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RemarksWe want to adapt and use existing approa
hes totermination in rule-based languages (logi
 program-ming and rewriting systems) to prove termination ofa
tually implemented CHR 
onstraint solvers.Our approa
h proves termination of many CHR
onstraint solvers, ranging from Boolean and arith-meti
 to terminologi
al and path-
onsistent 
onstraints.
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Why Termination?� Good for users� Con
uen
e� Completion� Operational Equivalen
ePrerequisite in all theoreti
al results about CHR.
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Related WorkTerm Rewriting� Dershowitz, JSC 1987.Logi
 Programming� Overview in de S
hreye/De
orte, JLP 1994.� Bezem, JLP 1993 and before.� Apt/Pedres
hi, ESPRIT CSL 90.Logi
 Programming with Coroutining� Naish, TR Melbourne 1992.� Mar
hiori/Teusink, ILPS 95.Constraint Logi
 Programming� Colussi/Mar
hiori/Mar
hiori, PPCP 95.� Mesnard, JICSLP 96.Con
urrent Logi
 Programming� Pl�umer, FGCS 92.� Rao/Kapur/Shyamasundar, NGC 1997.
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RemarksThe main line of work in termination of logi
programs originated from prede
essor publi
ationsof the author of [Bez93℄. Both programs and goalsare 
hara
terized in terms of level mappings, a fun
-tion from ground atoms to natural numbers. A logi
program is re
urrent if for every ground instan
e ofea
h rule, the level of the head atom is higher thanthe level of ea
h body atom. A goal is bounded if forevery ground instan
e of ea
h atom in the goal thereis a maximum level whi
h is not ex
eeded.[ApPe90℄ and su

essive work re�ned this ap-proa
h: Lo
al variables and the spe
i�
 left-to-rightSLD resolution of Prolog are taken into a

ount.While [Mes96, MaTe95, Plu92℄ embark on levelmappings, the theoreti
al work [CMM95℄ providesne
essary and suÆ
ient 
onditions for terminationbased on data
ow graphs, the pra
ti
al work [Nai92℄dis
usses informally how terminating pro
edures 
anbe 
ombined ensuring overall termination, and [KKS97℄
an use te
hniques from TRS dire
tly sin
e they trans-late GHC programs into TRS.
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Con
urrent ConstraintProgramming?Termination problem even harder.Example. Even Number Constraint:even(X) <=> X=s(Y) | Y=s(Z), even(Z).Queries:� even(N) delays.� even(f(N)) delays.� even(s(N)) leads to N=s(N1),even(N1).� even(N),even(s(N)) does not terminate.Constraint Handling Rules?Not only 
on
urren
y and 
onstraints, but alsopropagation rules and multiple heads.
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Basi
 IdeaTermination for rule-based languagesProve that head of the rule is larger than body ofthe rule in some well-founded order.Polynomial interpretation:Maps terms to natural numbers.E.g. even(X) <=> X=s(Y) | Y=s(Z), even(Z).rank(even(sn(X))) = nNot enough, must take variables into a

ount.Modes and types.E.g. even 
annot be moded.even terminates if ill-typed.Boundedness: Queries must be suÆ
iently known.E.g. even with ground (variable-free) argument.
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RemarksThe basi
 idea is to prove that in ea
h rule, thehead atom is stri
tly larger than every atom o

