Termination of CHR
Constraint Solvers

Thom Fruhwirth
Ludwig-Maximilians-Universitat Munchen
Oettingenstrasse 67
D-80538 Munich, Germany
fruehwir@informatik.uni-muenchen.de

www.informatik.uni-muenchen.de/~fruehwir/

4th October 1999

0-0

Remarks

We want to adapt and use existing approaches to
termination in rule-based languages (logic program-
ming and rewriting systems) to prove termination of
actually implemented CHR constraint solvers.

Our approach proves termination of many CHR
constraint solvers, ranging from Boolean and arith-
metic to terminological and path-consistent constraints.

0-1

Why Termination?

e Good for users

e Confluence

e Completion

e Operational Equivalence

Prerequisite in all theoretical results about CHR.

Remarks

1-1

Related Work

Term Rewriting
e Dershowitz, JSC 1987.
Logic Programming
e Overview in de Schreye/Decorte, JLP 1994.
e Bezem, JLP 1993 and before.
e Apt/Pedreschi, ESPRIT CSL 90.
Logic Programming with Coroutining
e Naish, TR Melbourne 1992.
e Marchiori/Teusink, ILPS 95.
Constraint Logic Programming
e Colussi/Marchiori/Marchiori, PPCP 95.
e Mesnard, JICSLP 96.
Concurrent Logic Programming
e Plimer, FGCS 92.
e Rao/Kapur/Shyamasundar, NGC 1997.

Remarks

The main line of work in termination of logic
programs originated from predecessor publications
of the author of [Bez93]. Both programs and goals
are characterized in terms of level mappings, a func-
tion from ground atoms to natural numbers. A logic
program is recurrent if for every ground instance of
each rule, the level of the head atom is higher than
the level of each body atom. A goal is bounded if for
every ground instance of each atom in the goal there
is a maximum level which is not exceeded.

[ApPe90] and successive work refined this ap-
proach: Local variables and the specific left-to-right
SLD resolution of Prolog are taken into account.

While [Mes96, MaTe95, Plu92] embark on level
mappings, the theoretical work [CMM95] provides
necessary and sufficient conditions for termination
based on dataflow graphs, the practical work [Nai92]
discusses informally how terminating procedures can
be combined ensuring overall termination, and [KKS97]
can use techniques from TRS directly since they trans-
late GHC programs into TRS.

2-1

Concurrent Constraint

Programming?

Termination problem even harder.
Example. Even Number Constraint:
even(X) <=> X=s(Y) | Y=s(Z), even(Z).
Queries:
e even(N) delays.
e even(f(N)) delays.
o even(s(N)) leads to N=s(N1) ,even(N1).
o even(N),even(s(N)) does not terminate.

Constraint Handling Rules?

Not only concurrency and constraints, but also

propagation rules and multiple heads.

Remarks

Basic Idea

Termination for rule-based languages

Prove that head of the rule is larger than body of

the rule in some well-founded order.

Polynomaial interpretation:

Maps terms to natural numbers.

E.g. even(X) <=> X=s(Y) | Y=s(Z), even(Z).
rank(even(s™(X))) =n

Not enough, must take variables into account.
Modes and types.

E.g. even cannot be moded.

even terminates if ill-typed.
Boundedness: Queries must be sufficiently known.

E.g. even with ground (variable-free) argument.

Remarks

The basic idea is to prove that in each rule, the
head atom is strictly larger than every atom occur-
ring in the body of the rule. In order to be appli-
cable, programs and queries usually have to be well-
moded or queries sufficiently known.

Contents

We will first give syntax and semantics for CHR.
In the next section, we introduce useful termination
orders for CHR. Then we prove termination of ac-
tually implemented CHR constraint solvers ranging
from Boolean and arithmetic to terminological and
path-consistent constraints.

4-1

Syntax

Upper case letters stand for conjunctions of CHR
(user-defined) or built-in (predefined) constraints.

A simplification CHR is of the form
[Name ’@’] Head ’<=>’ [Guard ’|’] Body.
A propagation CHR is of the form
[Name ’@’] Head ’==>’ [Guard ’|’] Body.

Head is a conjunction of CHR constraints.
Guard is a conjunction of built-in constraints.
Body is a conjunction of built-in and CHR

constraints.

Remarks

o-1

Operational Semantics

A state (goal): conjunction of constraints.
Upper case letters: conjunctions of constraints.

C'T: constraint theory for the built-in constraints.

Simplify

HAND— (H=H)ANGANBAD
if (H <=> G | B) variant of rule in P
CT &= Dy, — dz(H = H NG)

Propagate

HAND— (H=H)NGANBANH' AND
if (H ==> G | B) variant of rule in P
CT &= Dy, — dz(H = H' NG)

Remarks

An initial state (query). A final state (answer):
No fair computation step is possible anymore or the
state is inconsistent.

x denotes the fresh variables occurring in the
variant of the rule choosen from P.

