedness: The interval bounds are known.
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RemarksThe onstraints A=<B and C=<D in the guard ofa rule ensure that the rank of the head of the ruleannot be 0. (In implementations that apply rules intextual order, these guard onstraints an be dropped.)The ranking ondition for the �rst rule inonsistentalso holds, even though its head rank is 0, sine itsorder onstraint is inonsistent:(A > B ^ false)! 0 > 0Even though the ranking is only well-de�ned forinterval bounds that are integers, there is a simpleway to allow for oating point numbers and rationalnumbers as well: First note that eah kind of num-bers is losed under the interval omputations, sinethey use only the arithmeti operations max, minand +, -. Note that oating point numbers an berepresented by rational numbers. Finally, any prob-lem on rational numbers an be transformed into anequivalent one on integers by multiplying all num-bers in the problem with their greatest ommon di-visor.
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Conlusions� First work on proving termination inonurrent onstraint logi languages.� Proved termination for many CHR onstraintsolvers.� Linear polynomial interpretations suÆed,ontrary to what was feared in the literature.� Reursion modi�es one suÆiently knownargument position.� Limited use of propagation rules.Open Problem for future workPropagation rules in path and ar onsistenyalgorithms on inomplete onstraint networks:(I,K,C1), (K,J,C2) ==>omposition(C1,C2,C3), (I,J,C3).(I,J,C1), (I,J,C2) <=>intersetion(C1,C2,C3), (I,J,C3).Fairness has to be onsidered for termination.19



RemarksThese solvers have reursion on the same on-straint through both simpli�ation and propagationrules. This means that a onstraint an be �rstadded and then be removed during the omputation.Future works aims at giving termination proofsalso for this kind of solvers. One will have to takeinto aount fairness (whih implies that simpli�a-tion is applied suÆiently often before propagation)and the fat that propagation rules are never applieda seond time to the same onstraints.Another interesting line of future work is to strengthenthe anteedent of a ranking ondition by introduingtype onstraints (ill-typed goals either delay or fail).
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