ur-ring in the body of the rule. In order to be appli-
able, programs and queries usually have to be well-moded or queries suÆ
iently known.ContentsWe will �rst give syntax and semanti
s for CHR.In the next se
tion, we introdu
e useful terminationorders for CHR. Then we prove termination of a
-tually implemented CHR 
onstraint solvers rangingfrom Boolean and arithmeti
 to terminologi
al andpath-
onsistent 
onstraints.
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SyntaxUpper 
ase letters stand for 
onjun
tions of CHR(user-de�ned) or built-in (prede�ned) 
onstraints.A simpli�
ation CHR is of the form[Name '�'℄ Head '<=>' [Guard '|'℄ Body.A propagation CHR is of the form[Name '�'℄ Head '==>' [Guard '|'℄ Body.Head is a 
onjun
tion of CHR 
onstraints.Guard is a 
onjun
tion of built-in 
onstraints.Body is a 
onjun
tion of built-in and CHR
onstraints.
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Operational Semanti
sA state (goal): 
onjun
tion of 
onstraints.Upper 
ase letters: 
onjun
tions of 
onstraints.CT : 
onstraint theory for the built-in 
onstraints.SimplifyH 0 ^D 7�! (H = H 0) ^G ^B ^Dif (H <=> G j B) variant of rule in PCT j= Dbi ! 9�x(H = H 0 ^G)
PropagateH 0 ^D 7�! (H = H 0) ^G ^B ^H 0 ^Dif (H ==> G j B) variant of rule in PCT j= Dbi ! 9�x(H = H 0 ^G)
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RemarksAn initial state (query). A �nal state (answer):No fair 
omputation step is possible anymore or thestate is in
onsistent.�x denotes the fresh variables o

urring in thevariant of the rule 
hoosen from P .A rule is appli
able to CHR 
onstraints H 0 when-ever these 
onstraints mat
h the head atoms H ofthe rule and the guard G is entailed (implied) bythe built-in 
onstraint store.If a simpli�
ation rule (H <=> G | B) appear-ing in the given CHR program P is appli
able tothe CHR 
onstraint H 0, the Simplify transition re-moves H 0 from the state, adds B and also adds theequation H = H 0 and the guard G to the state. If apropagation rule (H ==> G | B) is appli
able toH 0, the Propagate transition adds B and also addsthe equation H = H 0 and the guard G.We require that the rules are applied fairly, i.e.that every rule that is appli
able is applied eventu-ally. Fairness is respe
ted and trivial non-terminationis avoided by applying a propagation rule at moston
e to the same 
onstraints.
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Termination of CHRConstraint SolversTermination in all 
ontexts under any s
hedulingwhi
h prefers built-in 
onstraints.A CHR program P is terminating for a 
lass ofgoals G, if there are no in�nite derivationsstarting from any goal in G using rules from P .
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CHR Termination OrdersLinear polynomial interpretation: Rank of a termor atom is de�ned by a linear positive
ombination of the rankings of its arguments.rank(f(t1; : : : ; tn)) =af0 + af1 � rank(t1) + : : :+ afn � rank(tn)where the afi are natural numbers.For ea
h variable X, rank(X) � 0.Rank orders are stable under substitution andwell-founded for ground terms or atoms.Example. Size of a term.size(f(t1; : : : ; tn)) = 1 + size(t1) + : : :+ size(tn)size(f(a; g(b; 
)) = 5.size(f(a;X)) = 2 + size(X) with size(X) � 0.size(f(g(X); X)) � size(f(a;X)) sin
e2 + 2 � size(X) � 2 + size(X):
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CHR Termination Orders 2� Rank of built-in 
onstraints is zero.� Rank 
onstraints: Built-in 
onstraints mayimply order 
onstraints on arguments, e.g.s = t! rank(s) = rank(t).� Ranking formula of a rule H <=> G | B:RC(G;B)! rank(H) > rank(B),where RC(G;B) is the 
onjun
tion of therank 
onstraints derived from the built-in
onstraints in the guard and body of the rule.� Boundedness of a goal G: The rank of anyinstan
e of G is bounded from above by some
onstant k.
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RemarksObviously, the rank of a ground (variable-free)term is always bounded.
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CHR Termination TheoremGiven a CHR termination order whererank((A ^B)) = rank(A) + rank(B).and a CHR program P without propagation rules.If for ea
h rule in P the ranking formula holds,then P is terminating for all bounded goals.Proof Sket
h. Applying a rule (H <=> G j B) toa state H 0 ^D leads to (H = H 0) ^G ^B ^D.1. Show thatrank(H 0 ^D) > rank(((H = H 0) ^G ^B ^D)).We know (H = H 0)! rank(H) = rank(H 0),rank(G) = 0, rank(H = H 0) = 0 andRC(G;B)! rank(H) > rank(B).rank(H 0 ^D) = rank(H 0) + rank(D) =rank(H) + rank(D).rank(((H = H 0) ^G ^B ^D)) =rank(B) + rank(D).2. Show that ranks of states are always bounded.
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RemarksTo show that the ranks of all states are bounded,note the following: Any ranking is well-founded andhas the stability property. Sin
e goals are bounded,the rank of a state is bounded. Due to the rank-ing 
ondition, the boundedness of the sour
e state ispropagated to target state. Thus no in�nite 
ompu-tations are possible, hen
e P is terminating.The Theorem also holds for CHR termination or-ders extended to multi-sets whererank((A ^B)) = rank(A) [ rank(B).