A rule is applicable to CHR constraints H' when-
ever these constraints match the head atoms H of
the rule and the guard G is entailed (implied) by
the built-in constraint store.

If a simplification rule (H <=> G | B) appear-
ing in the given CHR program P is applicable to
the CHR constraint H’, the Simplify transition re-
moves H' from the state, adds B and also adds the
equation H = H' and the guard G to the state. If a
propagation rule (H ==> G | B) is applicable to
H’, the Propagate transition adds B and also adds
the equation H = H' and the guard G.

We require that the rules are applied fairly, i.e.
that every rule that is applicable is applied eventu-
ally. Fairness is respected and trivial non-termination
is avoided by applying a propagation rule at most
once to the same constraints.

6-1

Termination of CHR

Constraint Solvers

Termination in all contexts under any scheduling

which prefers built-in constraints.

A CHR program P is terminating for a class of
goals G, if there are no infinite derivations

starting from any goal in G using rules from P.

Remarks

CHR Termination Orders

Linear polynomaal interpretation: Rank of a term
or atom is defined by a linear positive

combination of the rankings of its arguments.
rank(f(tl, o tn)) =
—|— al xrank(t) + ...+ af « rank(t,)

where the a{ are natural numbers.

For each variable X, rank(X) > 0.

Rank orders are stable under substitution and

well-founded for ground terms or atoms.
Example. Size of a term.

size(f(ti,...,tn)) =1+ size(ty) + ...+ size(t,)

size(f(a,g(b,c)) = 5.

size(f(a, X)) =2+ size(X) with size(X) > 0.
size(f(g(X), X)) > size(f(a, X)) since

2+ 2% size(X) > 2+ size(X).

Remarks

CHR Termination Orders 2

e Rank of built-in constraints is zero.

e Rank constraints: Built-in constraints may
imply order constraints on arguments, e.g.
s =t — rank(s) = rank(t).

e Ranking formula of a rule H <=> G | B:
RC(G,B) — rank(H) > rank(B),
where RC(G, B) is the conjunction of the
rank constraints derived from the built-in
constraints in the guard and body of the rule.

e Boundedness of a goal G: The rank of any
instance of G is bounded from above by some

constant k.

Remarks

Obviously, the rank of a ground (variable-free)
term is always bounded.

9-1

CHR Termination Theorem

Giwen a CHR termination order where
rank((A A B)) = rank(A) + rank(B).

and a CHR program P without propagation rules.
If for each rule in P the ranking formula holds,

then P is terminating for all bounded goals.

Proof Sketch. Applying a rule (H <=> G | B) to
a state H' A D leads to (H =H') A\GA BAD.

1. Show that
rank(H' N D) > rank(((H = H') NG N B A D)).

We know (H = H') = rank(H) = rank(H'),
rank(G) =0, rank(H = H') = 0 and
RC(G,B) — rank(H) > rank(B).

rank(H' A D) = rank(H') + rank(D) =
rank(H) + rank(D).

rank((H=H')ANGANBAD)) =
rank(B) + rank(D).

2. Show that ranks of states are always bounded.

10

Remarks

To show that the ranks of all states are bounded,
note the following: Any ranking is well-founded and
has the stability property. Since goals are bounded,
the rank of a state is bounded. Due to the rank-
ing condition, the boundedness of the source state is
propagated to target state. Thus no infinite compu-
tations are possible, hence P is terminating.

The Theorem also holds for CHR termination or-
ders extended to multi-sets where

rank((A A B)) = rank(A) Urank(B).

10-1

Boolean Algebra,

Propositional Logic

The Boolean cardinality constraint #(L,U,BL,N)
holds if between L and U Boolean variables in the
list BL are equal to 1. N is the length of BL.
Boolean cardinality can express

negation #(0,0, [C],1),
exclusive or #(1,1,[C1,C2],2),
conjunction #(N,N, [C1,...,Cn],N)

and disjunction #(1,N, [C1,...,Cn],N).

triv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.

pos_sat @ #(L,U,BL,N) <=> L=N | all(1,BL).

neg_sat @ #(L,U,BL,N) <=> U=0 | all(0,BL).

pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1) |
o<u, #(L-1,U-1,BL1,N-1).

neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1) |
I<N, #(L,U,BL1,N-1).

11

Remarks

In the code, all constraints except cardinality #
are built-in.

all(T,L) binds all elements of the list L. to T.

delete(X,L,L1) deletes the element X from the
list L resulting in the list L1.

When delete/3 is used in the guard, it will only
succeed if the element to be removed actually occurs
in the list. E.g. delete(1,BL,BL1) will delay if it
tries to bind a variable in BL to 1. It will only succeed
if there actually is a 1 in the list. It will fail, if all
elements of the list are zeros.