10-1



Boolean Algebra,Propositional Logi
The Boolean 
ardinality 
onstraint #(L,U,BL,N)holds if between L and U Boolean variables in thelist BL are equal to 1. N is the length of BL.Boolean 
ardinality 
an expressnegation #(0,0,[C℄,1),ex
lusive or #(1,1,[C1,C2℄,2),
onjun
tion #(N,N,[C1,...,Cn℄,N)and disjun
tion #(1,N,[C1,...,Cn℄,N).triv_sat� #(L,U,BL,N) <=> L=<0,N=<U | true.pos_sat � #(L,U,BL,N) <=> L=N | all(1,BL).neg_sat � #(L,U,BL,N) <=> U=0 | all(0,BL).pos_red � #(L,U,BL,N) <=> delete(1,BL,BL1) |0<U, #(L-1,U-1,BL1,N-1).neg_red � #(L,U,BL,N) <=> delete(0,BL,BL1) |L<N, #(L,U,BL1,N-1).
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RemarksIn the 
ode, all 
onstraints ex
ept 
ardinality #are built-in.all(T,L) binds all elements of the list L to T.delete(X,L,L1) deletes the element X from thelist L resulting in the list L1.When delete/3 is used in the guard, it will onlysu

eed if the element to be removed a
tually o

ursin the list. E.g. delete(1,BL,BL1) will delay if ittries to bind a variable in BL to 1. It will only su

eedif there a
tually is a 1 in the list. It will fail, if allelements of the list are zeros.
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TerminationCHR termination order:rank(#(L;U;BL;N)) = length(BL)length([℄) = 0length([XjL℄) = 1 + length(L)delete(X;L;L1)! length(L) = length(L1) + 1Termination proof:Frompos_red � #(L,U,BL,N) <=> delete(1,BL,BL1) |0<U, #(L-1,U-1,BL1,N-1).we get to provelength(BL) = length(BL1) + 1 !length(BL) > length(BL1).Boundedness: �nite 
losed list BL.
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RemarksSin
e the 
ardinality 
onstraint is either simpli-�ed into a built-in 
onstraint (satisfa
tion rules) orredu
ed to a 
ardinality with a shorter list (redu
tionrules), this implementation terminates.Due to the ranking, a goal 
onsisting of built-inand 
ardinality 
onstraints is bounded if the lengthsof the lists in the 
ardinality 
onstraints are known,i.e. if the lists are 
losed. If a list was open(-ended),there 
ould be produ
ers of an in�nite list, and thenthe asso
iated 
ardinality 
onstraint would not ne
-essarily terminate.
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Linear Polynomial EquationsLinear polynomial equation:a1 � x1 + : : :+ an � xn + b = 0.Variables appear in stri
tly des
ending order.Variable Eliminationempty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>
ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.
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RemarksA linear polynomial equation is of the form p +b = 0 where b is a 
onstant and the polynomial pis the sum of monomials of the form ai � xi with
oeÆ
ient ai 6= 0 and xi is a variable. Constantsand 
oeÆ
ients are numbers.The empty rule says that if the polynomial 
on-tains no more variables, the 
onstant B must be (ap-proximate to) zero.The eliminate rule performs variable elimina-tion. It takes two equations that start with thesame variable. The �rst equation is left un
hanged,it is used to eliminate the o

urren
e of the 
om-mon variable in the se
ond equation. The auxiliarybuilt-in 
onstraint 
ompute simpli�es a polynomialarithmeti
 expression into a new polynomial.Note that no variable is made expli
it, i.e. nopivoting is performed. Any two equations with thesame �rst variable 
an rea
t with ea
h other.The solver 
an be extended by a few rules to
reate expli
it variable bindings, to make impli
itequalities between variables expli
it, to deal with in-equations using sla
k variables or fouriers algorithm.
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TerminationCHR termination order:Extend termination order to multi-sets.rank((A ^B)) = rank(A) [ rank(B)rank(A) = vars(A) if A is a CHR 
onstraintrank(A) = fg if A is a built-in 
onstrainta1 �X1 : : : an �Xn + b = 0! Xi � Xj if i > jrank(
ompute(E;P )! vars(E) � vars(P )Termination proof:A1*X+P1 eq 0, A2*X+P2 eq 0 <=>
ompute(P2+P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.Prove (P2 [ P1 � P3)!(fXg [ P1 [ fXg [ P2) > (fXg [ P1 [ P3).Boundedness: Order is on sets of variables.
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RemarksFor better readability, we write just P instead ofvars(P ).The rank 
onstraint (1) says that the monomialsin the equations are ordered by their variables. Therank 
onstraint (2) says that the built-in 
onstraint
ompute does not introdu
e new variables, but mayeliminate o

uren
es of some.Hen
e the body rank multiset 
ontains only vari-ables from the head rank multiset. Due to (1) weknow that the variable X does not o

ur in P1; P2and P3, and that it 
omes before all other variablesin P1; P2 and P3 in the variable order.Therefore the head rank multiset is stri
tly greaterin the multiset order than the body rank multiset,be
ause in the former X o

urs twi
e and in the lat-ter X o

urs only on
e.
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Path Consisten
yA disjun
tive binary 
onstraint
(I,K,f r1,..., rng) denotes a �nitedisjun
tion (X r1 Y ) _ : : : _ (X rn Y ).Path 
onsisten
y algorithm
(I,K,C1), 
(K,J,C2), 
(I,J,C3) <=>
omposition(C1,C2,C12),interse
tion(C12,C3,C123),C123=\=C3|
(I,K,C1), 
(K,J,C2), 
(I,J,C123).
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RemarksA binary 
onstraint network 
onsists of a set ofvariables and a set of (disjun
tive) binary 
onstraintsbetween them. The network 
an be represented bya dire
ted 
onstraint graph, where the nodes denotevariables and the ar
s are labeled by binary 
on-straints. Logi
ally, a network is a 
onjun
tion ofbinary 
onstraints.A disjun
tive binary 
onstraint 
xy between twovariables X and Y , also written X fr1; : : : ; rng Y , isa �nite disjun
tion (X r1 Y )_ : : :_ (X rn Y ), whereea
h ri is a relation that is appli
able to X and Y .The ri are 
alled primitive 
onstraints. They areassumed to be pairwise disjoint.A network is path 
onsistent if for pairs of nodes(i; j) and all paths i� i1� i2 : : : in�j between them,the dire
t 
onstraint 
ij is at least as tight than theindire
t 
onstraint along the path, i.e. the 
omposi-tion of 
onstraints 
ii1 
 : : :
 