11-1

Termination

CHR termination order:
rank(#(L,U, BL,N)) = length(BL)

length([]]) =0
length(|X|L]) =1+ length(L)

delete(X, L, L1) — length(L) = length(L1) + 1

Termination proof:

From

pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1) |
o<u, #(L-1,U-1,BL1,N-1).

we get to prove

length(BL) = length(BL1) +1 —
length(BL) > length(BL1).

Boundedness: finite closed list BL.

12

Remarks

Since the cardinality constraint is either simpli-
fied into a built-in constraint (satisfaction rules) or
reduced to a cardinality with a shorter list (reduction
rules), this implementation terminates.

Due to the ranking, a goal consisting of built-in
and cardinality constraints is bounded if the lengths
of the lists in the cardinality constraints are known,
i.e. if the lists are closed. If a list was open(-ended),
there could be producers of an infinite list, and then
the associated cardinality constraint would not nec-
essarily terminate.

12-1

Linear Polynomial Equations

Linear polynomaial equation:
a1 *x1+...+a,*xx, +b=0.
Variables appear in strictly descending order.

Variable Elimination

empty @ B eq O <=> number(B) | B=0.

eliminate @

A1xX+P1 eq 0, A2*xX+P2 eq 0 <=>
compute (P2+P1*A2/A1,P3),
A1xX+P1 eq 0, P3 eq O.

13

Remarks

A linear polynomial equation is of the form p +
b = 0 where b is a constant and the polynomial p
i1s the sum of monomials of the form a; * x; with
coefficient a; # 0 and z; is a variable. Constants
and coeflicients are numbers.

The empty rule says that if the polynomial con-
tains no more variables, the constant B must be (ap-
proximate to) zero.

The eliminate rule performs variable elimina-
tion. It takes two equations that start with the
same variable. The first equation is left unchanged,
it is used to eliminate the occurrence of the com-
mon variable in the second equation. The auxiliary
built-in constraint compute simplifies a polynomial
arithmetic expression into a new polynomial.

Note that no variable is made explicit, i.e. no
pivoting is performed. Any two equations with the
same first variable can react with each other.

The solver can be extended by a few rules to
create explicit variable bindings, to make implicit
equalities between variables explicit, to deal with in-
equations using slack variables or fouriers algorithm.

13-1

Termination

CHR termination order:

Extend termination order to multi-sets.

rank((A A B)) = rank(A) U rank(B)

rank(A) = vars(A) if A is a CHR constraint
rank(A) = {} if A is a built-in constraint

ar* Xp...0n* X, +b0=0—=>X; > X;it7>j
rank(compute(E, P) — vars(E) D vars(P)

Termination proof:

A1xX+P1 eq 0, A2xX+P2 eq 0 <=>
compute (P2+P1*A2/A1,P3),
A1xX+P1 eq O, P3 eq O.

Prove (P, U Py O P3) —
{X}uP U{X}UP2)> ({X}uUP UP3).

Boundedness: Order is on sets of variables.

14

Remarks

For better readability, we write just P instead of
vars(P).

The rank constraint (1) says that the monomials
in the equations are ordered by their variables. The
rank constraint (2) says that the built-in constraint
compute does not introduce new variables, but may
eliminate occurences of some.

Hence the body rank multiset contains only vari-
ables from the head rank multiset. Due to (1) we
know that the variable X does not occur in P;, Ps
and Ps;, and that it comes before all other variables
in P, P, and P53 in the variable order.

Therefore the head rank multiset is strictly greater
in the multiset order than the body rank multiset,
because in the former X occurs twice and in the lat-
ter X occurs only once.

14-1

Path Consistency

A disjunctive binary constraint
c(I,K,{ r1,..., rn}) denotes a finite
disjunction (X 1 Y)V...V(X r, Y).

Path consistency algorithm

c(I,K,C1), c(K,J,C2), c(I,J,C3) <=>
composition(C1,C2,C12),
intersection(C12,C3,C123),
C123=\=C3
|
c(I,K,C1), c(K,J,C2), c(I,J,C123).

15

Remarks

A binary constraint network consists of a set of
variables and a set of (disjunctive) binary constraints
between them. The network can be represented by
a directed constraint graph, where the nodes denote
variables and the arcs are labeled by binary con-
straints. Logically, a network is a conjunction of
binary constraints.

A disjunctive binary constraint cg, between two
variables X and Y, also written X {rq{,...,r,} Y, is
a finite disjunction (X r1 Y)V...V(X r, Y), where
each r; is a relation that is applicable to X and Y.
The r; are called primitive constraints. They are
assumed to be pairwise disjoint.

A network is path consistent if for pairs of nodes
(,7) and all paths ¢ —i; —i5...%, —j between them,
the direct constraint c;; is at least as tight than the
indirect constraint along the path, i.e. the composi-
tion of constraints c;;, ® ... ® ¢;, ; along the path.

Composition of disjunctive constraints can be com-
puted by pairwise composition of its primitive con-
straints. Intersection for disjunctive constraints can
be implemented by set intersection.

15-1

Termination

CHR termination order:

rank(c(I, K,C)) = cardinality(C)

rank(A) = 0 otherwise.
intersection(C'1,C2,C3) —

rank(C3) < rank(C1) A rank(C3) < rank(C2)
intersection(C1,C2,C3) NC3 # C2 —
rank(C3) # rank(C2)

Termination proof:

In the guard, C123=\=C3 is checked to make sure
the new constraint C123 is different from the old
one C3. Hence the cardinality of C123 must be
strictly less than that of C3.

Boundedness: Ci must be known finite set.

16

Remarks

To prove termination we rely on the cardinality
of the sets representing the disjunctive constraints
and the properties of set intersection.

Hence the body is ranked strictly smaller than
the head of the rule. Goals are bounded, since C is
always a known, finite set of primitive constraints.

Any solver derived from this generic path consis-
tency solver will terminate, too.

16-1

Interval Domain Constraints

inconsistent @ X in A:B <=> A>B | false.
intersection @ X in A:B, X in C:D <=> A=<B |
X in max(A,C) :min(B,D).

le @ X 1le Y, X in A:B, Y in C:D <=>
A=<B,B>D |
X le Y, X in A:D, Y in C:D.
eq @ X eqVY, X in A:B, Y in C:D <=>
A=<B,C=<D,A=\=C |
X eq VY, X in max(A,C):B, Y in max(C,A):D.

add @ add(X,Y,Z), X in A:B, Y in C:D, Z in E:F
<=>
A=<B,C=<D,
\+(A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+4D)
|
add (X,Y,Z),
X in max(A,E-D) :min(B,F-C),
Y in max(C,E-B) :min(D,F-A),
Z in max(E,A+C) :min(F,B+D).

17

Remarks

Arc consistency can be seen as special case of
path consistency, where all but one constraint is unary
instead of binary.

The interval constraint X in A:B means that X
is a number between the bounds A and B.

17-1

Termination

CHR termination order:

rank(X in A:B)=B—-A+1ifB> A
rank(C) = 0 otherwise

Termination proof:

In each rule, at least one interval in the head is
strictly larger than the corresponding interval in
the body, while the other intervals remain
unchanged or will be removed. Proved using the

inequalities in the guards.

eq ©@X eq Y, X in A:B, Y in C:D <=>
A=<B,C=<D,A=\=C |
X eqVY, X in max(A,C):B, Y in max(C,A):D.

Boundedness: The interval bounds are known.

18

Remarks

The constraints A=<B and C=<D in the guard of
a rule ensure that the rank of the head of the rule
cannot be 0. (In implementations that apply rules in
textual order, these guard constraints can be dropped.)
The ranking condition for the first rule inconsistent
also holds, even though its head rank is 0, since its
order constraint is inconsistent:

(A > B A false) -0 >0

Even though the ranking is only well-defined for
interval bounds that are integers, there is a simple
way to allow for floating point numbers and rational
numbers as well: First note that each kind of num-
bers is closed under the interval computations, since
they use only the arithmetic operations max, min
and +, -. Note that floating point numbers can be
represented by rational numbers. Finally, any prob-
lem on rational numbers can be transformed into an
equivalent one on integers by multiplying all num-
bers in the problem with their greatest common di-
visor.

18-1

Conclusions

e First work on proving termination in

concurrent constraint logic languages.

e Proved termination for many CHR constraint

solvers.

e Linear polynomial interpretations sufficed,
contrary to what was feared in the literature.

e Recursion modifies one sufficiently known

argument position.
e Limited use of propagation rules.

Open Problem for future work

Propagation rules in path and arc consistency

algorithms on incomplete constraint networks:

c(I,K,C1), c(K,J,C2) ==
composition(C1,C2,C3), c(I,J,C3).

c(1,J,C1), c(1,J3,C2) <=>
intersection(C1,C2,C3), c(I,J,C3).

Fairness has to be considered for termination.

19

Remarks

These solvers have recursion on the same con-
straint through both simplification and propagation
rules. This means that a constraint can be first
added and then be removed during the computation.

Future works aims at giving termination proofs
also for this kind of solvers. One will have to take
into account fairness (which implies that simplifica-
tion is applied sufficiently often before propagation)
and the fact that propagation rules are never applied
a second time to the same constraints.

Another interesting line of future work is to strengthen
the antecedent of a ranking condition by introducing
type constraints (ill-typed goals either delay or fail).

19-1