inj along the path.Composition of disjun
tive 
onstraints 
an be 
om-puted by pairwise 
omposition of its primitive 
on-straints. Interse
tion for disjun
tive 
onstraints 
anbe implemented by set interse
tion.
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TerminationCHR termination order:rank(
(I;K;C)) = 
ardinality(C)rank(A) = 0 otherwise.interse
tion(C1; C2; C3)!rank(C3) � rank(C1) ^ rank(C3) � rank(C2)interse
tion(C1; C2; C3) ^ C3 6= C2!rank(C3) 6= rank(C2)Termination proof:In the guard, C123=n=C3 is 
he
ked to make surethe new 
onstraint C123 is di�erent from the oldone C3. Hen
e the 
ardinality of C123 must bestri
tly less than that of C3.Boundedness: Ci must be known �nite set.
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RemarksTo prove termination we rely on the 
ardinalityof the sets representing the disjun
tive 
onstraintsand the properties of set interse
tion.Hen
e the body is ranked stri
tly smaller thanthe head of the rule. Goals are bounded, sin
e C isalways a known, �nite set of primitive 
onstraints.Any solver derived from this generi
 path 
onsis-ten
y solver will terminate, too.
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Interval Domain Constraintsin
onsistent � X in A:B <=> A>B | false.interse
tion � X in A:B, X in C:D <=> A=<B |X in max(A,C):min(B,D).le � X le Y, X in A:B, Y in C:D <=>A=<B,B>D |X le Y, X in A:D, Y in C:D.eq � X eq Y, X in A:B, Y in C:D <=>A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.add � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F<=>A=<B,C=<D,\+(A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)|add(X,Y,Z),X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).17



RemarksAr
 
onsisten
y 
an be seen as spe
ial 
ase ofpath 
onsisten
y, where all but one 
onstraint is unaryinstead of binary.The interval 
onstraint X in A:B means that Xis a number between the bounds A and B.
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TerminationCHR termination order:rank(X in A : B) = B � A+ 1 if B � Arank(C) = 0 otherwiseTermination proof:In ea
h rule, at least one interval in the head isstri
tly larger than the 
orresponding interval inthe body, while the other intervals remainun
hanged or will be removed. Proved using theinequalities in the guards.eq � X eq Y, X in A:B, Y in C:D <=>A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.Boundedness: The interval bounds are known.
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RemarksThe 
onstraints A=<B and C=<D in the guard ofa rule ensure that the rank of the head of the rule
annot be 0. (In implementations that apply rules intextual order, these guard 
onstraints 
an be dropped.)The ranking 
ondition for the �rst rule in
onsistentalso holds, even though its head rank is 0, sin
e itsorder 
onstraint is in
onsistent:(A > B ^ false)! 0 > 0Even though the ranking is only well-de�ned forinterval bounds that are integers, there is a simpleway to allow for 
oating point numbers and rationalnumbers as well: First note that ea
h kind of num-bers is 
losed under the interval 
omputations, sin
ethey use only the arithmeti
 operations max, minand +, -. Note that 
oating point numbers 
an berepresented by rational numbers. Finally, any prob-lem on rational numbers 
an be transformed into anequivalent one on integers by multiplying all num-bers in the problem with their greatest 
ommon di-visor.
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Con
lusions� First work on proving termination in
on
urrent 
onstraint logi
 languages.� Proved termination for many CHR 
onstraintsolvers.� Linear polynomial interpretations suÆ
ed,
ontrary to what was feared in the literature.� Re
ursion modi�es one suÆ
iently knownargument position.� Limited use of propagation rules.Open Problem for future workPropagation rules in path and ar
 
onsisten
yalgorithms on in
omplete 
onstraint networks:
(I,K,C1), 
(K,J,C2) ==>
omposition(C1,C2,C3), 
(I,J,C3).
(I,J,C1), 
(I,J,C2) <=>interse
tion(C1,C2,C3), 
(I,J,C3).Fairness has to be 
onsidered for termination.19



RemarksThese solvers have re
ursion on the same 
on-straint through both simpli�
ation and propagationrules. This means that a 
onstraint 
an be �rstadded and then be removed during the 
omputation.Future works aims at giving termination proofsalso for this kind of solvers. One will have to takeinto a

ount fairness (whi
h implies that simpli�
a-tion is applied suÆ
iently often before propagation)and the fa
t that propagation rules are never applieda se
ond time to the same 
onstraints.Another interesting line of future work is to strengthenthe ante
edent of a ranking 
ondition by introdu
ingtype 
onstraints (ill-typed goals either delay or fail).
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